Properties

Label 4000.2.c.b
Level 40004000
Weight 22
Character orbit 4000.c
Analytic conductor 31.94031.940
Analytic rank 00
Dimension 88
CM discriminant -20
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4000,2,Mod(1249,4000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4000, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4000.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 4000=2553 4000 = 2^{5} \cdot 5^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4000.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 31.940160808531.9401608085
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ20)\Q(\zeta_{20})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8x6+x4x2+1 x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 28 2^{8}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ3q3+(β7+β3)q7+(β6β11)q9+(β6+3)q21+(2β7β5++β2)q23+(β7+2β5+2β2)q27++(2β64β43β1)q89+O(q100) q - \beta_{3} q^{3} + ( - \beta_{7} + \beta_{3}) q^{7} + ( - \beta_{6} - \beta_1 - 1) q^{9} + (\beta_{6} + 3) q^{21} + ( - 2 \beta_{7} - \beta_{5} + \cdots + \beta_{2}) q^{23} + ( - \beta_{7} + 2 \beta_{5} + \cdots - 2 \beta_{2}) q^{27}+ \cdots + ( - 2 \beta_{6} - 4 \beta_{4} - 3 \beta_1) q^{89}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q9+24q2112q2920q41+4q49+60q6148q69+8q81+12q89+O(q100) 8 q - 4 q^{9} + 24 q^{21} - 12 q^{29} - 20 q^{41} + 4 q^{49} + 60 q^{61} - 48 q^{69} + 8 q^{81} + 12 q^{89}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ206+ζ204 -\zeta_{20}^{6} + \zeta_{20}^{4} Copy content Toggle raw display
β2\beta_{2}== ζ206ζ205+ζ204 \zeta_{20}^{6} - \zeta_{20}^{5} + \zeta_{20}^{4} Copy content Toggle raw display
β3\beta_{3}== ζ206+ζ205+ζ204 \zeta_{20}^{6} + \zeta_{20}^{5} + \zeta_{20}^{4} Copy content Toggle raw display
β4\beta_{4}== 2ζ207+2ζ203 -2\zeta_{20}^{7} + 2\zeta_{20}^{3} Copy content Toggle raw display
β5\beta_{5}== ζ207+ζ206ζ205ζ204+ζ203+2ζ2021 \zeta_{20}^{7} + \zeta_{20}^{6} - \zeta_{20}^{5} - \zeta_{20}^{4} + \zeta_{20}^{3} + 2\zeta_{20}^{2} - 1 Copy content Toggle raw display
β6\beta_{6}== 2ζ207+2ζ2052ζ203+4ζ20 -2\zeta_{20}^{7} + 2\zeta_{20}^{5} - 2\zeta_{20}^{3} + 4\zeta_{20} Copy content Toggle raw display
β7\beta_{7}== ζ207+ζ206+ζ205ζ204ζ203+2ζ2021 -\zeta_{20}^{7} + \zeta_{20}^{6} + \zeta_{20}^{5} - \zeta_{20}^{4} - \zeta_{20}^{3} + 2\zeta_{20}^{2} - 1 Copy content Toggle raw display
ζ20\zeta_{20}== (β7+β6+β5)/4 ( -\beta_{7} + \beta_{6} + \beta_{5} ) / 4 Copy content Toggle raw display
ζ202\zeta_{20}^{2}== (β7+β5+2β1+2)/4 ( \beta_{7} + \beta_{5} + 2\beta _1 + 2 ) / 4 Copy content Toggle raw display
ζ203\zeta_{20}^{3}== (β7+β5+β4+β3β2)/4 ( -\beta_{7} + \beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} ) / 4 Copy content Toggle raw display
ζ204\zeta_{20}^{4}== (β3+β2+2β1)/4 ( \beta_{3} + \beta_{2} + 2\beta_1 ) / 4 Copy content Toggle raw display
ζ205\zeta_{20}^{5}== (β3β2)/2 ( \beta_{3} - \beta_{2} ) / 2 Copy content Toggle raw display
ζ206\zeta_{20}^{6}== (β3+β22β1)/4 ( \beta_{3} + \beta_{2} - 2\beta_1 ) / 4 Copy content Toggle raw display
ζ207\zeta_{20}^{7}== (β7+β5β4+β3β2)/4 ( -\beta_{7} + \beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4000Z)×\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times.

nn 13771377 25012501 27512751
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1249.1
0.951057 + 0.309017i
0.587785 0.809017i
−0.951057 0.309017i
−0.587785 + 0.809017i
−0.587785 0.809017i
−0.951057 + 0.309017i
0.587785 + 0.809017i
0.951057 0.309017i
0 2.90211i 0 0 0 2.34458i 0 −5.42226 0
1249.2 0 2.17557i 0 0 0 2.45965i 0 −1.73311 0
1249.3 0 0.902113i 0 0 0 0.891491i 0 2.18619 0
1249.4 0 0.175571i 0 0 0 3.69572i 0 2.96917 0
1249.5 0 0.175571i 0 0 0 3.69572i 0 2.96917 0
1249.6 0 0.902113i 0 0 0 0.891491i 0 2.18619 0
1249.7 0 2.17557i 0 0 0 2.45965i 0 −1.73311 0
1249.8 0 2.90211i 0 0 0 2.34458i 0 −5.42226 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1249.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by Q(5)\Q(\sqrt{-5})
4.b odd 2 1 inner
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4000.2.c.b 8
4.b odd 2 1 inner 4000.2.c.b 8
5.b even 2 1 inner 4000.2.c.b 8
5.c odd 4 1 4000.2.a.b 4
5.c odd 4 1 4000.2.a.i yes 4
20.d odd 2 1 CM 4000.2.c.b 8
20.e even 4 1 4000.2.a.b 4
20.e even 4 1 4000.2.a.i yes 4
40.i odd 4 1 8000.2.a.z 4
40.i odd 4 1 8000.2.a.bs 4
40.k even 4 1 8000.2.a.z 4
40.k even 4 1 8000.2.a.bs 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4000.2.a.b 4 5.c odd 4 1
4000.2.a.b 4 20.e even 4 1
4000.2.a.i yes 4 5.c odd 4 1
4000.2.a.i yes 4 20.e even 4 1
4000.2.c.b 8 1.a even 1 1 trivial
4000.2.c.b 8 4.b odd 2 1 inner
4000.2.c.b 8 5.b even 2 1 inner
4000.2.c.b 8 20.d odd 2 1 CM
8000.2.a.z 4 40.i odd 4 1
8000.2.a.z 4 40.k even 4 1
8000.2.a.bs 4 40.i odd 4 1
8000.2.a.bs 4 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(4000,[χ])S_{2}^{\mathrm{new}}(4000, [\chi]):

T38+14T36+51T34+34T32+1 T_{3}^{8} + 14T_{3}^{6} + 51T_{3}^{4} + 34T_{3}^{2} + 1 Copy content Toggle raw display
T78+26T76+211T74+606T72+361 T_{7}^{8} + 26T_{7}^{6} + 211T_{7}^{4} + 606T_{7}^{2} + 361 Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8+14T6++1 T^{8} + 14 T^{6} + \cdots + 1 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8+26T6++361 T^{8} + 26 T^{6} + \cdots + 361 Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 T8 T^{8} Copy content Toggle raw display
1919 T8 T^{8} Copy content Toggle raw display
2323 T8+154T6++361 T^{8} + 154 T^{6} + \cdots + 361 Copy content Toggle raw display
2929 (T4+6T3++281)2 (T^{4} + 6 T^{3} + \cdots + 281)^{2} Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 T8 T^{8} Copy content Toggle raw display
4141 (T4+10T3++4705)2 (T^{4} + 10 T^{3} + \cdots + 4705)^{2} Copy content Toggle raw display
4343 T8+254T6++160801 T^{8} + 254 T^{6} + \cdots + 160801 Copy content Toggle raw display
4747 T8+166T6++1343281 T^{8} + 166 T^{6} + \cdots + 1343281 Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 (T430T3+3895)2 (T^{4} - 30 T^{3} + \cdots - 3895)^{2} Copy content Toggle raw display
6767 (T4+268T2+13456)2 (T^{4} + 268 T^{2} + 13456)^{2} Copy content Toggle raw display
7171 T8 T^{8} Copy content Toggle raw display
7373 T8 T^{8} Copy content Toggle raw display
7979 T8 T^{8} Copy content Toggle raw display
8383 T8++3142611481 T^{8} + \cdots + 3142611481 Copy content Toggle raw display
8989 (T46T3++24881)2 (T^{4} - 6 T^{3} + \cdots + 24881)^{2} Copy content Toggle raw display
9797 T8 T^{8} Copy content Toggle raw display
show more
show less