gp: [N,k,chi] = [4000,2,Mod(1249,4000)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4000.1249");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,24]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring
β 1 \beta_{1} β 1 = = =
− ζ 20 6 + ζ 20 4 -\zeta_{20}^{6} + \zeta_{20}^{4} − ζ 2 0 6 + ζ 2 0 4
-v^6 + v^4
β 2 \beta_{2} β 2 = = =
ζ 20 6 − ζ 20 5 + ζ 20 4 \zeta_{20}^{6} - \zeta_{20}^{5} + \zeta_{20}^{4} ζ 2 0 6 − ζ 2 0 5 + ζ 2 0 4
v^6 - v^5 + v^4
β 3 \beta_{3} β 3 = = =
ζ 20 6 + ζ 20 5 + ζ 20 4 \zeta_{20}^{6} + \zeta_{20}^{5} + \zeta_{20}^{4} ζ 2 0 6 + ζ 2 0 5 + ζ 2 0 4
v^6 + v^5 + v^4
β 4 \beta_{4} β 4 = = =
− 2 ζ 20 7 + 2 ζ 20 3 -2\zeta_{20}^{7} + 2\zeta_{20}^{3} − 2 ζ 2 0 7 + 2 ζ 2 0 3
-2*v^7 + 2*v^3
β 5 \beta_{5} β 5 = = =
ζ 20 7 + ζ 20 6 − ζ 20 5 − ζ 20 4 + ζ 20 3 + 2 ζ 20 2 − 1 \zeta_{20}^{7} + \zeta_{20}^{6} - \zeta_{20}^{5} - \zeta_{20}^{4} + \zeta_{20}^{3} + 2\zeta_{20}^{2} - 1 ζ 2 0 7 + ζ 2 0 6 − ζ 2 0 5 − ζ 2 0 4 + ζ 2 0 3 + 2 ζ 2 0 2 − 1
v^7 + v^6 - v^5 - v^4 + v^3 + 2*v^2 - 1
β 6 \beta_{6} β 6 = = =
− 2 ζ 20 7 + 2 ζ 20 5 − 2 ζ 20 3 + 4 ζ 20 -2\zeta_{20}^{7} + 2\zeta_{20}^{5} - 2\zeta_{20}^{3} + 4\zeta_{20} − 2 ζ 2 0 7 + 2 ζ 2 0 5 − 2 ζ 2 0 3 + 4 ζ 2 0
-2*v^7 + 2*v^5 - 2*v^3 + 4*v
β 7 \beta_{7} β 7 = = =
− ζ 20 7 + ζ 20 6 + ζ 20 5 − ζ 20 4 − ζ 20 3 + 2 ζ 20 2 − 1 -\zeta_{20}^{7} + \zeta_{20}^{6} + \zeta_{20}^{5} - \zeta_{20}^{4} - \zeta_{20}^{3} + 2\zeta_{20}^{2} - 1 − ζ 2 0 7 + ζ 2 0 6 + ζ 2 0 5 − ζ 2 0 4 − ζ 2 0 3 + 2 ζ 2 0 2 − 1
-v^7 + v^6 + v^5 - v^4 - v^3 + 2*v^2 - 1
ζ 20 \zeta_{20} ζ 2 0 = = =
( − β 7 + β 6 + β 5 ) / 4 ( -\beta_{7} + \beta_{6} + \beta_{5} ) / 4 ( − β 7 + β 6 + β 5 ) / 4
(-b7 + b6 + b5) / 4
ζ 20 2 \zeta_{20}^{2} ζ 2 0 2 = = =
( β 7 + β 5 + 2 β 1 + 2 ) / 4 ( \beta_{7} + \beta_{5} + 2\beta _1 + 2 ) / 4 ( β 7 + β 5 + 2 β 1 + 2 ) / 4
(b7 + b5 + 2*b1 + 2) / 4
ζ 20 3 \zeta_{20}^{3} ζ 2 0 3 = = =
( − β 7 + β 5 + β 4 + β 3 − β 2 ) / 4 ( -\beta_{7} + \beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} ) / 4 ( − β 7 + β 5 + β 4 + β 3 − β 2 ) / 4
(-b7 + b5 + b4 + b3 - b2) / 4
ζ 20 4 \zeta_{20}^{4} ζ 2 0 4 = = =
( β 3 + β 2 + 2 β 1 ) / 4 ( \beta_{3} + \beta_{2} + 2\beta_1 ) / 4 ( β 3 + β 2 + 2 β 1 ) / 4
(b3 + b2 + 2*b1) / 4
ζ 20 5 \zeta_{20}^{5} ζ 2 0 5 = = =
( β 3 − β 2 ) / 2 ( \beta_{3} - \beta_{2} ) / 2 ( β 3 − β 2 ) / 2
(b3 - b2) / 2
ζ 20 6 \zeta_{20}^{6} ζ 2 0 6 = = =
( β 3 + β 2 − 2 β 1 ) / 4 ( \beta_{3} + \beta_{2} - 2\beta_1 ) / 4 ( β 3 + β 2 − 2 β 1 ) / 4
(b3 + b2 - 2*b1) / 4
ζ 20 7 \zeta_{20}^{7} ζ 2 0 7 = = =
( − β 7 + β 5 − β 4 + β 3 − β 2 ) / 4 ( -\beta_{7} + \beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} ) / 4 ( − β 7 + β 5 − β 4 + β 3 − β 2 ) / 4
(-b7 + b5 - b4 + b3 - b2) / 4
Character values
We give the values of χ \chi χ on generators for ( Z / 4000 Z ) × \left(\mathbb{Z}/4000\mathbb{Z}\right)^\times ( Z / 4 0 0 0 Z ) × .
n n n
1377 1377 1 3 7 7
2501 2501 2 5 0 1
2751 2751 2 7 5 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 4000 , [ χ ] ) S_{2}^{\mathrm{new}}(4000, [\chi]) S 2 n e w ( 4 0 0 0 , [ χ ] ) :
T 3 8 + 14 T 3 6 + 51 T 3 4 + 34 T 3 2 + 1 T_{3}^{8} + 14T_{3}^{6} + 51T_{3}^{4} + 34T_{3}^{2} + 1 T 3 8 + 1 4 T 3 6 + 5 1 T 3 4 + 3 4 T 3 2 + 1
T3^8 + 14*T3^6 + 51*T3^4 + 34*T3^2 + 1
T 7 8 + 26 T 7 6 + 211 T 7 4 + 606 T 7 2 + 361 T_{7}^{8} + 26T_{7}^{6} + 211T_{7}^{4} + 606T_{7}^{2} + 361 T 7 8 + 2 6 T 7 6 + 2 1 1 T 7 4 + 6 0 6 T 7 2 + 3 6 1
T7^8 + 26*T7^6 + 211*T7^4 + 606*T7^2 + 361
T 11 T_{11} T 1 1
T11
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
T 8 + 14 T 6 + ⋯ + 1 T^{8} + 14 T^{6} + \cdots + 1 T 8 + 1 4 T 6 + ⋯ + 1
T^8 + 14*T^6 + 51*T^4 + 34*T^2 + 1
5 5 5
T 8 T^{8} T 8
T^8
7 7 7
T 8 + 26 T 6 + ⋯ + 361 T^{8} + 26 T^{6} + \cdots + 361 T 8 + 2 6 T 6 + ⋯ + 3 6 1
T^8 + 26*T^6 + 211*T^4 + 606*T^2 + 361
11 11 1 1
T 8 T^{8} T 8
T^8
13 13 1 3
T 8 T^{8} T 8
T^8
17 17 1 7
T 8 T^{8} T 8
T^8
19 19 1 9
T 8 T^{8} T 8
T^8
23 23 2 3
T 8 + 154 T 6 + ⋯ + 361 T^{8} + 154 T^{6} + \cdots + 361 T 8 + 1 5 4 T 6 + ⋯ + 3 6 1
T^8 + 154*T^6 + 6451*T^4 + 47454*T^2 + 361
29 29 2 9
( T 4 + 6 T 3 + ⋯ + 281 ) 2 (T^{4} + 6 T^{3} + \cdots + 281)^{2} ( T 4 + 6 T 3 + ⋯ + 2 8 1 ) 2
(T^4 + 6*T^3 - 109*T^2 - 654*T + 281)^2
31 31 3 1
T 8 T^{8} T 8
T^8
37 37 3 7
T 8 T^{8} T 8
T^8
41 41 4 1
( T 4 + 10 T 3 + ⋯ + 4705 ) 2 (T^{4} + 10 T^{3} + \cdots + 4705)^{2} ( T 4 + 1 0 T 3 + ⋯ + 4 7 0 5 ) 2
(T^4 + 10*T^3 - 145*T^2 - 1030*T + 4705)^2
43 43 4 3
T 8 + 254 T 6 + ⋯ + 160801 T^{8} + 254 T^{6} + \cdots + 160801 T 8 + 2 5 4 T 6 + ⋯ + 1 6 0 8 0 1
T^8 + 254*T^6 + 16771*T^4 + 146514*T^2 + 160801
47 47 4 7
T 8 + 166 T 6 + ⋯ + 1343281 T^{8} + 166 T^{6} + \cdots + 1343281 T 8 + 1 6 6 T 6 + ⋯ + 1 3 4 3 2 8 1
T^8 + 166*T^6 + 9211*T^4 + 193146*T^2 + 1343281
53 53 5 3
T 8 T^{8} T 8
T^8
59 59 5 9
T 8 T^{8} T 8
T^8
61 61 6 1
( T 4 − 30 T 3 + ⋯ − 3895 ) 2 (T^{4} - 30 T^{3} + \cdots - 3895)^{2} ( T 4 − 3 0 T 3 + ⋯ − 3 8 9 5 ) 2
(T^4 - 30*T^3 + 235*T^2 + 90*T - 3895)^2
67 67 6 7
( T 4 + 268 T 2 + 13456 ) 2 (T^{4} + 268 T^{2} + 13456)^{2} ( T 4 + 2 6 8 T 2 + 1 3 4 5 6 ) 2
(T^4 + 268*T^2 + 13456)^2
71 71 7 1
T 8 T^{8} T 8
T^8
73 73 7 3
T 8 T^{8} T 8
T^8
79 79 7 9
T 8 T^{8} T 8
T^8
83 83 8 3
T 8 + ⋯ + 3142611481 T^{8} + \cdots + 3142611481 T 8 + ⋯ + 3 1 4 2 6 1 1 4 8 1
T^8 + 994*T^6 + 360571*T^4 + 56202054*T^2 + 3142611481
89 89 8 9
( T 4 − 6 T 3 + ⋯ + 24881 ) 2 (T^{4} - 6 T^{3} + \cdots + 24881)^{2} ( T 4 − 6 T 3 + ⋯ + 2 4 8 8 1 ) 2
(T^4 - 6*T^3 - 409*T^2 + 2454*T + 24881)^2
97 97 9 7
T 8 T^{8} T 8
T^8
show more
show less