Properties

Label 2-4000-5.4-c1-0-29
Degree $2$
Conductor $4000$
Sign $-i$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.902i·3-s + 0.891i·7-s + 2.18·9-s − 0.804·21-s + 3.04i·23-s + 4.67i·27-s + 0.403·29-s + 3.43·41-s − 1.13i·43-s + 7.82i·47-s + 6.20·49-s − 3.46·61-s + 1.94i·63-s + 14.1i·67-s − 2.74·69-s + ⋯
L(s)  = 1  + 0.520i·3-s + 0.336i·7-s + 0.728·9-s − 0.175·21-s + 0.635i·23-s + 0.900i·27-s + 0.0748·29-s + 0.536·41-s − 0.172i·43-s + 1.14i·47-s + 0.886·49-s − 0.443·61-s + 0.245i·63-s + 1.73i·67-s − 0.330·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $-i$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4000} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ -i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.861970552\)
\(L(\frac12)\) \(\approx\) \(1.861970552\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 0.902iT - 3T^{2} \)
7 \( 1 - 0.891iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 3.04iT - 23T^{2} \)
29 \( 1 - 0.403T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 - 3.43T + 41T^{2} \)
43 \( 1 + 1.13iT - 43T^{2} \)
47 \( 1 - 7.82iT - 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 3.46T + 61T^{2} \)
67 \( 1 - 14.1iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 15.5iT - 83T^{2} \)
89 \( 1 - 15.1T + 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.852758292964859763322004803591, −7.80113892279838245315834132499, −7.28556713563846482876308679909, −6.37141466160232890514301735484, −5.61231085621493620541464017919, −4.81119127184203426336565773232, −4.10636613340677726041354376455, −3.29539306889793677538660948188, −2.26009220005354461782973869696, −1.14849613316856553100799179305, 0.59680998547117400906819491012, 1.65832261930083873131831508860, 2.58780830653611020963398655993, 3.71170451602661189269095506454, 4.42663380413081121310575497751, 5.26628954529932169917760323345, 6.26057996463337849094535932507, 6.81877938092145426542807913199, 7.52403535103178599802949645954, 8.108231474387351440122375336780

Graph of the $Z$-function along the critical line