L(s) = 1 | + 0.902i·3-s + 0.891i·7-s + 2.18·9-s − 0.804·21-s + 3.04i·23-s + 4.67i·27-s + 0.403·29-s + 3.43·41-s − 1.13i·43-s + 7.82i·47-s + 6.20·49-s − 3.46·61-s + 1.94i·63-s + 14.1i·67-s − 2.74·69-s + ⋯ |
L(s) = 1 | + 0.520i·3-s + 0.336i·7-s + 0.728·9-s − 0.175·21-s + 0.635i·23-s + 0.900i·27-s + 0.0748·29-s + 0.536·41-s − 0.172i·43-s + 1.14i·47-s + 0.886·49-s − 0.443·61-s + 0.245i·63-s + 1.73i·67-s − 0.330·69-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)−iΛ(2−s)
Λ(s)=(=(4000s/2ΓC(s+1/2)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
−i
|
Analytic conductor: |
31.9401 |
Root analytic conductor: |
5.65156 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :1/2), −i)
|
Particular Values
L(1) |
≈ |
1.861970552 |
L(21) |
≈ |
1.861970552 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−0.902iT−3T2 |
| 7 | 1−0.891iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1−13T2 |
| 17 | 1−17T2 |
| 19 | 1+19T2 |
| 23 | 1−3.04iT−23T2 |
| 29 | 1−0.403T+29T2 |
| 31 | 1+31T2 |
| 37 | 1−37T2 |
| 41 | 1−3.43T+41T2 |
| 43 | 1+1.13iT−43T2 |
| 47 | 1−7.82iT−47T2 |
| 53 | 1−53T2 |
| 59 | 1+59T2 |
| 61 | 1+3.46T+61T2 |
| 67 | 1−14.1iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1−73T2 |
| 79 | 1+79T2 |
| 83 | 1+15.5iT−83T2 |
| 89 | 1−15.1T+89T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.852758292964859763322004803591, −7.80113892279838245315834132499, −7.28556713563846482876308679909, −6.37141466160232890514301735484, −5.61231085621493620541464017919, −4.81119127184203426336565773232, −4.10636613340677726041354376455, −3.29539306889793677538660948188, −2.26009220005354461782973869696, −1.14849613316856553100799179305,
0.59680998547117400906819491012, 1.65832261930083873131831508860, 2.58780830653611020963398655993, 3.71170451602661189269095506454, 4.42663380413081121310575497751, 5.26628954529932169917760323345, 6.26057996463337849094535932507, 6.81877938092145426542807913199, 7.52403535103178599802949645954, 8.108231474387351440122375336780