L(s) = 1 | + 0.939·3-s − 1.90i·7-s − 2.11·9-s − 2.70i·11-s + 5.75·13-s − 6.65i·17-s + 7.45i·19-s − 1.78i·21-s − 0.220i·23-s − 4.80·27-s − 4.62i·29-s + 5.76·31-s − 2.54i·33-s + 3.84·37-s + 5.40·39-s + ⋯ |
L(s) = 1 | + 0.542·3-s − 0.718i·7-s − 0.705·9-s − 0.816i·11-s + 1.59·13-s − 1.61i·17-s + 1.71i·19-s − 0.389i·21-s − 0.0460i·23-s − 0.925·27-s − 0.858i·29-s + 1.03·31-s − 0.442i·33-s + 0.631·37-s + 0.866·39-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)(−0.156+0.987i)Λ(2−s)
Λ(s)=(=(4000s/2ΓC(s+1/2)L(s)(−0.156+0.987i)Λ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
−0.156+0.987i
|
Analytic conductor: |
31.9401 |
Root analytic conductor: |
5.65156 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(3249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :1/2), −0.156+0.987i)
|
Particular Values
L(1) |
≈ |
1.893780925 |
L(21) |
≈ |
1.893780925 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−0.939T+3T2 |
| 7 | 1+1.90iT−7T2 |
| 11 | 1+2.70iT−11T2 |
| 13 | 1−5.75T+13T2 |
| 17 | 1+6.65iT−17T2 |
| 19 | 1−7.45iT−19T2 |
| 23 | 1+0.220iT−23T2 |
| 29 | 1+4.62iT−29T2 |
| 31 | 1−5.76T+31T2 |
| 37 | 1−3.84T+37T2 |
| 41 | 1+7.94T+41T2 |
| 43 | 1+10.3T+43T2 |
| 47 | 1−1.41iT−47T2 |
| 53 | 1−3.09T+53T2 |
| 59 | 1+5.84iT−59T2 |
| 61 | 1+11.6iT−61T2 |
| 67 | 1−5.42T+67T2 |
| 71 | 1+13.8T+71T2 |
| 73 | 1−0.290iT−73T2 |
| 79 | 1−0.354T+79T2 |
| 83 | 1+6.09T+83T2 |
| 89 | 1+6.94T+89T2 |
| 97 | 1+4.56iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.289695222796190468873951757314, −7.77117606757400693635253744991, −6.72644042314634762557727161118, −6.05788709597503336598916312873, −5.37659353113220329055261298903, −4.24737357852047744413683973699, −3.46984831601876945892241829872, −2.95184813023533195963059492292, −1.63769700447174123732600010927, −0.51232105410223067258114410832,
1.34368856260675667863694771799, 2.33698606593799472661192664619, 3.14327026904573963848826041789, 3.96111520846372738742720166447, 4.90126262050381607639024534017, 5.78347866603507020274545538478, 6.39204176793346681640410525562, 7.17320189998129566408721519255, 8.251592291331737842387369124574, 8.670419966673517039775976522712