L(s) = 1 | + (−2.05 − 1.43i)2-s + (1.46 + 4.03i)4-s + (1.82 − 1.29i)5-s + (−1.14 − 2.44i)7-s + (1.48 − 5.55i)8-s + (−5.60 + 0.0236i)10-s + (2.09 + 2.50i)11-s + (1.80 + 2.57i)13-s + (−1.17 + 6.67i)14-s + (−4.47 + 3.75i)16-s + (−1.57 − 5.88i)17-s + (2.91 − 1.68i)19-s + (7.88 + 5.47i)20-s + (−0.714 − 8.16i)22-s + (4.50 + 2.10i)23-s + ⋯ |
L(s) = 1 | + (−1.45 − 1.01i)2-s + (0.734 + 2.01i)4-s + (0.816 − 0.577i)5-s + (−0.431 − 0.925i)7-s + (0.526 − 1.96i)8-s + (−1.77 + 0.00747i)10-s + (0.633 + 0.754i)11-s + (0.500 + 0.714i)13-s + (−0.314 + 1.78i)14-s + (−1.11 + 0.939i)16-s + (−0.382 − 1.42i)17-s + (0.669 − 0.386i)19-s + (1.76 + 1.22i)20-s + (−0.152 − 1.74i)22-s + (0.939 + 0.437i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.451 + 0.892i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.451 + 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.393222 - 0.639412i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.393222 - 0.639412i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-1.82 + 1.29i)T \) |
good | 2 | \( 1 + (2.05 + 1.43i)T + (0.684 + 1.87i)T^{2} \) |
| 7 | \( 1 + (1.14 + 2.44i)T + (-4.49 + 5.36i)T^{2} \) |
| 11 | \( 1 + (-2.09 - 2.50i)T + (-1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (-1.80 - 2.57i)T + (-4.44 + 12.2i)T^{2} \) |
| 17 | \( 1 + (1.57 + 5.88i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-2.91 + 1.68i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.50 - 2.10i)T + (14.7 + 17.6i)T^{2} \) |
| 29 | \( 1 + (0.541 + 3.07i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (-0.346 + 0.125i)T + (23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (4.28 - 1.14i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (7.54 + 1.33i)T + (38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (-0.386 + 4.42i)T + (-42.3 - 7.46i)T^{2} \) |
| 47 | \( 1 + (-6.23 + 2.90i)T + (30.2 - 36.0i)T^{2} \) |
| 53 | \( 1 + (3.48 + 3.48i)T + 53iT^{2} \) |
| 59 | \( 1 + (5.87 + 4.92i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (6.73 + 2.45i)T + (46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (0.315 - 0.221i)T + (22.9 - 62.9i)T^{2} \) |
| 71 | \( 1 + (-8.46 - 4.88i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (0.0248 + 0.00667i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-10.9 + 1.93i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (-0.627 + 0.896i)T + (-28.3 - 77.9i)T^{2} \) |
| 89 | \( 1 + (-3.93 - 6.81i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5.10 + 0.446i)T + (95.5 + 16.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77822048805370093226726266044, −9.795852456471160786014797392978, −9.404648826102470695886573835023, −8.706300201273230203217110554073, −7.33467176776534319921736710424, −6.72966733092979732270705691938, −4.88820877977862317998083771708, −3.51005682659101217982238814944, −2.07241750707596354111081393519, −0.878047935829197820625564541801,
1.49171922871098973201352554945, 3.15356067045822445817816653651, 5.54512374601508392103961313854, 6.11671914127825424271058728006, 6.79136145404870956578406205066, 8.045010000476743900326055359060, 8.884342836524266461442416451457, 9.377898598136679826648174885125, 10.50242548059245244805907340961, 10.90712261165181405273236434802