Properties

Label 405.152
Modulus 405405
Conductor 135135
Order 3636
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([34,9]))
 
pari: [g,chi] = znchar(Mod(152,405))
 

Basic properties

Modulus: 405405
Conductor: 135135
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ135(122,)\chi_{135}(122,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 405.r

χ405(8,)\chi_{405}(8,\cdot) χ405(17,)\chi_{405}(17,\cdot) χ405(62,)\chi_{405}(62,\cdot) χ405(98,)\chi_{405}(98,\cdot) χ405(143,)\chi_{405}(143,\cdot) χ405(152,)\chi_{405}(152,\cdot) χ405(197,)\chi_{405}(197,\cdot) χ405(233,)\chi_{405}(233,\cdot) χ405(278,)\chi_{405}(278,\cdot) χ405(287,)\chi_{405}(287,\cdot) χ405(332,)\chi_{405}(332,\cdot) χ405(368,)\chi_{405}(368,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: Q(ζ135)+\Q(\zeta_{135})^+

Values on generators

(326,82)(326,82)(e(1718),i)(e\left(\frac{17}{18}\right),i)

First values

aa 1-11122447788111113131414161617171919
χ405(152,a) \chi_{ 405 }(152, a) 1111e(736)e\left(\frac{7}{36}\right)e(718)e\left(\frac{7}{18}\right)e(1336)e\left(\frac{13}{36}\right)e(712)e\left(\frac{7}{12}\right)e(518)e\left(\frac{5}{18}\right)e(1136)e\left(\frac{11}{36}\right)e(59)e\left(\frac{5}{9}\right)e(79)e\left(\frac{7}{9}\right)e(512)e\left(\frac{5}{12}\right)e(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ405(152,a)   \chi_{ 405 }(152,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ405(152,))   \tau_{ a }( \chi_{ 405 }(152,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ405(152,),χ405(n,))   J(\chi_{ 405 }(152,·),\chi_{ 405 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ405(152,))  K(a,b,\chi_{ 405 }(152,·)) \; at   a,b=\; a,b = e.g. 1,2