L(s) = 1 | + (2.78 − 0.747i)2-s + (3.75 − 2.16i)4-s + (−4.50 − 2.16i)5-s + (−11.5 + 3.08i)7-s + (0.689 − 0.689i)8-s + (−14.1 − 2.67i)10-s + (−6.14 + 10.6i)11-s + (−0.906 − 0.242i)13-s + (−29.7 + 17.2i)14-s + (−7.26 + 12.5i)16-s + (−7.47 − 7.47i)17-s − 25.0i·19-s + (−21.6 + 1.63i)20-s + (−9.19 + 34.3i)22-s + (24.7 + 6.62i)23-s + ⋯ |
L(s) = 1 | + (1.39 − 0.373i)2-s + (0.939 − 0.542i)4-s + (−0.901 − 0.433i)5-s + (−1.64 + 0.440i)7-s + (0.0861 − 0.0861i)8-s + (−1.41 − 0.267i)10-s + (−0.559 + 0.968i)11-s + (−0.0697 − 0.0186i)13-s + (−2.12 + 1.22i)14-s + (−0.454 + 0.786i)16-s + (−0.439 − 0.439i)17-s − 1.31i·19-s + (−1.08 + 0.0817i)20-s + (−0.417 + 1.55i)22-s + (1.07 + 0.288i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.829 - 0.558i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.829 - 0.558i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0626687 + 0.205256i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0626687 + 0.205256i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (4.50 + 2.16i)T \) |
good | 2 | \( 1 + (-2.78 + 0.747i)T + (3.46 - 2i)T^{2} \) |
| 7 | \( 1 + (11.5 - 3.08i)T + (42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (6.14 - 10.6i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (0.906 + 0.242i)T + (146. + 84.5i)T^{2} \) |
| 17 | \( 1 + (7.47 + 7.47i)T + 289iT^{2} \) |
| 19 | \( 1 + 25.0iT - 361T^{2} \) |
| 23 | \( 1 + (-24.7 - 6.62i)T + (458. + 264.5i)T^{2} \) |
| 29 | \( 1 + (2.93 + 1.69i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (14.4 + 25.0i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (2.59 + 2.59i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (11.6 + 20.2i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (4.25 + 15.8i)T + (-1.60e3 + 924.5i)T^{2} \) |
| 47 | \( 1 + (66.9 - 17.9i)T + (1.91e3 - 1.10e3i)T^{2} \) |
| 53 | \( 1 + (27.6 - 27.6i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + (75.9 - 43.8i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-39.5 + 68.4i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (16.5 - 61.8i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + 88.7T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-12.8 + 12.8i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + (26.2 + 15.1i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-39.3 - 146. i)T + (-5.96e3 + 3.44e3i)T^{2} \) |
| 89 | \( 1 - 117. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (18.4 - 4.95i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.70682200534088689072468947866, −10.89870055467059034805691275759, −9.561957188905374094551348493113, −8.868047370758516595890848933182, −7.35031335373440368406416151722, −6.54638344209480824424075523933, −5.29138017022722278376608428595, −4.52177765513398565673221958932, −3.39439162963040190652115858622, −2.56474547718957552508914656164,
0.05441161109473012244780301700, 3.22238189631527614893735568751, 3.39372773539478284099935884121, 4.65497386759293276049232668572, 5.97880744682645933067261362612, 6.59325901051199658993659253333, 7.47319555134479232960123872363, 8.686239681762881555321540710935, 9.980863585950721462813115239057, 10.84564534256654275619307164797