Properties

Label 405.3.l.n.217.7
Level $405$
Weight $3$
Character 405.217
Analytic conductor $11.035$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(28,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 217.7
Character \(\chi\) \(=\) 405.217
Dual form 405.3.l.n.28.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.78913 - 0.747344i) q^{2} +(3.75659 - 2.16887i) q^{4} +(-4.50635 - 2.16628i) q^{5} +(-11.5096 + 3.08399i) q^{7} +(0.689596 - 0.689596i) q^{8} +(-14.1877 - 2.67423i) q^{10} +(-6.14980 + 10.6518i) q^{11} +(-0.906368 - 0.242861i) q^{13} +(-29.7970 + 17.2033i) q^{14} +(-7.26748 + 12.5876i) q^{16} +(-7.47753 - 7.47753i) q^{17} -25.0163i q^{19} +(-21.6269 + 1.63586i) q^{20} +(-9.19203 + 34.3051i) q^{22} +(24.7385 + 6.62867i) q^{23} +(15.6144 + 19.5241i) q^{25} -2.70947 q^{26} +(-36.5482 + 36.5482i) q^{28} +(-2.93013 - 1.69171i) q^{29} +(-14.4414 - 25.0133i) q^{31} +(-11.8723 + 44.3078i) q^{32} +(-26.4441 - 15.2675i) q^{34} +(58.5472 + 11.0355i) q^{35} +(-2.59583 - 2.59583i) q^{37} +(-18.6958 - 69.7736i) q^{38} +(-4.60142 + 1.61370i) q^{40} +(-11.6697 - 20.2125i) q^{41} +(-4.25843 - 15.8927i) q^{43} +53.3525i q^{44} +73.9528 q^{46} +(-66.9844 + 17.9484i) q^{47} +(80.5250 - 46.4912i) q^{49} +(58.1418 + 42.7857i) q^{50} +(-3.93159 + 1.05347i) q^{52} +(-27.6894 + 27.6894i) q^{53} +(50.7879 - 34.6784i) q^{55} +(-5.81027 + 10.0637i) q^{56} +(-9.43678 - 2.52858i) q^{58} +(-75.9971 + 43.8770i) q^{59} +(39.5244 - 68.4583i) q^{61} +(-58.9725 - 58.9725i) q^{62} +74.3129i q^{64} +(3.55831 + 3.05786i) q^{65} +(-16.5841 + 61.8926i) q^{67} +(-44.3078 - 11.8723i) q^{68} +(171.543 - 12.9755i) q^{70} -88.7641 q^{71} +(12.8174 - 12.8174i) q^{73} +(-9.18007 - 5.30012i) q^{74} +(-54.2571 - 93.9761i) q^{76} +(37.9319 - 141.564i) q^{77} +(-26.2915 - 15.1794i) q^{79} +(60.0182 - 40.9810i) q^{80} +(-47.6540 - 47.6540i) q^{82} +(39.3035 + 146.683i) q^{83} +(17.4980 + 49.8948i) q^{85} +(-23.7546 - 41.1442i) q^{86} +(3.10454 + 11.5863i) q^{88} +117.891i q^{89} +11.1809 q^{91} +(107.309 - 28.7535i) q^{92} +(-173.414 + 100.121i) q^{94} +(-54.1923 + 112.732i) q^{95} +(-18.4817 + 4.95215i) q^{97} +(189.850 - 189.850i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{7} + 80 q^{10} - 40 q^{13} + 152 q^{16} + 136 q^{22} + 32 q^{25} - 224 q^{28} - 200 q^{31} + 32 q^{37} + 48 q^{40} - 136 q^{43} + 304 q^{46} - 640 q^{52} + 496 q^{55} - 48 q^{58} + 280 q^{61}+ \cdots - 448 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.78913 0.747344i 1.39456 0.373672i 0.518173 0.855276i \(-0.326612\pi\)
0.876389 + 0.481604i \(0.159946\pi\)
\(3\) 0 0
\(4\) 3.75659 2.16887i 0.939149 0.542218i
\(5\) −4.50635 2.16628i −0.901271 0.433256i
\(6\) 0 0
\(7\) −11.5096 + 3.08399i −1.64423 + 0.440570i −0.957989 0.286803i \(-0.907407\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(8\) 0.689596 0.689596i 0.0861995 0.0861995i
\(9\) 0 0
\(10\) −14.1877 2.67423i −1.41877 0.267423i
\(11\) −6.14980 + 10.6518i −0.559073 + 0.968342i 0.438502 + 0.898730i \(0.355509\pi\)
−0.997574 + 0.0696117i \(0.977824\pi\)
\(12\) 0 0
\(13\) −0.906368 0.242861i −0.0697206 0.0186816i 0.223790 0.974637i \(-0.428157\pi\)
−0.293511 + 0.955956i \(0.594824\pi\)
\(14\) −29.7970 + 17.2033i −2.12835 + 1.22881i
\(15\) 0 0
\(16\) −7.26748 + 12.5876i −0.454218 + 0.786728i
\(17\) −7.47753 7.47753i −0.439855 0.439855i 0.452108 0.891963i \(-0.350672\pi\)
−0.891963 + 0.452108i \(0.850672\pi\)
\(18\) 0 0
\(19\) 25.0163i 1.31665i −0.752735 0.658323i \(-0.771266\pi\)
0.752735 0.658323i \(-0.228734\pi\)
\(20\) −21.6269 + 1.63586i −1.08135 + 0.0817929i
\(21\) 0 0
\(22\) −9.19203 + 34.3051i −0.417819 + 1.55932i
\(23\) 24.7385 + 6.62867i 1.07559 + 0.288203i 0.752788 0.658264i \(-0.228709\pi\)
0.322801 + 0.946467i \(0.395375\pi\)
\(24\) 0 0
\(25\) 15.6144 + 19.5241i 0.624578 + 0.780962i
\(26\) −2.70947 −0.104211
\(27\) 0 0
\(28\) −36.5482 + 36.5482i −1.30529 + 1.30529i
\(29\) −2.93013 1.69171i −0.101039 0.0583348i 0.448629 0.893718i \(-0.351912\pi\)
−0.549668 + 0.835383i \(0.685246\pi\)
\(30\) 0 0
\(31\) −14.4414 25.0133i −0.465853 0.806881i 0.533387 0.845871i \(-0.320919\pi\)
−0.999240 + 0.0389908i \(0.987586\pi\)
\(32\) −11.8723 + 44.3078i −0.371008 + 1.38462i
\(33\) 0 0
\(34\) −26.4441 15.2675i −0.777766 0.449044i
\(35\) 58.5472 + 11.0355i 1.67278 + 0.315300i
\(36\) 0 0
\(37\) −2.59583 2.59583i −0.0701575 0.0701575i 0.671157 0.741315i \(-0.265797\pi\)
−0.741315 + 0.671157i \(0.765797\pi\)
\(38\) −18.6958 69.7736i −0.491994 1.83615i
\(39\) 0 0
\(40\) −4.60142 + 1.61370i −0.115036 + 0.0403426i
\(41\) −11.6697 20.2125i −0.284627 0.492989i 0.687891 0.725814i \(-0.258537\pi\)
−0.972519 + 0.232825i \(0.925203\pi\)
\(42\) 0 0
\(43\) −4.25843 15.8927i −0.0990334 0.369598i 0.898567 0.438837i \(-0.144609\pi\)
−0.997600 + 0.0692394i \(0.977943\pi\)
\(44\) 53.3525i 1.21256i
\(45\) 0 0
\(46\) 73.9528 1.60767
\(47\) −66.9844 + 17.9484i −1.42520 + 0.381881i −0.887326 0.461143i \(-0.847439\pi\)
−0.537875 + 0.843025i \(0.680773\pi\)
\(48\) 0 0
\(49\) 80.5250 46.4912i 1.64337 0.948799i
\(50\) 58.1418 + 42.7857i 1.16284 + 0.855714i
\(51\) 0 0
\(52\) −3.93159 + 1.05347i −0.0756075 + 0.0202590i
\(53\) −27.6894 + 27.6894i −0.522442 + 0.522442i −0.918308 0.395866i \(-0.870444\pi\)
0.395866 + 0.918308i \(0.370444\pi\)
\(54\) 0 0
\(55\) 50.7879 34.6784i 0.923416 0.630517i
\(56\) −5.81027 + 10.0637i −0.103755 + 0.179709i
\(57\) 0 0
\(58\) −9.43678 2.52858i −0.162703 0.0435962i
\(59\) −75.9971 + 43.8770i −1.28809 + 0.743677i −0.978313 0.207133i \(-0.933587\pi\)
−0.309774 + 0.950810i \(0.600253\pi\)
\(60\) 0 0
\(61\) 39.5244 68.4583i 0.647942 1.12227i −0.335672 0.941979i \(-0.608963\pi\)
0.983614 0.180289i \(-0.0577032\pi\)
\(62\) −58.9725 58.9725i −0.951169 0.951169i
\(63\) 0 0
\(64\) 74.3129i 1.16114i
\(65\) 3.55831 + 3.05786i 0.0547432 + 0.0470441i
\(66\) 0 0
\(67\) −16.5841 + 61.8926i −0.247523 + 0.923769i 0.724575 + 0.689196i \(0.242036\pi\)
−0.972098 + 0.234574i \(0.924631\pi\)
\(68\) −44.3078 11.8723i −0.651586 0.174592i
\(69\) 0 0
\(70\) 171.543 12.9755i 2.45061 0.185364i
\(71\) −88.7641 −1.25020 −0.625099 0.780546i \(-0.714941\pi\)
−0.625099 + 0.780546i \(0.714941\pi\)
\(72\) 0 0
\(73\) 12.8174 12.8174i 0.175581 0.175581i −0.613845 0.789426i \(-0.710378\pi\)
0.789426 + 0.613845i \(0.210378\pi\)
\(74\) −9.18007 5.30012i −0.124055 0.0716232i
\(75\) 0 0
\(76\) −54.2571 93.9761i −0.713909 1.23653i
\(77\) 37.9319 141.564i 0.492622 1.83849i
\(78\) 0 0
\(79\) −26.2915 15.1794i −0.332804 0.192144i 0.324281 0.945961i \(-0.394878\pi\)
−0.657085 + 0.753816i \(0.728211\pi\)
\(80\) 60.0182 40.9810i 0.750228 0.512262i
\(81\) 0 0
\(82\) −47.6540 47.6540i −0.581147 0.581147i
\(83\) 39.3035 + 146.683i 0.473536 + 1.76726i 0.626909 + 0.779093i \(0.284320\pi\)
−0.153372 + 0.988168i \(0.549013\pi\)
\(84\) 0 0
\(85\) 17.4980 + 49.8948i 0.205858 + 0.586998i
\(86\) −23.7546 41.1442i −0.276216 0.478421i
\(87\) 0 0
\(88\) 3.10454 + 11.5863i 0.0352788 + 0.131662i
\(89\) 117.891i 1.32462i 0.749231 + 0.662309i \(0.230423\pi\)
−0.749231 + 0.662309i \(0.769577\pi\)
\(90\) 0 0
\(91\) 11.1809 0.122867
\(92\) 107.309 28.7535i 1.16641 0.312538i
\(93\) 0 0
\(94\) −173.414 + 100.121i −1.84483 + 1.06511i
\(95\) −54.1923 + 112.732i −0.570445 + 1.18666i
\(96\) 0 0
\(97\) −18.4817 + 4.95215i −0.190533 + 0.0510531i −0.352824 0.935690i \(-0.614778\pi\)
0.162291 + 0.986743i \(0.448112\pi\)
\(98\) 189.850 189.850i 1.93724 1.93724i
\(99\) 0 0
\(100\) 101.002 + 39.4783i 1.01002 + 0.394783i
\(101\) 9.82532 17.0179i 0.0972804 0.168495i −0.813278 0.581876i \(-0.802319\pi\)
0.910558 + 0.413381i \(0.135652\pi\)
\(102\) 0 0
\(103\) 165.589 + 44.3694i 1.60766 + 0.430770i 0.947343 0.320219i \(-0.103757\pi\)
0.660314 + 0.750990i \(0.270423\pi\)
\(104\) −0.792503 + 0.457552i −0.00762022 + 0.00439954i
\(105\) 0 0
\(106\) −56.5358 + 97.9229i −0.533357 + 0.923801i
\(107\) −10.5840 10.5840i −0.0989155 0.0989155i 0.655917 0.754833i \(-0.272282\pi\)
−0.754833 + 0.655917i \(0.772282\pi\)
\(108\) 0 0
\(109\) 9.08051i 0.0833075i −0.999132 0.0416537i \(-0.986737\pi\)
0.999132 0.0416537i \(-0.0132626\pi\)
\(110\) 115.737 134.678i 1.05216 1.22435i
\(111\) 0 0
\(112\) 44.8257 167.292i 0.400230 1.49368i
\(113\) 148.642 + 39.8284i 1.31541 + 0.352464i 0.847258 0.531182i \(-0.178252\pi\)
0.468155 + 0.883646i \(0.344919\pi\)
\(114\) 0 0
\(115\) −97.1211 83.4618i −0.844531 0.725755i
\(116\) −14.6764 −0.126521
\(117\) 0 0
\(118\) −179.174 + 179.174i −1.51843 + 1.51843i
\(119\) 109.124 + 63.0029i 0.917010 + 0.529436i
\(120\) 0 0
\(121\) −15.1400 26.2233i −0.125124 0.216722i
\(122\) 59.0767 220.477i 0.484235 1.80719i
\(123\) 0 0
\(124\) −108.501 62.6432i −0.875010 0.505187i
\(125\) −28.0696 121.808i −0.224557 0.974461i
\(126\) 0 0
\(127\) −115.169 115.169i −0.906841 0.906841i 0.0891750 0.996016i \(-0.471577\pi\)
−0.996016 + 0.0891750i \(0.971577\pi\)
\(128\) 8.04831 + 30.0367i 0.0628774 + 0.234662i
\(129\) 0 0
\(130\) 12.2099 + 5.86949i 0.0939219 + 0.0451499i
\(131\) −9.42889 16.3313i −0.0719762 0.124667i 0.827791 0.561036i \(-0.189597\pi\)
−0.899767 + 0.436370i \(0.856264\pi\)
\(132\) 0 0
\(133\) 77.1500 + 287.928i 0.580076 + 2.16487i
\(134\) 185.020i 1.38075i
\(135\) 0 0
\(136\) −10.3129 −0.0758305
\(137\) −73.0600 + 19.5764i −0.533284 + 0.142893i −0.515405 0.856947i \(-0.672358\pi\)
−0.0178799 + 0.999840i \(0.505692\pi\)
\(138\) 0 0
\(139\) 38.9303 22.4764i 0.280074 0.161701i −0.353383 0.935479i \(-0.614969\pi\)
0.633457 + 0.773778i \(0.281635\pi\)
\(140\) 243.873 85.5254i 1.74195 0.610896i
\(141\) 0 0
\(142\) −247.574 + 66.3373i −1.74348 + 0.467164i
\(143\) 8.16088 8.16088i 0.0570691 0.0570691i
\(144\) 0 0
\(145\) 9.53947 + 13.9709i 0.0657894 + 0.0963512i
\(146\) 26.1703 45.3283i 0.179249 0.310468i
\(147\) 0 0
\(148\) −15.3815 4.12146i −0.103929 0.0278477i
\(149\) 142.228 82.1151i 0.954547 0.551108i 0.0600567 0.998195i \(-0.480872\pi\)
0.894491 + 0.447087i \(0.147539\pi\)
\(150\) 0 0
\(151\) −19.2011 + 33.2572i −0.127159 + 0.220247i −0.922575 0.385818i \(-0.873919\pi\)
0.795416 + 0.606064i \(0.207253\pi\)
\(152\) −17.2511 17.2511i −0.113494 0.113494i
\(153\) 0 0
\(154\) 423.187i 2.74797i
\(155\) 10.8924 + 144.003i 0.0702733 + 0.929052i
\(156\) 0 0
\(157\) −16.8614 + 62.9277i −0.107398 + 0.400814i −0.998606 0.0527803i \(-0.983192\pi\)
0.891208 + 0.453594i \(0.149858\pi\)
\(158\) −84.6745 22.6885i −0.535915 0.143598i
\(159\) 0 0
\(160\) 149.484 173.948i 0.934274 1.08718i
\(161\) −305.174 −1.89549
\(162\) 0 0
\(163\) 20.9849 20.9849i 0.128742 0.128742i −0.639800 0.768542i \(-0.720983\pi\)
0.768542 + 0.639800i \(0.220983\pi\)
\(164\) −87.6768 50.6202i −0.534615 0.308660i
\(165\) 0 0
\(166\) 219.245 + 379.743i 1.32075 + 2.28761i
\(167\) −24.2968 + 90.6768i −0.145490 + 0.542975i 0.854243 + 0.519873i \(0.174021\pi\)
−0.999733 + 0.0231017i \(0.992646\pi\)
\(168\) 0 0
\(169\) −145.596 84.0598i −0.861513 0.497395i
\(170\) 86.0926 + 126.086i 0.506427 + 0.741682i
\(171\) 0 0
\(172\) −50.4664 50.4664i −0.293409 0.293409i
\(173\) −51.5809 192.502i −0.298155 1.11273i −0.938679 0.344792i \(-0.887949\pi\)
0.640524 0.767938i \(-0.278717\pi\)
\(174\) 0 0
\(175\) −239.928 176.560i −1.37102 1.00891i
\(176\) −89.3871 154.823i −0.507881 0.879676i
\(177\) 0 0
\(178\) 88.1051 + 328.813i 0.494973 + 1.84726i
\(179\) 45.6130i 0.254821i −0.991850 0.127411i \(-0.959333\pi\)
0.991850 0.127411i \(-0.0406666\pi\)
\(180\) 0 0
\(181\) −104.793 −0.578968 −0.289484 0.957183i \(-0.593484\pi\)
−0.289484 + 0.957183i \(0.593484\pi\)
\(182\) 31.1850 8.35600i 0.171346 0.0459121i
\(183\) 0 0
\(184\) 21.6307 12.4885i 0.117558 0.0678722i
\(185\) 6.07443 + 17.3210i 0.0328347 + 0.0936271i
\(186\) 0 0
\(187\) 125.634 33.6636i 0.671840 0.180019i
\(188\) −212.706 + 212.706i −1.13141 + 1.13141i
\(189\) 0 0
\(190\) −66.8994 + 354.925i −0.352102 + 1.86802i
\(191\) 50.6473 87.7237i 0.265169 0.459286i −0.702439 0.711744i \(-0.747906\pi\)
0.967608 + 0.252458i \(0.0812389\pi\)
\(192\) 0 0
\(193\) −273.261 73.2202i −1.41586 0.379379i −0.531848 0.846840i \(-0.678502\pi\)
−0.884014 + 0.467461i \(0.845169\pi\)
\(194\) −47.8468 + 27.6243i −0.246633 + 0.142394i
\(195\) 0 0
\(196\) 201.667 349.297i 1.02891 1.78213i
\(197\) −5.26310 5.26310i −0.0267163 0.0267163i 0.693622 0.720339i \(-0.256014\pi\)
−0.720339 + 0.693622i \(0.756014\pi\)
\(198\) 0 0
\(199\) 141.070i 0.708895i 0.935076 + 0.354448i \(0.115331\pi\)
−0.935076 + 0.354448i \(0.884669\pi\)
\(200\) 24.2314 + 2.69605i 0.121157 + 0.0134803i
\(201\) 0 0
\(202\) 14.6858 54.8081i 0.0727019 0.271327i
\(203\) 38.9419 + 10.4344i 0.191832 + 0.0514012i
\(204\) 0 0
\(205\) 8.80182 + 116.365i 0.0429357 + 0.567633i
\(206\) 495.007 2.40295
\(207\) 0 0
\(208\) 9.64406 9.64406i 0.0463657 0.0463657i
\(209\) 266.468 + 153.845i 1.27496 + 0.736101i
\(210\) 0 0
\(211\) 22.5534 + 39.0637i 0.106888 + 0.185136i 0.914508 0.404568i \(-0.132578\pi\)
−0.807620 + 0.589703i \(0.799245\pi\)
\(212\) −43.9632 + 164.073i −0.207374 + 0.773929i
\(213\) 0 0
\(214\) −37.4298 21.6101i −0.174906 0.100982i
\(215\) −15.2380 + 80.8431i −0.0708746 + 0.376014i
\(216\) 0 0
\(217\) 243.356 + 243.356i 1.12146 + 1.12146i
\(218\) −6.78627 25.3267i −0.0311297 0.116177i
\(219\) 0 0
\(220\) 115.576 240.425i 0.525348 1.09284i
\(221\) 4.96140 + 8.59339i 0.0224498 + 0.0388841i
\(222\) 0 0
\(223\) −1.45246 5.42064i −0.00651326 0.0243078i 0.962593 0.270952i \(-0.0873386\pi\)
−0.969106 + 0.246645i \(0.920672\pi\)
\(224\) 546.580i 2.44009i
\(225\) 0 0
\(226\) 444.346 1.96613
\(227\) 73.4236 19.6738i 0.323452 0.0866686i −0.0934396 0.995625i \(-0.529786\pi\)
0.416891 + 0.908956i \(0.363120\pi\)
\(228\) 0 0
\(229\) −47.7957 + 27.5948i −0.208715 + 0.120502i −0.600714 0.799464i \(-0.705117\pi\)
0.391999 + 0.919966i \(0.371784\pi\)
\(230\) −333.257 160.203i −1.44895 0.696533i
\(231\) 0 0
\(232\) −3.18720 + 0.854007i −0.0137379 + 0.00368107i
\(233\) −96.4842 + 96.4842i −0.414095 + 0.414095i −0.883162 0.469067i \(-0.844590\pi\)
0.469067 + 0.883162i \(0.344590\pi\)
\(234\) 0 0
\(235\) 340.737 + 64.2252i 1.44994 + 0.273299i
\(236\) −190.327 + 329.656i −0.806470 + 1.39685i
\(237\) 0 0
\(238\) 351.446 + 94.1696i 1.47666 + 0.395671i
\(239\) −127.675 + 73.7133i −0.534206 + 0.308424i −0.742727 0.669594i \(-0.766468\pi\)
0.208522 + 0.978018i \(0.433135\pi\)
\(240\) 0 0
\(241\) 179.499 310.901i 0.744809 1.29005i −0.205475 0.978662i \(-0.565874\pi\)
0.950284 0.311384i \(-0.100793\pi\)
\(242\) −61.8253 61.8253i −0.255476 0.255476i
\(243\) 0 0
\(244\) 342.894i 1.40530i
\(245\) −463.587 + 35.0657i −1.89219 + 0.143125i
\(246\) 0 0
\(247\) −6.07547 + 22.6740i −0.0245970 + 0.0917974i
\(248\) −27.2078 7.29031i −0.109709 0.0293964i
\(249\) 0 0
\(250\) −169.322 318.759i −0.677287 1.27504i
\(251\) 154.041 0.613710 0.306855 0.951756i \(-0.400723\pi\)
0.306855 + 0.951756i \(0.400723\pi\)
\(252\) 0 0
\(253\) −222.744 + 222.744i −0.880411 + 0.880411i
\(254\) −407.291 235.150i −1.60351 0.925785i
\(255\) 0 0
\(256\) −103.730 179.666i −0.405197 0.701821i
\(257\) −89.3689 + 333.529i −0.347739 + 1.29778i 0.541641 + 0.840610i \(0.317803\pi\)
−0.889380 + 0.457169i \(0.848863\pi\)
\(258\) 0 0
\(259\) 37.8825 + 21.8715i 0.146265 + 0.0844459i
\(260\) 19.9992 + 3.76964i 0.0769202 + 0.0144986i
\(261\) 0 0
\(262\) −38.5035 38.5035i −0.146960 0.146960i
\(263\) 67.4597 + 251.763i 0.256501 + 0.957274i 0.967249 + 0.253828i \(0.0816897\pi\)
−0.710748 + 0.703446i \(0.751644\pi\)
\(264\) 0 0
\(265\) 184.762 64.7953i 0.697213 0.244511i
\(266\) 430.362 + 745.409i 1.61790 + 2.80229i
\(267\) 0 0
\(268\) 71.9374 + 268.474i 0.268423 + 1.00177i
\(269\) 194.835i 0.724296i −0.932121 0.362148i \(-0.882044\pi\)
0.932121 0.362148i \(-0.117956\pi\)
\(270\) 0 0
\(271\) −307.130 −1.13332 −0.566661 0.823951i \(-0.691765\pi\)
−0.566661 + 0.823951i \(0.691765\pi\)
\(272\) 148.467 39.7817i 0.545836 0.146256i
\(273\) 0 0
\(274\) −189.143 + 109.202i −0.690303 + 0.398547i
\(275\) −303.991 + 46.2524i −1.10542 + 0.168190i
\(276\) 0 0
\(277\) 102.569 27.4833i 0.370285 0.0992175i −0.0688778 0.997625i \(-0.521942\pi\)
0.439163 + 0.898408i \(0.355275\pi\)
\(278\) 91.7838 91.7838i 0.330157 0.330157i
\(279\) 0 0
\(280\) 47.9839 32.7639i 0.171371 0.117014i
\(281\) −0.574798 + 0.995579i −0.00204554 + 0.00354299i −0.867046 0.498227i \(-0.833984\pi\)
0.865001 + 0.501770i \(0.167318\pi\)
\(282\) 0 0
\(283\) −309.889 83.0344i −1.09501 0.293408i −0.334280 0.942474i \(-0.608493\pi\)
−0.760732 + 0.649066i \(0.775160\pi\)
\(284\) −333.451 + 192.518i −1.17412 + 0.677880i
\(285\) 0 0
\(286\) 16.6627 28.8607i 0.0582613 0.100911i
\(287\) 196.649 + 196.649i 0.685189 + 0.685189i
\(288\) 0 0
\(289\) 177.173i 0.613056i
\(290\) 37.0478 + 31.8374i 0.127751 + 0.109784i
\(291\) 0 0
\(292\) 20.3505 75.9490i 0.0696934 0.260099i
\(293\) 99.3033 + 26.6082i 0.338919 + 0.0908131i 0.424264 0.905538i \(-0.360533\pi\)
−0.0853454 + 0.996351i \(0.527199\pi\)
\(294\) 0 0
\(295\) 437.520 33.0939i 1.48312 0.112183i
\(296\) −3.58015 −0.0120951
\(297\) 0 0
\(298\) 335.322 335.322i 1.12524 1.12524i
\(299\) −20.8124 12.0160i −0.0696066 0.0401874i
\(300\) 0 0
\(301\) 98.0259 + 169.786i 0.325667 + 0.564073i
\(302\) −28.6996 + 107.108i −0.0950319 + 0.354664i
\(303\) 0 0
\(304\) 314.896 + 181.805i 1.03584 + 0.598044i
\(305\) −326.411 + 222.876i −1.07020 + 0.730742i
\(306\) 0 0
\(307\) −74.6079 74.6079i −0.243023 0.243023i 0.575077 0.818099i \(-0.304972\pi\)
−0.818099 + 0.575077i \(0.804972\pi\)
\(308\) −164.539 614.067i −0.534216 1.99372i
\(309\) 0 0
\(310\) 138.000 + 393.502i 0.445161 + 1.26936i
\(311\) −298.630 517.242i −0.960225 1.66316i −0.721930 0.691966i \(-0.756745\pi\)
−0.238295 0.971193i \(-0.576589\pi\)
\(312\) 0 0
\(313\) −43.8958 163.821i −0.140242 0.523391i −0.999921 0.0125563i \(-0.996003\pi\)
0.859679 0.510835i \(-0.170664\pi\)
\(314\) 188.115i 0.599091i
\(315\) 0 0
\(316\) −131.689 −0.416736
\(317\) −394.769 + 105.778i −1.24533 + 0.333685i −0.820530 0.571603i \(-0.806322\pi\)
−0.424798 + 0.905288i \(0.639655\pi\)
\(318\) 0 0
\(319\) 36.0394 20.8073i 0.112976 0.0652268i
\(320\) 160.983 334.880i 0.503071 1.04650i
\(321\) 0 0
\(322\) −851.168 + 228.070i −2.64338 + 0.708292i
\(323\) −187.060 + 187.060i −0.579133 + 0.579133i
\(324\) 0 0
\(325\) −9.41081 21.4881i −0.0289564 0.0661173i
\(326\) 42.8466 74.2126i 0.131431 0.227646i
\(327\) 0 0
\(328\) −21.9859 5.89110i −0.0670301 0.0179607i
\(329\) 715.612 413.159i 2.17511 1.25580i
\(330\) 0 0
\(331\) −210.145 + 363.982i −0.634879 + 1.09964i 0.351661 + 0.936127i \(0.385617\pi\)
−0.986541 + 0.163516i \(0.947716\pi\)
\(332\) 465.783 + 465.783i 1.40296 + 1.40296i
\(333\) 0 0
\(334\) 271.067i 0.811578i
\(335\) 208.810 242.984i 0.623314 0.725325i
\(336\) 0 0
\(337\) −75.2392 + 280.796i −0.223262 + 0.833224i 0.759832 + 0.650120i \(0.225281\pi\)
−0.983094 + 0.183104i \(0.941385\pi\)
\(338\) −468.906 125.643i −1.38730 0.371725i
\(339\) 0 0
\(340\) 173.948 + 149.484i 0.511612 + 0.439658i
\(341\) 355.248 1.04178
\(342\) 0 0
\(343\) −370.578 + 370.578i −1.08040 + 1.08040i
\(344\) −13.8961 8.02293i −0.0403957 0.0233225i
\(345\) 0 0
\(346\) −287.731 498.365i −0.831592 1.44036i
\(347\) −142.089 + 530.282i −0.409477 + 1.52819i 0.386168 + 0.922428i \(0.373798\pi\)
−0.795646 + 0.605762i \(0.792868\pi\)
\(348\) 0 0
\(349\) −377.101 217.720i −1.08052 0.623838i −0.149483 0.988764i \(-0.547761\pi\)
−0.931036 + 0.364926i \(0.881094\pi\)
\(350\) −801.141 313.138i −2.28897 0.894680i
\(351\) 0 0
\(352\) −398.945 398.945i −1.13337 1.13337i
\(353\) 86.1412 + 321.483i 0.244026 + 0.910718i 0.973870 + 0.227104i \(0.0729259\pi\)
−0.729844 + 0.683613i \(0.760407\pi\)
\(354\) 0 0
\(355\) 400.002 + 192.288i 1.12677 + 0.541656i
\(356\) 255.690 + 442.869i 0.718231 + 1.24401i
\(357\) 0 0
\(358\) −34.0886 127.220i −0.0952196 0.355364i
\(359\) 114.922i 0.320116i −0.987108 0.160058i \(-0.948832\pi\)
0.987108 0.160058i \(-0.0511682\pi\)
\(360\) 0 0
\(361\) −264.815 −0.733559
\(362\) −292.281 + 78.3166i −0.807407 + 0.216344i
\(363\) 0 0
\(364\) 42.0022 24.2500i 0.115391 0.0666209i
\(365\) −85.5258 + 29.9936i −0.234317 + 0.0821743i
\(366\) 0 0
\(367\) −505.064 + 135.331i −1.37620 + 0.368750i −0.869738 0.493515i \(-0.835712\pi\)
−0.506458 + 0.862265i \(0.669045\pi\)
\(368\) −263.226 + 263.226i −0.715289 + 0.715289i
\(369\) 0 0
\(370\) 29.8871 + 43.7708i 0.0807759 + 0.118299i
\(371\) 233.301 404.089i 0.628843 1.08919i
\(372\) 0 0
\(373\) −205.720 55.1226i −0.551529 0.147782i −0.0277173 0.999616i \(-0.508824\pi\)
−0.523812 + 0.851834i \(0.675491\pi\)
\(374\) 325.251 187.784i 0.869656 0.502096i
\(375\) 0 0
\(376\) −33.8150 + 58.5693i −0.0899336 + 0.155770i
\(377\) 2.24492 + 2.24492i 0.00595470 + 0.00595470i
\(378\) 0 0
\(379\) 672.519i 1.77446i 0.461331 + 0.887228i \(0.347372\pi\)
−0.461331 + 0.887228i \(0.652628\pi\)
\(380\) 40.9231 + 541.026i 0.107692 + 1.42375i
\(381\) 0 0
\(382\) 75.7019 282.523i 0.198173 0.739590i
\(383\) −294.108 78.8060i −0.767906 0.205760i −0.146460 0.989217i \(-0.546788\pi\)
−0.621446 + 0.783457i \(0.713455\pi\)
\(384\) 0 0
\(385\) −477.601 + 555.765i −1.24052 + 1.44354i
\(386\) −816.881 −2.11627
\(387\) 0 0
\(388\) −58.6876 + 58.6876i −0.151257 + 0.151257i
\(389\) −616.350 355.850i −1.58445 0.914780i −0.994199 0.107558i \(-0.965697\pi\)
−0.590247 0.807223i \(-0.700970\pi\)
\(390\) 0 0
\(391\) −135.417 234.549i −0.346335 0.599870i
\(392\) 23.4696 87.5898i 0.0598715 0.223443i
\(393\) 0 0
\(394\) −18.6128 10.7461i −0.0472406 0.0272744i
\(395\) 85.5959 + 125.359i 0.216699 + 0.317363i
\(396\) 0 0
\(397\) −41.4605 41.4605i −0.104435 0.104435i 0.652959 0.757393i \(-0.273527\pi\)
−0.757393 + 0.652959i \(0.773527\pi\)
\(398\) 105.428 + 393.462i 0.264894 + 0.988599i
\(399\) 0 0
\(400\) −359.240 + 54.6584i −0.898099 + 0.136646i
\(401\) −83.1858 144.082i −0.207446 0.359307i 0.743463 0.668777i \(-0.233182\pi\)
−0.950909 + 0.309470i \(0.899848\pi\)
\(402\) 0 0
\(403\) 7.01451 + 26.1785i 0.0174057 + 0.0649591i
\(404\) 85.2394i 0.210989i
\(405\) 0 0
\(406\) 116.412 0.286729
\(407\) 43.6140 11.6863i 0.107160 0.0287133i
\(408\) 0 0
\(409\) 20.5577 11.8690i 0.0502632 0.0290195i −0.474658 0.880170i \(-0.657428\pi\)
0.524921 + 0.851151i \(0.324095\pi\)
\(410\) 111.514 + 317.978i 0.271985 + 0.775556i
\(411\) 0 0
\(412\) 718.281 192.463i 1.74340 0.467143i
\(413\) 739.382 739.382i 1.79027 1.79027i
\(414\) 0 0
\(415\) 140.640 746.147i 0.338893 1.79794i
\(416\) 21.5213 37.2759i 0.0517338 0.0896056i
\(417\) 0 0
\(418\) 858.187 + 229.950i 2.05308 + 0.550121i
\(419\) 432.642 249.786i 1.03256 0.596147i 0.114841 0.993384i \(-0.463364\pi\)
0.917716 + 0.397236i \(0.130031\pi\)
\(420\) 0 0
\(421\) 1.90482 3.29924i 0.00452450 0.00783667i −0.863754 0.503913i \(-0.831893\pi\)
0.868279 + 0.496077i \(0.165226\pi\)
\(422\) 92.0983 + 92.0983i 0.218242 + 0.218242i
\(423\) 0 0
\(424\) 38.1890i 0.0900685i
\(425\) 29.2342 262.749i 0.0687865 0.618234i
\(426\) 0 0
\(427\) −243.786 + 909.822i −0.570928 + 2.13073i
\(428\) −62.7149 16.8044i −0.146530 0.0392626i
\(429\) 0 0
\(430\) 17.9168 + 236.869i 0.0416669 + 0.550859i
\(431\) 767.834 1.78152 0.890759 0.454477i \(-0.150174\pi\)
0.890759 + 0.454477i \(0.150174\pi\)
\(432\) 0 0
\(433\) 367.840 367.840i 0.849516 0.849516i −0.140557 0.990073i \(-0.544889\pi\)
0.990073 + 0.140557i \(0.0448893\pi\)
\(434\) 860.622 + 496.880i 1.98300 + 1.14489i
\(435\) 0 0
\(436\) −19.6945 34.1118i −0.0451708 0.0782381i
\(437\) 165.825 618.867i 0.379462 1.41617i
\(438\) 0 0
\(439\) 119.042 + 68.7289i 0.271166 + 0.156558i 0.629418 0.777067i \(-0.283294\pi\)
−0.358251 + 0.933625i \(0.616627\pi\)
\(440\) 11.1090 58.9372i 0.0252478 0.133948i
\(441\) 0 0
\(442\) 20.2602 + 20.2602i 0.0458375 + 0.0458375i
\(443\) 114.403 + 426.956i 0.258245 + 0.963783i 0.966256 + 0.257582i \(0.0829258\pi\)
−0.708011 + 0.706201i \(0.750408\pi\)
\(444\) 0 0
\(445\) 255.385 531.259i 0.573899 1.19384i
\(446\) −8.10216 14.0334i −0.0181663 0.0314649i
\(447\) 0 0
\(448\) −229.181 855.314i −0.511564 1.90918i
\(449\) 827.291i 1.84252i −0.388949 0.921259i \(-0.627162\pi\)
0.388949 0.921259i \(-0.372838\pi\)
\(450\) 0 0
\(451\) 287.066 0.636509
\(452\) 644.769 172.765i 1.42648 0.382224i
\(453\) 0 0
\(454\) 190.084 109.745i 0.418688 0.241730i
\(455\) −50.3852 24.2210i −0.110737 0.0532331i
\(456\) 0 0
\(457\) 855.367 229.195i 1.87170 0.501521i 0.871768 0.489919i \(-0.162974\pi\)
0.999933 0.0116012i \(-0.00369286\pi\)
\(458\) −112.685 + 112.685i −0.246038 + 0.246038i
\(459\) 0 0
\(460\) −545.862 102.889i −1.18666 0.223672i
\(461\) 130.919 226.759i 0.283990 0.491885i −0.688374 0.725356i \(-0.741675\pi\)
0.972364 + 0.233471i \(0.0750084\pi\)
\(462\) 0 0
\(463\) −162.814 43.6260i −0.351651 0.0942246i 0.0786695 0.996901i \(-0.474933\pi\)
−0.430321 + 0.902676i \(0.641599\pi\)
\(464\) 42.5893 24.5889i 0.0917872 0.0529934i
\(465\) 0 0
\(466\) −197.000 + 341.213i −0.422746 + 0.732217i
\(467\) 63.7603 + 63.7603i 0.136532 + 0.136532i 0.772070 0.635538i \(-0.219222\pi\)
−0.635538 + 0.772070i \(0.719222\pi\)
\(468\) 0 0
\(469\) 763.505i 1.62794i
\(470\) 998.356 75.5155i 2.12416 0.160671i
\(471\) 0 0
\(472\) −22.1499 + 82.6647i −0.0469278 + 0.175137i
\(473\) 195.474 + 52.3770i 0.413264 + 0.110734i
\(474\) 0 0
\(475\) 488.420 390.616i 1.02825 0.822349i
\(476\) 546.580 1.14828
\(477\) 0 0
\(478\) −301.013 + 301.013i −0.629734 + 0.629734i
\(479\) −33.6305 19.4166i −0.0702099 0.0405357i 0.464484 0.885581i \(-0.346240\pi\)
−0.534694 + 0.845046i \(0.679573\pi\)
\(480\) 0 0
\(481\) 1.72235 + 2.98320i 0.00358077 + 0.00620208i
\(482\) 268.295 1001.29i 0.556628 2.07736i
\(483\) 0 0
\(484\) −113.750 65.6736i −0.235021 0.135689i
\(485\) 94.0127 + 17.7204i 0.193841 + 0.0365369i
\(486\) 0 0
\(487\) 394.799 + 394.799i 0.810676 + 0.810676i 0.984735 0.174059i \(-0.0556883\pi\)
−0.174059 + 0.984735i \(0.555688\pi\)
\(488\) −19.9527 74.4644i −0.0408867 0.152591i
\(489\) 0 0
\(490\) −1266.80 + 444.262i −2.58530 + 0.906656i
\(491\) 230.371 + 399.015i 0.469188 + 0.812658i 0.999380 0.0352201i \(-0.0112132\pi\)
−0.530191 + 0.847878i \(0.677880\pi\)
\(492\) 0 0
\(493\) 9.26030 + 34.5599i 0.0187836 + 0.0701012i
\(494\) 67.7810i 0.137209i
\(495\) 0 0
\(496\) 419.811 0.846394
\(497\) 1021.64 273.748i 2.05561 0.550800i
\(498\) 0 0
\(499\) 736.679 425.322i 1.47631 0.852349i 0.476669 0.879083i \(-0.341844\pi\)
0.999643 + 0.0267345i \(0.00851087\pi\)
\(500\) −369.631 396.703i −0.739262 0.793405i
\(501\) 0 0
\(502\) 429.640 115.122i 0.855857 0.229326i
\(503\) −196.093 + 196.093i −0.389847 + 0.389847i −0.874633 0.484786i \(-0.838897\pi\)
0.484786 + 0.874633i \(0.338897\pi\)
\(504\) 0 0
\(505\) −81.1420 + 55.4045i −0.160677 + 0.109712i
\(506\) −454.795 + 787.728i −0.898804 + 1.55677i
\(507\) 0 0
\(508\) −682.429 182.856i −1.34336 0.359953i
\(509\) −338.026 + 195.159i −0.664098 + 0.383417i −0.793837 0.608131i \(-0.791920\pi\)
0.129738 + 0.991548i \(0.458586\pi\)
\(510\) 0 0
\(511\) −107.995 + 187.052i −0.211340 + 0.366051i
\(512\) −511.543 511.543i −0.999108 0.999108i
\(513\) 0 0
\(514\) 997.044i 1.93977i
\(515\) −650.085 558.656i −1.26230 1.08477i
\(516\) 0 0
\(517\) 220.758 823.881i 0.426999 1.59358i
\(518\) 122.005 + 32.6910i 0.235530 + 0.0631101i
\(519\) 0 0
\(520\) 4.56249 0.345106i 0.00877401 0.000663665i
\(521\) −679.963 −1.30511 −0.652556 0.757741i \(-0.726303\pi\)
−0.652556 + 0.757741i \(0.726303\pi\)
\(522\) 0 0
\(523\) 442.612 442.612i 0.846295 0.846295i −0.143374 0.989669i \(-0.545795\pi\)
0.989669 + 0.143374i \(0.0457951\pi\)
\(524\) −70.8410 40.9001i −0.135193 0.0780536i
\(525\) 0 0
\(526\) 376.307 + 651.783i 0.715413 + 1.23913i
\(527\) −79.0514 + 295.024i −0.150003 + 0.559818i
\(528\) 0 0
\(529\) 109.929 + 63.4674i 0.207805 + 0.119976i
\(530\) 466.899 318.803i 0.880941 0.601514i
\(531\) 0 0
\(532\) 914.300 + 914.300i 1.71861 + 1.71861i
\(533\) 5.66823 + 21.1541i 0.0106346 + 0.0396888i
\(534\) 0 0
\(535\) 24.7672 + 70.6229i 0.0462939 + 0.132005i
\(536\) 31.2445 + 54.1171i 0.0582921 + 0.100965i
\(537\) 0 0
\(538\) −145.609 543.421i −0.270649 1.01008i
\(539\) 1143.64i 2.12179i
\(540\) 0 0
\(541\) 780.447 1.44260 0.721300 0.692623i \(-0.243545\pi\)
0.721300 + 0.692623i \(0.243545\pi\)
\(542\) −856.624 + 229.532i −1.58049 + 0.423490i
\(543\) 0 0
\(544\) 420.088 242.538i 0.772221 0.445842i
\(545\) −19.6709 + 40.9200i −0.0360935 + 0.0750826i
\(546\) 0 0
\(547\) 335.470 89.8890i 0.613291 0.164331i 0.0612152 0.998125i \(-0.480502\pi\)
0.552076 + 0.833794i \(0.313836\pi\)
\(548\) −231.998 + 231.998i −0.423354 + 0.423354i
\(549\) 0 0
\(550\) −813.304 + 356.190i −1.47873 + 0.647618i
\(551\) −42.3203 + 73.3009i −0.0768063 + 0.133032i
\(552\) 0 0
\(553\) 349.418 + 93.6263i 0.631859 + 0.169306i
\(554\) 265.538 153.308i 0.479311 0.276730i
\(555\) 0 0
\(556\) 97.4968 168.869i 0.175354 0.303722i
\(557\) −670.322 670.322i −1.20345 1.20345i −0.973110 0.230341i \(-0.926016\pi\)
−0.230341 0.973110i \(-0.573984\pi\)
\(558\) 0 0
\(559\) 15.4388i 0.0276187i
\(560\) −564.402 + 656.771i −1.00786 + 1.17281i
\(561\) 0 0
\(562\) −0.859143 + 3.20637i −0.00152872 + 0.00570528i
\(563\) 420.955 + 112.795i 0.747700 + 0.200346i 0.612498 0.790472i \(-0.290165\pi\)
0.135202 + 0.990818i \(0.456832\pi\)
\(564\) 0 0
\(565\) −583.552 501.481i −1.03284 0.887576i
\(566\) −926.373 −1.63670
\(567\) 0 0
\(568\) −61.2113 + 61.2113i −0.107766 + 0.107766i
\(569\) 670.282 + 386.987i 1.17800 + 0.680118i 0.955551 0.294826i \(-0.0952618\pi\)
0.222448 + 0.974944i \(0.428595\pi\)
\(570\) 0 0
\(571\) −233.901 405.128i −0.409633 0.709506i 0.585215 0.810878i \(-0.301010\pi\)
−0.994849 + 0.101372i \(0.967677\pi\)
\(572\) 12.9572 48.3570i 0.0226525 0.0845402i
\(573\) 0 0
\(574\) 695.444 + 401.515i 1.21158 + 0.699503i
\(575\) 256.860 + 586.500i 0.446713 + 1.02000i
\(576\) 0 0
\(577\) 272.029 + 272.029i 0.471454 + 0.471454i 0.902385 0.430931i \(-0.141815\pi\)
−0.430931 + 0.902385i \(0.641815\pi\)
\(578\) −132.409 494.158i −0.229082 0.854945i
\(579\) 0 0
\(580\) 66.1370 + 31.7932i 0.114029 + 0.0548159i
\(581\) −904.737 1567.05i −1.55721 2.69716i
\(582\) 0 0
\(583\) −124.657 465.226i −0.213820 0.797986i
\(584\) 17.6776i 0.0302699i
\(585\) 0 0
\(586\) 296.855 0.506578
\(587\) −136.489 + 36.5721i −0.232520 + 0.0623034i −0.373197 0.927752i \(-0.621739\pi\)
0.140678 + 0.990055i \(0.455072\pi\)
\(588\) 0 0
\(589\) −625.740 + 361.271i −1.06238 + 0.613363i
\(590\) 1195.57 419.281i 2.02638 0.710646i
\(591\) 0 0
\(592\) 51.5405 13.8102i 0.0870617 0.0233281i
\(593\) −94.3094 + 94.3094i −0.159038 + 0.159038i −0.782140 0.623102i \(-0.785872\pi\)
0.623102 + 0.782140i \(0.285872\pi\)
\(594\) 0 0
\(595\) −355.270 520.307i −0.597093 0.874465i
\(596\) 356.194 616.946i 0.597641 1.03514i
\(597\) 0 0
\(598\) −67.0285 17.9602i −0.112088 0.0300338i
\(599\) −723.537 + 417.734i −1.20791 + 0.697386i −0.962302 0.271984i \(-0.912320\pi\)
−0.245606 + 0.969370i \(0.578987\pi\)
\(600\) 0 0
\(601\) −179.809 + 311.438i −0.299183 + 0.518200i −0.975949 0.217998i \(-0.930047\pi\)
0.676766 + 0.736198i \(0.263381\pi\)
\(602\) 400.295 + 400.295i 0.664942 + 0.664942i
\(603\) 0 0
\(604\) 166.579i 0.275793i
\(605\) 11.4193 + 150.969i 0.0188748 + 0.249536i
\(606\) 0 0
\(607\) 133.400 497.854i 0.219769 0.820188i −0.764665 0.644428i \(-0.777095\pi\)
0.984433 0.175759i \(-0.0562380\pi\)
\(608\) 1108.42 + 297.000i 1.82306 + 0.488486i
\(609\) 0 0
\(610\) −743.836 + 865.571i −1.21940 + 1.41897i
\(611\) 65.0715 0.106500
\(612\) 0 0
\(613\) −470.150 + 470.150i −0.766965 + 0.766965i −0.977571 0.210606i \(-0.932456\pi\)
0.210606 + 0.977571i \(0.432456\pi\)
\(614\) −263.849 152.333i −0.429721 0.248099i
\(615\) 0 0
\(616\) −71.4640 123.779i −0.116013 0.200940i
\(617\) −65.6036 + 244.836i −0.106327 + 0.396817i −0.998492 0.0548918i \(-0.982519\pi\)
0.892166 + 0.451708i \(0.149185\pi\)
\(618\) 0 0
\(619\) −88.9466 51.3534i −0.143694 0.0829618i 0.426429 0.904521i \(-0.359771\pi\)
−0.570123 + 0.821559i \(0.693105\pi\)
\(620\) 353.242 + 517.337i 0.569745 + 0.834414i
\(621\) 0 0
\(622\) −1219.47 1219.47i −1.96057 1.96057i
\(623\) −363.575 1356.88i −0.583587 2.17798i
\(624\) 0 0
\(625\) −137.378 + 609.715i −0.219805 + 0.975544i
\(626\) −244.862 424.113i −0.391153 0.677497i
\(627\) 0 0
\(628\) 73.1406 + 272.964i 0.116466 + 0.434657i
\(629\) 38.8208i 0.0617183i
\(630\) 0 0
\(631\) −1201.04 −1.90339 −0.951696 0.307042i \(-0.900661\pi\)
−0.951696 + 0.307042i \(0.900661\pi\)
\(632\) −28.5981 + 7.66285i −0.0452502 + 0.0121248i
\(633\) 0 0
\(634\) −1022.01 + 590.056i −1.61200 + 0.930688i
\(635\) 269.503 + 768.479i 0.424415 + 1.21020i
\(636\) 0 0
\(637\) −84.2762 + 22.5817i −0.132302 + 0.0354501i
\(638\) 84.9681 84.9681i 0.133179 0.133179i
\(639\) 0 0
\(640\) 28.7994 152.791i 0.0449991 0.238736i
\(641\) 285.201 493.982i 0.444931 0.770643i −0.553117 0.833104i \(-0.686562\pi\)
0.998047 + 0.0624611i \(0.0198949\pi\)
\(642\) 0 0
\(643\) 856.111 + 229.394i 1.33143 + 0.356756i 0.853249 0.521504i \(-0.174629\pi\)
0.478183 + 0.878260i \(0.341296\pi\)
\(644\) −1146.41 + 661.883i −1.78015 + 1.02777i
\(645\) 0 0
\(646\) −381.936 + 661.532i −0.591232 + 1.02404i
\(647\) 254.010 + 254.010i 0.392596 + 0.392596i 0.875612 0.483016i \(-0.160459\pi\)
−0.483016 + 0.875612i \(0.660459\pi\)
\(648\) 0 0
\(649\) 1079.34i 1.66308i
\(650\) −42.3070 52.9000i −0.0650876 0.0813845i
\(651\) 0 0
\(652\) 33.3183 124.346i 0.0511017 0.190714i
\(653\) 295.968 + 79.3045i 0.453244 + 0.121446i 0.478217 0.878242i \(-0.341283\pi\)
−0.0249729 + 0.999688i \(0.507950\pi\)
\(654\) 0 0
\(655\) 7.11168 + 94.0203i 0.0108575 + 0.143542i
\(656\) 339.238 0.517131
\(657\) 0 0
\(658\) 1687.16 1687.16i 2.56407 2.56407i
\(659\) 344.367 + 198.821i 0.522561 + 0.301701i 0.737982 0.674821i \(-0.235779\pi\)
−0.215421 + 0.976521i \(0.569112\pi\)
\(660\) 0 0
\(661\) 347.289 + 601.522i 0.525399 + 0.910019i 0.999562 + 0.0295815i \(0.00941745\pi\)
−0.474163 + 0.880437i \(0.657249\pi\)
\(662\) −314.101 + 1172.24i −0.474473 + 1.77076i
\(663\) 0 0
\(664\) 128.255 + 74.0482i 0.193156 + 0.111518i
\(665\) 276.067 1464.63i 0.415139 2.20246i
\(666\) 0 0
\(667\) −61.2733 61.2733i −0.0918640 0.0918640i
\(668\) 105.393 + 393.333i 0.157774 + 0.588821i
\(669\) 0 0
\(670\) 400.806 833.766i 0.598217 1.24443i
\(671\) 486.135 + 842.010i 0.724493 + 1.25486i
\(672\) 0 0
\(673\) −43.7189 163.161i −0.0649612 0.242439i 0.925809 0.377992i \(-0.123385\pi\)
−0.990770 + 0.135554i \(0.956719\pi\)
\(674\) 839.406i 1.24541i
\(675\) 0 0
\(676\) −729.259 −1.07879
\(677\) −252.537 + 67.6670i −0.373023 + 0.0999513i −0.440460 0.897772i \(-0.645185\pi\)
0.0674366 + 0.997724i \(0.478518\pi\)
\(678\) 0 0
\(679\) 197.445 113.995i 0.290787 0.167886i
\(680\) 46.4738 + 22.3407i 0.0683438 + 0.0328540i
\(681\) 0 0
\(682\) 990.830 265.492i 1.45283 0.389285i
\(683\) 545.616 545.616i 0.798852 0.798852i −0.184062 0.982915i \(-0.558925\pi\)
0.982915 + 0.184062i \(0.0589248\pi\)
\(684\) 0 0
\(685\) 371.642 + 70.0505i 0.542543 + 0.102263i
\(686\) −756.640 + 1310.54i −1.10297 + 1.91041i
\(687\) 0 0
\(688\) 231.000 + 61.8962i 0.335755 + 0.0899654i
\(689\) 31.8215 18.3722i 0.0461851 0.0266650i
\(690\) 0 0
\(691\) −178.080 + 308.443i −0.257713 + 0.446372i −0.965629 0.259925i \(-0.916302\pi\)
0.707916 + 0.706297i \(0.249636\pi\)
\(692\) −611.281 611.281i −0.883355 0.883355i
\(693\) 0 0
\(694\) 1585.21i 2.28417i
\(695\) −224.124 + 16.9527i −0.322480 + 0.0243924i
\(696\) 0 0
\(697\) −63.8792 + 238.401i −0.0916488 + 0.342038i
\(698\) −1214.49 325.423i −1.73996 0.466222i
\(699\) 0 0
\(700\) −1284.25 142.889i −1.83464 0.204128i
\(701\) 357.763 0.510361 0.255180 0.966893i \(-0.417865\pi\)
0.255180 + 0.966893i \(0.417865\pi\)
\(702\) 0 0
\(703\) −64.9380 + 64.9380i −0.0923727 + 0.0923727i
\(704\) −791.564 457.010i −1.12438 0.649161i
\(705\) 0 0
\(706\) 480.517 + 832.280i 0.680619 + 1.17887i
\(707\) −60.6024 + 226.171i −0.0857177 + 0.319903i
\(708\) 0 0
\(709\) 324.344 + 187.260i 0.457467 + 0.264119i 0.710979 0.703213i \(-0.248252\pi\)
−0.253511 + 0.967332i \(0.581586\pi\)
\(710\) 1259.36 + 237.376i 1.77375 + 0.334332i
\(711\) 0 0
\(712\) 81.2971 + 81.2971i 0.114181 + 0.114181i
\(713\) −191.455 714.520i −0.268520 1.00213i
\(714\) 0 0
\(715\) −54.4545 + 19.0970i −0.0761602 + 0.0267091i
\(716\) −98.9288 171.350i −0.138169 0.239315i
\(717\) 0 0
\(718\) −85.8861 320.531i −0.119619 0.446422i
\(719\) 889.235i 1.23677i 0.785877 + 0.618383i \(0.212212\pi\)
−0.785877 + 0.618383i \(0.787788\pi\)
\(720\) 0 0
\(721\) −2042.70 −2.83314
\(722\) −738.601 + 197.908i −1.02299 + 0.274110i
\(723\) 0 0
\(724\) −393.666 + 227.283i −0.543737 + 0.313927i
\(725\) −12.7233 83.6231i −0.0175493 0.115342i
\(726\) 0 0
\(727\) −433.617 + 116.187i −0.596447 + 0.159818i −0.544398 0.838827i \(-0.683242\pi\)
−0.0520491 + 0.998645i \(0.516575\pi\)
\(728\) 7.71032 7.71032i 0.0105911 0.0105911i
\(729\) 0 0
\(730\) −216.127 + 147.573i −0.296064 + 0.202155i
\(731\) −86.9955 + 150.681i −0.119009 + 0.206129i
\(732\) 0 0
\(733\) −664.342 178.010i −0.906333 0.242851i −0.224599 0.974451i \(-0.572107\pi\)
−0.681734 + 0.731600i \(0.738774\pi\)
\(734\) −1307.55 + 754.912i −1.78140 + 1.02849i
\(735\) 0 0
\(736\) −587.404 + 1017.41i −0.798104 + 1.38236i
\(737\) −557.276 557.276i −0.756141 0.756141i
\(738\) 0 0
\(739\) 337.793i 0.457095i 0.973533 + 0.228547i \(0.0733976\pi\)
−0.973533 + 0.228547i \(0.926602\pi\)
\(740\) 60.3862 + 51.8934i 0.0816030 + 0.0701262i
\(741\) 0 0
\(742\) 348.712 1301.41i 0.469962 1.75392i
\(743\) 101.468 + 27.1883i 0.136565 + 0.0365926i 0.326454 0.945213i \(-0.394146\pi\)
−0.189889 + 0.981806i \(0.560813\pi\)
\(744\) 0 0
\(745\) −818.812 + 61.9348i −1.09908 + 0.0831340i
\(746\) −614.975 −0.824364
\(747\) 0 0
\(748\) 398.945 398.945i 0.533349 0.533349i
\(749\) 154.458 + 89.1765i 0.206219 + 0.119061i
\(750\) 0 0
\(751\) −370.192 641.191i −0.492932 0.853783i 0.507035 0.861925i \(-0.330741\pi\)
−0.999967 + 0.00814279i \(0.997408\pi\)
\(752\) 260.880 973.616i 0.346914 1.29470i
\(753\) 0 0
\(754\) 7.93910 + 4.58364i 0.0105293 + 0.00607910i
\(755\) 158.571 108.274i 0.210028 0.143409i
\(756\) 0 0
\(757\) 957.088 + 957.088i 1.26432 + 1.26432i 0.948980 + 0.315337i \(0.102118\pi\)
0.315337 + 0.948980i \(0.397882\pi\)
\(758\) 502.603 + 1875.74i 0.663065 + 2.47459i
\(759\) 0 0
\(760\) 40.3689 + 115.110i 0.0531169 + 0.151461i
\(761\) 202.869 + 351.380i 0.266582 + 0.461734i 0.967977 0.251039i \(-0.0807722\pi\)
−0.701395 + 0.712773i \(0.747439\pi\)
\(762\) 0 0
\(763\) 28.0042 + 104.513i 0.0367028 + 0.136977i
\(764\) 439.390i 0.575118i
\(765\) 0 0
\(766\) −879.199 −1.14778
\(767\) 79.5374 21.3120i 0.103699 0.0277861i
\(768\) 0 0
\(769\) 731.602 422.391i 0.951368 0.549273i 0.0578626 0.998325i \(-0.481571\pi\)
0.893506 + 0.449052i \(0.148238\pi\)
\(770\) −916.742 + 1907.03i −1.19057 + 2.47666i
\(771\) 0 0
\(772\) −1185.34 + 317.610i −1.53541 + 0.411412i
\(773\) 501.313 501.313i 0.648529 0.648529i −0.304108 0.952637i \(-0.598358\pi\)
0.952637 + 0.304108i \(0.0983585\pi\)
\(774\) 0 0
\(775\) 262.866 672.524i 0.339182 0.867773i
\(776\) −9.32990 + 16.1599i −0.0120231 + 0.0208246i
\(777\) 0 0
\(778\) −1985.02 531.884i −2.55144 0.683655i
\(779\) −505.643 + 291.933i −0.649092 + 0.374754i
\(780\) 0 0
\(781\) 545.881 945.494i 0.698951 1.21062i
\(782\) −552.984 552.984i −0.707141 0.707141i
\(783\) 0 0
\(784\) 1351.49i 1.72384i
\(785\) 212.303 247.048i 0.270449 0.314711i
\(786\) 0 0
\(787\) −263.430 + 983.133i −0.334726 + 1.24922i 0.569439 + 0.822034i \(0.307161\pi\)
−0.904165 + 0.427183i \(0.859506\pi\)
\(788\) −31.1863 8.35636i −0.0395766 0.0106045i
\(789\) 0 0
\(790\) 332.424 + 285.671i 0.420789 + 0.361609i
\(791\) −1833.64 −2.31813
\(792\) 0 0
\(793\) −52.4495 + 52.4495i −0.0661406 + 0.0661406i
\(794\) −146.624 84.6533i −0.184665 0.106616i
\(795\) 0 0
\(796\) 305.963 + 529.943i 0.384376 + 0.665758i
\(797\) 369.343 1378.41i 0.463416 1.72949i −0.198670 0.980066i \(-0.563662\pi\)
0.662087 0.749427i \(-0.269671\pi\)
\(798\) 0 0
\(799\) 635.088 + 366.668i 0.794854 + 0.458909i
\(800\) −1050.45 + 460.048i −1.31306 + 0.575060i
\(801\) 0 0
\(802\) −339.695 339.695i −0.423559 0.423559i
\(803\) 57.7035 + 215.352i 0.0718599 + 0.268185i
\(804\) 0 0
\(805\) 1375.22 + 661.093i 1.70835 + 0.821233i
\(806\) 39.1287 + 67.7729i 0.0485468 + 0.0840855i
\(807\) 0 0
\(808\) −4.96001 18.5110i −0.00613862 0.0229097i
\(809\) 549.873i 0.679694i −0.940481 0.339847i \(-0.889625\pi\)
0.940481 0.339847i \(-0.110375\pi\)
\(810\) 0 0
\(811\) 1542.32 1.90175 0.950876 0.309573i \(-0.100186\pi\)
0.950876 + 0.309573i \(0.100186\pi\)
\(812\) 168.920 45.2619i 0.208029 0.0557413i
\(813\) 0 0
\(814\) 112.911 65.1893i 0.138711 0.0800851i
\(815\) −140.025 + 49.1063i −0.171810 + 0.0602531i
\(816\) 0 0
\(817\) −397.576 + 106.530i −0.486629 + 0.130392i
\(818\) 48.4677 48.4677i 0.0592514 0.0592514i
\(819\) 0 0
\(820\) 285.445 + 418.045i 0.348104 + 0.509811i
\(821\) −405.012 + 701.501i −0.493316 + 0.854448i −0.999970 0.00770144i \(-0.997549\pi\)
0.506655 + 0.862149i \(0.330882\pi\)
\(822\) 0 0
\(823\) 79.3084 + 21.2506i 0.0963650 + 0.0258209i 0.306679 0.951813i \(-0.400782\pi\)
−0.210314 + 0.977634i \(0.567449\pi\)
\(824\) 144.786 83.5923i 0.175711 0.101447i
\(825\) 0 0
\(826\) 1509.66 2614.80i 1.82767 3.16562i
\(827\) 924.549 + 924.549i 1.11796 + 1.11796i 0.992041 + 0.125915i \(0.0401866\pi\)
0.125915 + 0.992041i \(0.459813\pi\)
\(828\) 0 0
\(829\) 114.907i 0.138610i −0.997596 0.0693048i \(-0.977922\pi\)
0.997596 0.0693048i \(-0.0220781\pi\)
\(830\) −165.364 2186.20i −0.199234 2.63398i
\(831\) 0 0
\(832\) 18.0477 67.3549i 0.0216919 0.0809554i
\(833\) −949.767 254.489i −1.14018 0.305509i
\(834\) 0 0
\(835\) 305.921 355.988i 0.366373 0.426333i
\(836\) 1334.68 1.59651
\(837\) 0 0
\(838\) 1020.02 1020.02i 1.21720 1.21720i
\(839\) −661.782 382.080i −0.788774 0.455399i 0.0507566 0.998711i \(-0.483837\pi\)
−0.839531 + 0.543312i \(0.817170\pi\)
\(840\) 0 0
\(841\) −414.776 718.414i −0.493194 0.854237i
\(842\) 2.84711 10.6255i 0.00338136 0.0126194i
\(843\) 0 0
\(844\) 169.448 + 97.8309i 0.200768 + 0.115913i
\(845\) 474.009 + 694.204i 0.560957 + 0.821544i
\(846\) 0 0
\(847\) 255.128 + 255.128i 0.301214 + 0.301214i
\(848\) −147.312 549.777i −0.173717 0.648322i
\(849\) 0 0
\(850\) −114.826 754.689i −0.135089 0.887869i
\(851\) −47.0101 81.4239i −0.0552410 0.0956803i
\(852\) 0 0
\(853\) 190.285 + 710.152i 0.223077 + 0.832534i 0.983166 + 0.182715i \(0.0584887\pi\)
−0.760089 + 0.649819i \(0.774845\pi\)
\(854\) 2719.80i 3.18478i
\(855\) 0 0
\(856\) −14.5973 −0.0170529
\(857\) −694.443 + 186.075i −0.810319 + 0.217124i −0.640109 0.768284i \(-0.721111\pi\)
−0.170209 + 0.985408i \(0.554444\pi\)
\(858\) 0 0
\(859\) −1043.29 + 602.342i −1.21454 + 0.701213i −0.963744 0.266828i \(-0.914025\pi\)
−0.250792 + 0.968041i \(0.580691\pi\)
\(860\) 118.095 + 336.744i 0.137320 + 0.391563i
\(861\) 0 0
\(862\) 2141.58 573.836i 2.48444 0.665703i
\(863\) −214.571 + 214.571i −0.248634 + 0.248634i −0.820410 0.571776i \(-0.806255\pi\)
0.571776 + 0.820410i \(0.306255\pi\)
\(864\) 0 0
\(865\) −184.573 + 979.223i −0.213379 + 1.13205i
\(866\) 751.049 1300.86i 0.867263 1.50214i
\(867\) 0 0
\(868\) 1442.00 + 386.382i 1.66129 + 0.445141i
\(869\) 323.375 186.701i 0.372123 0.214845i
\(870\) 0 0
\(871\) 30.0625 52.0698i 0.0345150 0.0597817i
\(872\) −6.26188 6.26188i −0.00718106 0.00718106i
\(873\) 0 0
\(874\) 1850.02i 2.11673i
\(875\) 698.724 + 1315.39i 0.798542 + 1.50331i
\(876\) 0 0
\(877\) −81.8801 + 305.581i −0.0933638 + 0.348438i −0.996766 0.0803551i \(-0.974395\pi\)
0.903402 + 0.428794i \(0.141061\pi\)
\(878\) 383.387 + 102.728i 0.436660 + 0.117003i
\(879\) 0 0
\(880\) 67.4197 + 891.325i 0.0766133 + 1.01287i
\(881\) −435.585 −0.494421 −0.247211 0.968962i \(-0.579514\pi\)
−0.247211 + 0.968962i \(0.579514\pi\)
\(882\) 0 0
\(883\) −434.695 + 434.695i −0.492293 + 0.492293i −0.909028 0.416735i \(-0.863174\pi\)
0.416735 + 0.909028i \(0.363174\pi\)
\(884\) 37.2759 + 21.5213i 0.0421673 + 0.0243453i
\(885\) 0 0
\(886\) 638.166 + 1105.34i 0.720277 + 1.24756i
\(887\) 148.261 553.319i 0.167149 0.623810i −0.830607 0.556859i \(-0.812006\pi\)
0.997756 0.0669506i \(-0.0213270\pi\)
\(888\) 0 0
\(889\) 1680.73 + 970.369i 1.89058 + 1.09153i
\(890\) 315.268 1672.61i 0.354234 1.87933i
\(891\) 0 0
\(892\) −17.2130 17.2130i −0.0192970 0.0192970i
\(893\) 449.003 + 1675.70i 0.502803 + 1.87649i
\(894\) 0 0
\(895\) −98.8106 + 205.548i −0.110403 + 0.229663i
\(896\) −185.266 320.890i −0.206770 0.358136i
\(897\) 0 0
\(898\) −618.271 2307.42i −0.688497 2.56951i
\(899\) 97.7228i 0.108702i
\(900\) 0 0
\(901\) 414.097 0.459597
\(902\) 800.662 214.537i 0.887652 0.237846i
\(903\) 0 0
\(904\) 129.968 75.0371i 0.143770 0.0830057i
\(905\) 472.235 + 227.012i 0.521807 + 0.250842i
\(906\) 0 0
\(907\) −764.884 + 204.950i −0.843312 + 0.225965i −0.654513 0.756051i \(-0.727126\pi\)
−0.188799 + 0.982016i \(0.560459\pi\)
\(908\) 233.153 233.153i 0.256776 0.256776i
\(909\) 0 0
\(910\) −158.632 29.9004i −0.174321 0.0328576i
\(911\) 472.743 818.815i 0.518928 0.898809i −0.480830 0.876814i \(-0.659665\pi\)
0.999758 0.0219955i \(-0.00700196\pi\)
\(912\) 0 0
\(913\) −1804.14 483.417i −1.97605 0.529482i
\(914\) 2214.44 1278.51i 2.42280 1.39880i
\(915\) 0 0
\(916\) −119.699 + 207.325i −0.130676 + 0.226338i
\(917\) 158.889 + 158.889i 0.173270 + 0.173270i
\(918\) 0 0
\(919\) 825.147i 0.897875i −0.893563 0.448937i \(-0.851803\pi\)
0.893563 0.448937i \(-0.148197\pi\)
\(920\) −124.529 + 9.41937i −0.135358 + 0.0102384i
\(921\) 0 0
\(922\) 195.684 730.302i 0.212238 0.792084i
\(923\) 80.4529 + 21.5573i 0.0871646 + 0.0233557i
\(924\) 0 0
\(925\) 10.1487 91.2136i 0.0109716 0.0986093i
\(926\) −486.714 −0.525609
\(927\) 0 0
\(928\) 109.743 109.743i 0.118258 0.118258i
\(929\) −799.415 461.543i −0.860511 0.496817i 0.00367207 0.999993i \(-0.498831\pi\)
−0.864184 + 0.503177i \(0.832164\pi\)
\(930\) 0 0
\(931\) −1163.04 2014.44i −1.24923 2.16374i
\(932\) −153.190 + 571.714i −0.164367 + 0.613427i
\(933\) 0 0
\(934\) 225.486 + 130.185i 0.241420 + 0.139384i
\(935\) −639.077 120.459i −0.683505 0.128833i
\(936\) 0 0
\(937\) 967.522 + 967.522i 1.03257 + 1.03257i 0.999451 + 0.0331234i \(0.0105454\pi\)
0.0331234 + 0.999451i \(0.489455\pi\)
\(938\) −570.601 2129.51i −0.608316 2.27027i
\(939\) 0 0
\(940\) 1419.31 497.746i 1.50990 0.529517i
\(941\) 405.942 + 703.113i 0.431395 + 0.747197i 0.996994 0.0774830i \(-0.0246884\pi\)
−0.565599 + 0.824680i \(0.691355\pi\)
\(942\) 0 0
\(943\) −154.709 577.384i −0.164061 0.612284i
\(944\) 1275.50i 1.35117i
\(945\) 0 0
\(946\) 584.344 0.617700
\(947\) −1191.67 + 319.307i −1.25836 + 0.337177i −0.825562 0.564312i \(-0.809142\pi\)
−0.432802 + 0.901489i \(0.642475\pi\)
\(948\) 0 0
\(949\) −14.7301 + 8.50444i −0.0155217 + 0.00896147i
\(950\) 1070.34 1454.49i 1.12667 1.53105i
\(951\) 0 0
\(952\) 118.698 31.8050i 0.124683 0.0334087i
\(953\) −719.749 + 719.749i −0.755245 + 0.755245i −0.975453 0.220208i \(-0.929326\pi\)
0.220208 + 0.975453i \(0.429326\pi\)
\(954\) 0 0
\(955\) −418.269 + 285.598i −0.437978 + 0.299055i
\(956\) −319.749 + 553.822i −0.334466 + 0.579312i
\(957\) 0 0
\(958\) −108.311 29.0218i −0.113059 0.0302941i
\(959\) 780.519 450.633i 0.813888 0.469899i
\(960\) 0 0
\(961\) 63.3899 109.795i 0.0659625 0.114250i
\(962\) 7.03333 + 7.03333i 0.00731116 + 0.00731116i
\(963\) 0 0
\(964\) 1557.24i 1.61539i
\(965\) 1072.80 + 921.917i 1.11171 + 0.955354i
\(966\) 0 0
\(967\) −383.836 + 1432.50i −0.396935 + 1.48138i 0.421525 + 0.906817i \(0.361495\pi\)
−0.818460 + 0.574564i \(0.805172\pi\)
\(968\) −28.5240 7.64298i −0.0294669 0.00789564i
\(969\) 0 0
\(970\) 275.457 20.8355i 0.283976 0.0214799i
\(971\) 798.883 0.822742 0.411371 0.911468i \(-0.365050\pi\)
0.411371 + 0.911468i \(0.365050\pi\)
\(972\) 0 0
\(973\) −378.755 + 378.755i −0.389266 + 0.389266i
\(974\) 1396.20 + 806.094i 1.43347 + 0.827612i
\(975\) 0 0
\(976\) 574.486 + 995.039i 0.588613 + 1.01951i
\(977\) −110.728 + 413.244i −0.113335 + 0.422972i −0.999157 0.0410533i \(-0.986929\pi\)
0.885822 + 0.464025i \(0.153595\pi\)
\(978\) 0 0
\(979\) −1255.75 725.006i −1.28268 0.740558i
\(980\) −1665.46 + 1137.19i −1.69945 + 1.16040i
\(981\) 0 0
\(982\) 940.736 + 940.736i 0.957980 + 0.957980i
\(983\) −111.413 415.799i −0.113340 0.422990i 0.885817 0.464034i \(-0.153598\pi\)
−0.999157 + 0.0410437i \(0.986932\pi\)
\(984\) 0 0
\(985\) 12.3160 + 35.1188i 0.0125036 + 0.0356536i
\(986\) 51.6563 + 89.4713i 0.0523897 + 0.0907417i
\(987\) 0 0
\(988\) 26.3538 + 98.3538i 0.0266739 + 0.0995484i
\(989\) 421.390i 0.426077i
\(990\) 0 0
\(991\) 575.226 0.580450 0.290225 0.956958i \(-0.406270\pi\)
0.290225 + 0.956958i \(0.406270\pi\)
\(992\) 1279.74 342.905i 1.29006 0.345670i
\(993\) 0 0
\(994\) 2644.90 1527.03i 2.66086 1.53625i
\(995\) 305.598 635.712i 0.307133 0.638907i
\(996\) 0 0
\(997\) −398.810 + 106.861i −0.400010 + 0.107182i −0.453215 0.891401i \(-0.649723\pi\)
0.0532048 + 0.998584i \(0.483056\pi\)
\(998\) 1736.83 1736.83i 1.74031 1.74031i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.n.217.7 32
3.2 odd 2 inner 405.3.l.n.217.2 32
5.3 odd 4 inner 405.3.l.n.298.2 32
9.2 odd 6 135.3.g.b.82.7 yes 16
9.4 even 3 inner 405.3.l.n.352.2 32
9.5 odd 6 inner 405.3.l.n.352.7 32
9.7 even 3 135.3.g.b.82.2 yes 16
15.8 even 4 inner 405.3.l.n.298.7 32
45.2 even 12 675.3.g.j.568.2 16
45.7 odd 12 675.3.g.j.568.7 16
45.13 odd 12 inner 405.3.l.n.28.7 32
45.23 even 12 inner 405.3.l.n.28.2 32
45.29 odd 6 675.3.g.j.82.2 16
45.34 even 6 675.3.g.j.82.7 16
45.38 even 12 135.3.g.b.28.7 yes 16
45.43 odd 12 135.3.g.b.28.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.g.b.28.2 16 45.43 odd 12
135.3.g.b.28.7 yes 16 45.38 even 12
135.3.g.b.82.2 yes 16 9.7 even 3
135.3.g.b.82.7 yes 16 9.2 odd 6
405.3.l.n.28.2 32 45.23 even 12 inner
405.3.l.n.28.7 32 45.13 odd 12 inner
405.3.l.n.217.2 32 3.2 odd 2 inner
405.3.l.n.217.7 32 1.1 even 1 trivial
405.3.l.n.298.2 32 5.3 odd 4 inner
405.3.l.n.298.7 32 15.8 even 4 inner
405.3.l.n.352.2 32 9.4 even 3 inner
405.3.l.n.352.7 32 9.5 odd 6 inner
675.3.g.j.82.2 16 45.29 odd 6
675.3.g.j.82.7 16 45.34 even 6
675.3.g.j.568.2 16 45.2 even 12
675.3.g.j.568.7 16 45.7 odd 12