Properties

Label 405.3.l.n.352.7
Level $405$
Weight $3$
Character 405.352
Analytic conductor $11.035$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(28,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 352.7
Character \(\chi\) \(=\) 405.352
Dual form 405.3.l.n.298.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.747344 - 2.78913i) q^{2} +(-3.75659 - 2.16887i) q^{4} +(-0.377122 - 4.98576i) q^{5} +(3.08399 - 11.5096i) q^{7} +(-0.689596 + 0.689596i) q^{8} +(-14.1877 - 2.67423i) q^{10} +(6.14980 + 10.6518i) q^{11} +(0.242861 + 0.906368i) q^{13} +(-29.7970 - 17.2033i) q^{14} +(-7.26748 - 12.5876i) q^{16} +(7.47753 + 7.47753i) q^{17} -25.0163i q^{19} +(-9.39677 + 19.5474i) q^{20} +(34.3051 - 9.19203i) q^{22} +(6.62867 + 24.7385i) q^{23} +(-24.7156 + 3.76048i) q^{25} +2.70947 q^{26} +(-36.5482 + 36.5482i) q^{28} +(-2.93013 + 1.69171i) q^{29} +(-14.4414 + 25.0133i) q^{31} +(-44.3078 + 11.8723i) q^{32} +(26.4441 - 15.2675i) q^{34} +(-58.5472 - 11.0355i) q^{35} +(-2.59583 - 2.59583i) q^{37} +(-69.7736 - 18.6958i) q^{38} +(3.69822 + 3.17810i) q^{40} +(11.6697 - 20.2125i) q^{41} +(15.8927 + 4.25843i) q^{43} -53.3525i q^{44} +73.9528 q^{46} +(-17.9484 + 66.9844i) q^{47} +(-80.5250 - 46.4912i) q^{49} +(-7.98258 + 71.7452i) q^{50} +(1.05347 - 3.93159i) q^{52} +(27.6894 - 27.6894i) q^{53} +(50.7879 - 34.6784i) q^{55} +(5.81027 + 10.0637i) q^{56} +(2.52858 + 9.43678i) q^{58} +(-75.9971 - 43.8770i) q^{59} +(39.5244 + 68.4583i) q^{61} +(58.9725 + 58.9725i) q^{62} +74.3129i q^{64} +(4.42734 - 1.55266i) q^{65} +(61.8926 - 16.5841i) q^{67} +(-11.8723 - 44.3078i) q^{68} +(-74.5343 + 155.048i) q^{70} +88.7641 q^{71} +(12.8174 - 12.8174i) q^{73} +(-9.18007 + 5.30012i) q^{74} +(-54.2571 + 93.9761i) q^{76} +(141.564 - 37.9319i) q^{77} +(26.2915 - 15.1794i) q^{79} +(-60.0182 + 40.9810i) q^{80} +(-47.6540 - 47.6540i) q^{82} +(146.683 + 39.3035i) q^{83} +(34.4612 - 40.1011i) q^{85} +(23.7546 - 41.1442i) q^{86} +(-11.5863 - 3.10454i) q^{88} -117.891i q^{89} +11.1809 q^{91} +(28.7535 - 107.309i) q^{92} +(173.414 + 100.121i) q^{94} +(-124.725 + 9.43419i) q^{95} +(4.95215 - 18.4817i) q^{97} +(-189.850 + 189.850i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{7} + 80 q^{10} - 40 q^{13} + 152 q^{16} + 136 q^{22} + 32 q^{25} - 224 q^{28} - 200 q^{31} + 32 q^{37} + 48 q^{40} - 136 q^{43} + 304 q^{46} - 640 q^{52} + 496 q^{55} - 48 q^{58} + 280 q^{61}+ \cdots - 448 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.747344 2.78913i 0.373672 1.39456i −0.481604 0.876389i \(-0.659946\pi\)
0.855276 0.518173i \(-0.173388\pi\)
\(3\) 0 0
\(4\) −3.75659 2.16887i −0.939149 0.542218i
\(5\) −0.377122 4.98576i −0.0754244 0.997152i
\(6\) 0 0
\(7\) 3.08399 11.5096i 0.440570 1.64423i −0.286803 0.957989i \(-0.592593\pi\)
0.727374 0.686242i \(-0.240741\pi\)
\(8\) −0.689596 + 0.689596i −0.0861995 + 0.0861995i
\(9\) 0 0
\(10\) −14.1877 2.67423i −1.41877 0.267423i
\(11\) 6.14980 + 10.6518i 0.559073 + 0.968342i 0.997574 + 0.0696117i \(0.0221760\pi\)
−0.438502 + 0.898730i \(0.644491\pi\)
\(12\) 0 0
\(13\) 0.242861 + 0.906368i 0.0186816 + 0.0697206i 0.974637 0.223790i \(-0.0718430\pi\)
−0.955956 + 0.293511i \(0.905176\pi\)
\(14\) −29.7970 17.2033i −2.12835 1.22881i
\(15\) 0 0
\(16\) −7.26748 12.5876i −0.454218 0.786728i
\(17\) 7.47753 + 7.47753i 0.439855 + 0.439855i 0.891963 0.452108i \(-0.149328\pi\)
−0.452108 + 0.891963i \(0.649328\pi\)
\(18\) 0 0
\(19\) 25.0163i 1.31665i −0.752735 0.658323i \(-0.771266\pi\)
0.752735 0.658323i \(-0.228734\pi\)
\(20\) −9.39677 + 19.5474i −0.469839 + 0.977370i
\(21\) 0 0
\(22\) 34.3051 9.19203i 1.55932 0.417819i
\(23\) 6.62867 + 24.7385i 0.288203 + 1.07559i 0.946467 + 0.322801i \(0.104625\pi\)
−0.658264 + 0.752788i \(0.728709\pi\)
\(24\) 0 0
\(25\) −24.7156 + 3.76048i −0.988622 + 0.150419i
\(26\) 2.70947 0.104211
\(27\) 0 0
\(28\) −36.5482 + 36.5482i −1.30529 + 1.30529i
\(29\) −2.93013 + 1.69171i −0.101039 + 0.0583348i −0.549668 0.835383i \(-0.685246\pi\)
0.448629 + 0.893718i \(0.351912\pi\)
\(30\) 0 0
\(31\) −14.4414 + 25.0133i −0.465853 + 0.806881i −0.999240 0.0389908i \(-0.987586\pi\)
0.533387 + 0.845871i \(0.320919\pi\)
\(32\) −44.3078 + 11.8723i −1.38462 + 0.371008i
\(33\) 0 0
\(34\) 26.4441 15.2675i 0.777766 0.449044i
\(35\) −58.5472 11.0355i −1.67278 0.315300i
\(36\) 0 0
\(37\) −2.59583 2.59583i −0.0701575 0.0701575i 0.671157 0.741315i \(-0.265797\pi\)
−0.741315 + 0.671157i \(0.765797\pi\)
\(38\) −69.7736 18.6958i −1.83615 0.491994i
\(39\) 0 0
\(40\) 3.69822 + 3.17810i 0.0924555 + 0.0794524i
\(41\) 11.6697 20.2125i 0.284627 0.492989i −0.687891 0.725814i \(-0.741463\pi\)
0.972519 + 0.232825i \(0.0747968\pi\)
\(42\) 0 0
\(43\) 15.8927 + 4.25843i 0.369598 + 0.0990334i 0.438837 0.898567i \(-0.355391\pi\)
−0.0692394 + 0.997600i \(0.522057\pi\)
\(44\) 53.3525i 1.21256i
\(45\) 0 0
\(46\) 73.9528 1.60767
\(47\) −17.9484 + 66.9844i −0.381881 + 1.42520i 0.461143 + 0.887326i \(0.347439\pi\)
−0.843025 + 0.537875i \(0.819227\pi\)
\(48\) 0 0
\(49\) −80.5250 46.4912i −1.64337 0.948799i
\(50\) −7.98258 + 71.7452i −0.159652 + 1.43490i
\(51\) 0 0
\(52\) 1.05347 3.93159i 0.0202590 0.0756075i
\(53\) 27.6894 27.6894i 0.522442 0.522442i −0.395866 0.918308i \(-0.629556\pi\)
0.918308 + 0.395866i \(0.129556\pi\)
\(54\) 0 0
\(55\) 50.7879 34.6784i 0.923416 0.630517i
\(56\) 5.81027 + 10.0637i 0.103755 + 0.179709i
\(57\) 0 0
\(58\) 2.52858 + 9.43678i 0.0435962 + 0.162703i
\(59\) −75.9971 43.8770i −1.28809 0.743677i −0.309774 0.950810i \(-0.600253\pi\)
−0.978313 + 0.207133i \(0.933587\pi\)
\(60\) 0 0
\(61\) 39.5244 + 68.4583i 0.647942 + 1.12227i 0.983614 + 0.180289i \(0.0577032\pi\)
−0.335672 + 0.941979i \(0.608963\pi\)
\(62\) 58.9725 + 58.9725i 0.951169 + 0.951169i
\(63\) 0 0
\(64\) 74.3129i 1.16114i
\(65\) 4.42734 1.55266i 0.0681130 0.0238870i
\(66\) 0 0
\(67\) 61.8926 16.5841i 0.923769 0.247523i 0.234574 0.972098i \(-0.424631\pi\)
0.689196 + 0.724575i \(0.257964\pi\)
\(68\) −11.8723 44.3078i −0.174592 0.651586i
\(69\) 0 0
\(70\) −74.5343 + 155.048i −1.06478 + 2.21497i
\(71\) 88.7641 1.25020 0.625099 0.780546i \(-0.285059\pi\)
0.625099 + 0.780546i \(0.285059\pi\)
\(72\) 0 0
\(73\) 12.8174 12.8174i 0.175581 0.175581i −0.613845 0.789426i \(-0.710378\pi\)
0.789426 + 0.613845i \(0.210378\pi\)
\(74\) −9.18007 + 5.30012i −0.124055 + 0.0716232i
\(75\) 0 0
\(76\) −54.2571 + 93.9761i −0.713909 + 1.23653i
\(77\) 141.564 37.9319i 1.83849 0.492622i
\(78\) 0 0
\(79\) 26.2915 15.1794i 0.332804 0.192144i −0.324281 0.945961i \(-0.605122\pi\)
0.657085 + 0.753816i \(0.271789\pi\)
\(80\) −60.0182 + 40.9810i −0.750228 + 0.512262i
\(81\) 0 0
\(82\) −47.6540 47.6540i −0.581147 0.581147i
\(83\) 146.683 + 39.3035i 1.76726 + 0.473536i 0.988168 0.153372i \(-0.0490134\pi\)
0.779093 + 0.626909i \(0.215680\pi\)
\(84\) 0 0
\(85\) 34.4612 40.1011i 0.405426 0.471778i
\(86\) 23.7546 41.1442i 0.276216 0.478421i
\(87\) 0 0
\(88\) −11.5863 3.10454i −0.131662 0.0352788i
\(89\) 117.891i 1.32462i −0.749231 0.662309i \(-0.769577\pi\)
0.749231 0.662309i \(-0.230423\pi\)
\(90\) 0 0
\(91\) 11.1809 0.122867
\(92\) 28.7535 107.309i 0.312538 1.16641i
\(93\) 0 0
\(94\) 173.414 + 100.121i 1.84483 + 1.06511i
\(95\) −124.725 + 9.43419i −1.31290 + 0.0993073i
\(96\) 0 0
\(97\) 4.95215 18.4817i 0.0510531 0.190533i −0.935690 0.352824i \(-0.885222\pi\)
0.986743 + 0.162291i \(0.0518883\pi\)
\(98\) −189.850 + 189.850i −1.93724 + 1.93724i
\(99\) 0 0
\(100\) 101.002 + 39.4783i 1.01002 + 0.394783i
\(101\) −9.82532 17.0179i −0.0972804 0.168495i 0.813278 0.581876i \(-0.197681\pi\)
−0.910558 + 0.413381i \(0.864348\pi\)
\(102\) 0 0
\(103\) −44.3694 165.589i −0.430770 1.60766i −0.750990 0.660314i \(-0.770423\pi\)
0.320219 0.947343i \(-0.396243\pi\)
\(104\) −0.792503 0.457552i −0.00762022 0.00439954i
\(105\) 0 0
\(106\) −56.5358 97.9229i −0.533357 0.923801i
\(107\) 10.5840 + 10.5840i 0.0989155 + 0.0989155i 0.754833 0.655917i \(-0.227718\pi\)
−0.655917 + 0.754833i \(0.727718\pi\)
\(108\) 0 0
\(109\) 9.08051i 0.0833075i −0.999132 0.0416537i \(-0.986737\pi\)
0.999132 0.0416537i \(-0.0132626\pi\)
\(110\) −58.7664 167.570i −0.534240 1.52337i
\(111\) 0 0
\(112\) −167.292 + 44.8257i −1.49368 + 0.400230i
\(113\) 39.8284 + 148.642i 0.352464 + 1.31541i 0.883646 + 0.468155i \(0.155081\pi\)
−0.531182 + 0.847258i \(0.678252\pi\)
\(114\) 0 0
\(115\) 120.841 42.3784i 1.05079 0.368508i
\(116\) 14.6764 0.126521
\(117\) 0 0
\(118\) −179.174 + 179.174i −1.51843 + 1.51843i
\(119\) 109.124 63.0029i 0.917010 0.529436i
\(120\) 0 0
\(121\) −15.1400 + 26.2233i −0.125124 + 0.216722i
\(122\) 220.477 59.0767i 1.80719 0.484235i
\(123\) 0 0
\(124\) 108.501 62.6432i 0.875010 0.505187i
\(125\) 28.0696 + 121.808i 0.224557 + 0.974461i
\(126\) 0 0
\(127\) −115.169 115.169i −0.906841 0.906841i 0.0891750 0.996016i \(-0.471577\pi\)
−0.996016 + 0.0891750i \(0.971577\pi\)
\(128\) 30.0367 + 8.04831i 0.234662 + 0.0628774i
\(129\) 0 0
\(130\) −1.02180 13.5088i −0.00786002 0.103914i
\(131\) 9.42889 16.3313i 0.0719762 0.124667i −0.827791 0.561036i \(-0.810403\pi\)
0.899767 + 0.436370i \(0.143736\pi\)
\(132\) 0 0
\(133\) −287.928 77.1500i −2.16487 0.580076i
\(134\) 185.020i 1.38075i
\(135\) 0 0
\(136\) −10.3129 −0.0758305
\(137\) −19.5764 + 73.0600i −0.142893 + 0.533284i 0.856947 + 0.515405i \(0.172358\pi\)
−0.999840 + 0.0178799i \(0.994308\pi\)
\(138\) 0 0
\(139\) −38.9303 22.4764i −0.280074 0.161701i 0.353383 0.935479i \(-0.385031\pi\)
−0.633457 + 0.773778i \(0.718365\pi\)
\(140\) 196.004 + 168.437i 1.40003 + 1.20312i
\(141\) 0 0
\(142\) 66.3373 247.574i 0.467164 1.74348i
\(143\) −8.16088 + 8.16088i −0.0570691 + 0.0570691i
\(144\) 0 0
\(145\) 9.53947 + 13.9709i 0.0657894 + 0.0963512i
\(146\) −26.1703 45.3283i −0.179249 0.310468i
\(147\) 0 0
\(148\) 4.12146 + 15.3815i 0.0278477 + 0.103929i
\(149\) 142.228 + 82.1151i 0.954547 + 0.551108i 0.894491 0.447087i \(-0.147539\pi\)
0.0600567 + 0.998195i \(0.480872\pi\)
\(150\) 0 0
\(151\) −19.2011 33.2572i −0.127159 0.220247i 0.795416 0.606064i \(-0.207253\pi\)
−0.922575 + 0.385818i \(0.873919\pi\)
\(152\) 17.2511 + 17.2511i 0.113494 + 0.113494i
\(153\) 0 0
\(154\) 423.187i 2.74797i
\(155\) 130.156 + 62.5684i 0.839719 + 0.403667i
\(156\) 0 0
\(157\) 62.9277 16.8614i 0.400814 0.107398i −0.0527803 0.998606i \(-0.516808\pi\)
0.453594 + 0.891208i \(0.350142\pi\)
\(158\) −22.6885 84.6745i −0.143598 0.535915i
\(159\) 0 0
\(160\) 75.9016 + 216.431i 0.474385 + 1.35269i
\(161\) 305.174 1.89549
\(162\) 0 0
\(163\) 20.9849 20.9849i 0.128742 0.128742i −0.639800 0.768542i \(-0.720983\pi\)
0.768542 + 0.639800i \(0.220983\pi\)
\(164\) −87.6768 + 50.6202i −0.534615 + 0.308660i
\(165\) 0 0
\(166\) 219.245 379.743i 1.32075 2.28761i
\(167\) −90.6768 + 24.2968i −0.542975 + 0.145490i −0.519873 0.854243i \(-0.674021\pi\)
−0.0231017 + 0.999733i \(0.507354\pi\)
\(168\) 0 0
\(169\) 145.596 84.0598i 0.861513 0.497395i
\(170\) −86.0926 126.086i −0.506427 0.741682i
\(171\) 0 0
\(172\) −50.4664 50.4664i −0.293409 0.293409i
\(173\) −192.502 51.5809i −1.11273 0.298155i −0.344792 0.938679i \(-0.612051\pi\)
−0.767938 + 0.640524i \(0.778717\pi\)
\(174\) 0 0
\(175\) −32.9409 + 296.064i −0.188234 + 1.69179i
\(176\) 89.3871 154.823i 0.507881 0.879676i
\(177\) 0 0
\(178\) −328.813 88.1051i −1.84726 0.494973i
\(179\) 45.6130i 0.254821i 0.991850 + 0.127411i \(0.0406666\pi\)
−0.991850 + 0.127411i \(0.959333\pi\)
\(180\) 0 0
\(181\) −104.793 −0.578968 −0.289484 0.957183i \(-0.593484\pi\)
−0.289484 + 0.957183i \(0.593484\pi\)
\(182\) 8.35600 31.1850i 0.0459121 0.171346i
\(183\) 0 0
\(184\) −21.6307 12.4885i −0.117558 0.0678722i
\(185\) −11.9632 + 13.9211i −0.0646661 + 0.0752493i
\(186\) 0 0
\(187\) −33.6636 + 125.634i −0.180019 + 0.671840i
\(188\) 212.706 212.706i 1.13141 1.13141i
\(189\) 0 0
\(190\) −66.8994 + 354.925i −0.352102 + 1.86802i
\(191\) −50.6473 87.7237i −0.265169 0.459286i 0.702439 0.711744i \(-0.252094\pi\)
−0.967608 + 0.252458i \(0.918761\pi\)
\(192\) 0 0
\(193\) 73.2202 + 273.261i 0.379379 + 1.41586i 0.846840 + 0.531848i \(0.178502\pi\)
−0.467461 + 0.884014i \(0.654831\pi\)
\(194\) −47.8468 27.6243i −0.246633 0.142394i
\(195\) 0 0
\(196\) 201.667 + 349.297i 1.02891 + 1.78213i
\(197\) 5.26310 + 5.26310i 0.0267163 + 0.0267163i 0.720339 0.693622i \(-0.243986\pi\)
−0.693622 + 0.720339i \(0.743986\pi\)
\(198\) 0 0
\(199\) 141.070i 0.708895i 0.935076 + 0.354448i \(0.115331\pi\)
−0.935076 + 0.354448i \(0.884669\pi\)
\(200\) 14.4505 19.6370i 0.0722527 0.0981848i
\(201\) 0 0
\(202\) −54.8081 + 14.6858i −0.271327 + 0.0727019i
\(203\) 10.4344 + 38.9419i 0.0514012 + 0.191832i
\(204\) 0 0
\(205\) −105.176 50.5598i −0.513053 0.246633i
\(206\) −495.007 −2.40295
\(207\) 0 0
\(208\) 9.64406 9.64406i 0.0463657 0.0463657i
\(209\) 266.468 153.845i 1.27496 0.736101i
\(210\) 0 0
\(211\) 22.5534 39.0637i 0.106888 0.185136i −0.807620 0.589703i \(-0.799245\pi\)
0.914508 + 0.404568i \(0.132578\pi\)
\(212\) −164.073 + 43.9632i −0.773929 + 0.207374i
\(213\) 0 0
\(214\) 37.4298 21.6101i 0.174906 0.100982i
\(215\) 15.2380 80.8431i 0.0708746 0.376014i
\(216\) 0 0
\(217\) 243.356 + 243.356i 1.12146 + 1.12146i
\(218\) −25.3267 6.78627i −0.116177 0.0311297i
\(219\) 0 0
\(220\) −266.003 + 20.1204i −1.20910 + 0.0914563i
\(221\) −4.96140 + 8.59339i −0.0224498 + 0.0388841i
\(222\) 0 0
\(223\) 5.42064 + 1.45246i 0.0243078 + 0.00651326i 0.270952 0.962593i \(-0.412661\pi\)
−0.246645 + 0.969106i \(0.579328\pi\)
\(224\) 546.580i 2.44009i
\(225\) 0 0
\(226\) 444.346 1.96613
\(227\) 19.6738 73.4236i 0.0866686 0.323452i −0.908956 0.416891i \(-0.863120\pi\)
0.995625 + 0.0934396i \(0.0297862\pi\)
\(228\) 0 0
\(229\) 47.7957 + 27.5948i 0.208715 + 0.120502i 0.600714 0.799464i \(-0.294883\pi\)
−0.391999 + 0.919966i \(0.628216\pi\)
\(230\) −27.8892 368.711i −0.121258 1.60309i
\(231\) 0 0
\(232\) 0.854007 3.18720i 0.00368107 0.0137379i
\(233\) 96.4842 96.4842i 0.414095 0.414095i −0.469067 0.883162i \(-0.655410\pi\)
0.883162 + 0.469067i \(0.155410\pi\)
\(234\) 0 0
\(235\) 340.737 + 64.2252i 1.44994 + 0.273299i
\(236\) 190.327 + 329.656i 0.806470 + 1.39685i
\(237\) 0 0
\(238\) −94.1696 351.446i −0.395671 1.47666i
\(239\) −127.675 73.7133i −0.534206 0.308424i 0.208522 0.978018i \(-0.433135\pi\)
−0.742727 + 0.669594i \(0.766468\pi\)
\(240\) 0 0
\(241\) 179.499 + 310.901i 0.744809 + 1.29005i 0.950284 + 0.311384i \(0.100793\pi\)
−0.205475 + 0.978662i \(0.565874\pi\)
\(242\) 61.8253 + 61.8253i 0.255476 + 0.255476i
\(243\) 0 0
\(244\) 342.894i 1.40530i
\(245\) −201.426 + 419.011i −0.822146 + 1.71025i
\(246\) 0 0
\(247\) 22.6740 6.07547i 0.0917974 0.0245970i
\(248\) −7.29031 27.2078i −0.0293964 0.109709i
\(249\) 0 0
\(250\) 360.714 + 12.7425i 1.44286 + 0.0509700i
\(251\) −154.041 −0.613710 −0.306855 0.951756i \(-0.599277\pi\)
−0.306855 + 0.951756i \(0.599277\pi\)
\(252\) 0 0
\(253\) −222.744 + 222.744i −0.880411 + 0.880411i
\(254\) −407.291 + 235.150i −1.60351 + 0.925785i
\(255\) 0 0
\(256\) −103.730 + 179.666i −0.405197 + 0.701821i
\(257\) −333.529 + 89.3689i −1.29778 + 0.347739i −0.840610 0.541641i \(-0.817803\pi\)
−0.457169 + 0.889380i \(0.651137\pi\)
\(258\) 0 0
\(259\) −37.8825 + 21.8715i −0.146265 + 0.0844459i
\(260\) −19.9992 3.76964i −0.0769202 0.0144986i
\(261\) 0 0
\(262\) −38.5035 38.5035i −0.146960 0.146960i
\(263\) 251.763 + 67.4597i 0.957274 + 0.256501i 0.703446 0.710748i \(-0.251644\pi\)
0.253828 + 0.967249i \(0.418310\pi\)
\(264\) 0 0
\(265\) −148.495 127.611i −0.560359 0.481549i
\(266\) −430.362 + 745.409i −1.61790 + 2.80229i
\(267\) 0 0
\(268\) −268.474 71.9374i −1.00177 0.268423i
\(269\) 194.835i 0.724296i 0.932121 + 0.362148i \(0.117956\pi\)
−0.932121 + 0.362148i \(0.882044\pi\)
\(270\) 0 0
\(271\) −307.130 −1.13332 −0.566661 0.823951i \(-0.691765\pi\)
−0.566661 + 0.823951i \(0.691765\pi\)
\(272\) 39.7817 148.467i 0.146256 0.545836i
\(273\) 0 0
\(274\) 189.143 + 109.202i 0.690303 + 0.398547i
\(275\) −192.051 240.138i −0.698369 0.873229i
\(276\) 0 0
\(277\) −27.4833 + 102.569i −0.0992175 + 0.370285i −0.997625 0.0688778i \(-0.978058\pi\)
0.898408 + 0.439163i \(0.144725\pi\)
\(278\) −91.7838 + 91.7838i −0.330157 + 0.330157i
\(279\) 0 0
\(280\) 47.9839 32.7639i 0.171371 0.117014i
\(281\) 0.574798 + 0.995579i 0.00204554 + 0.00354299i 0.867046 0.498227i \(-0.166016\pi\)
−0.865001 + 0.501770i \(0.832682\pi\)
\(282\) 0 0
\(283\) 83.0344 + 309.889i 0.293408 + 1.09501i 0.942474 + 0.334280i \(0.108493\pi\)
−0.649066 + 0.760732i \(0.724840\pi\)
\(284\) −333.451 192.518i −1.17412 0.677880i
\(285\) 0 0
\(286\) 16.6627 + 28.8607i 0.0582613 + 0.100911i
\(287\) −196.649 196.649i −0.685189 0.685189i
\(288\) 0 0
\(289\) 177.173i 0.613056i
\(290\) 46.0959 16.1657i 0.158951 0.0557438i
\(291\) 0 0
\(292\) −75.9490 + 20.3505i −0.260099 + 0.0696934i
\(293\) 26.6082 + 99.3033i 0.0908131 + 0.338919i 0.996351 0.0853454i \(-0.0271994\pi\)
−0.905538 + 0.424264i \(0.860533\pi\)
\(294\) 0 0
\(295\) −190.100 + 395.450i −0.644406 + 1.34051i
\(296\) 3.58015 0.0120951
\(297\) 0 0
\(298\) 335.322 335.322i 1.12524 1.12524i
\(299\) −20.8124 + 12.0160i −0.0696066 + 0.0401874i
\(300\) 0 0
\(301\) 98.0259 169.786i 0.325667 0.564073i
\(302\) −107.108 + 28.6996i −0.354664 + 0.0950319i
\(303\) 0 0
\(304\) −314.896 + 181.805i −1.03584 + 0.598044i
\(305\) 326.411 222.876i 1.07020 0.730742i
\(306\) 0 0
\(307\) −74.6079 74.6079i −0.243023 0.243023i 0.575077 0.818099i \(-0.304972\pi\)
−0.818099 + 0.575077i \(0.804972\pi\)
\(308\) −614.067 164.539i −1.99372 0.534216i
\(309\) 0 0
\(310\) 271.783 316.262i 0.876719 1.02020i
\(311\) 298.630 517.242i 0.960225 1.66316i 0.238295 0.971193i \(-0.423411\pi\)
0.721930 0.691966i \(-0.243255\pi\)
\(312\) 0 0
\(313\) 163.821 + 43.8958i 0.523391 + 0.140242i 0.510835 0.859679i \(-0.329336\pi\)
0.0125563 + 0.999921i \(0.496003\pi\)
\(314\) 188.115i 0.599091i
\(315\) 0 0
\(316\) −131.689 −0.416736
\(317\) −105.778 + 394.769i −0.333685 + 1.24533i 0.571603 + 0.820530i \(0.306322\pi\)
−0.905288 + 0.424798i \(0.860345\pi\)
\(318\) 0 0
\(319\) −36.0394 20.8073i −0.112976 0.0652268i
\(320\) 370.506 28.0251i 1.15783 0.0875783i
\(321\) 0 0
\(322\) 228.070 851.168i 0.708292 2.64338i
\(323\) 187.060 187.060i 0.579133 0.579133i
\(324\) 0 0
\(325\) −9.41081 21.4881i −0.0289564 0.0661173i
\(326\) −42.8466 74.2126i −0.131431 0.227646i
\(327\) 0 0
\(328\) 5.89110 + 21.9859i 0.0179607 + 0.0670301i
\(329\) 715.612 + 413.159i 2.17511 + 1.25580i
\(330\) 0 0
\(331\) −210.145 363.982i −0.634879 1.09964i −0.986541 0.163516i \(-0.947716\pi\)
0.351661 0.936127i \(-0.385617\pi\)
\(332\) −465.783 465.783i −1.40296 1.40296i
\(333\) 0 0
\(334\) 271.067i 0.811578i
\(335\) −106.025 302.327i −0.316493 0.902469i
\(336\) 0 0
\(337\) 280.796 75.2392i 0.833224 0.223262i 0.183104 0.983094i \(-0.441385\pi\)
0.650120 + 0.759832i \(0.274719\pi\)
\(338\) −125.643 468.906i −0.371725 1.38730i
\(339\) 0 0
\(340\) −216.431 + 75.9016i −0.636561 + 0.223240i
\(341\) −355.248 −1.04178
\(342\) 0 0
\(343\) −370.578 + 370.578i −1.08040 + 1.08040i
\(344\) −13.8961 + 8.02293i −0.0403957 + 0.0233225i
\(345\) 0 0
\(346\) −287.731 + 498.365i −0.831592 + 1.44036i
\(347\) −530.282 + 142.089i −1.52819 + 0.409477i −0.922428 0.386168i \(-0.873798\pi\)
−0.605762 + 0.795646i \(0.707132\pi\)
\(348\) 0 0
\(349\) 377.101 217.720i 1.08052 0.623838i 0.149483 0.988764i \(-0.452239\pi\)
0.931036 + 0.364926i \(0.118906\pi\)
\(350\) 801.141 + 313.138i 2.28897 + 0.894680i
\(351\) 0 0
\(352\) −398.945 398.945i −1.13337 1.13337i
\(353\) 321.483 + 86.1412i 0.910718 + 0.244026i 0.683613 0.729844i \(-0.260407\pi\)
0.227104 + 0.973870i \(0.427074\pi\)
\(354\) 0 0
\(355\) −33.4749 442.556i −0.0942954 1.24664i
\(356\) −255.690 + 442.869i −0.718231 + 1.24401i
\(357\) 0 0
\(358\) 127.220 + 34.0886i 0.355364 + 0.0952196i
\(359\) 114.922i 0.320116i 0.987108 + 0.160058i \(0.0511682\pi\)
−0.987108 + 0.160058i \(0.948832\pi\)
\(360\) 0 0
\(361\) −264.815 −0.733559
\(362\) −78.3166 + 292.281i −0.216344 + 0.807407i
\(363\) 0 0
\(364\) −42.0022 24.2500i −0.115391 0.0666209i
\(365\) −68.7382 59.0707i −0.188324 0.161838i
\(366\) 0 0
\(367\) 135.331 505.064i 0.368750 1.37620i −0.493515 0.869738i \(-0.664288\pi\)
0.862265 0.506458i \(-0.169045\pi\)
\(368\) 263.226 263.226i 0.715289 0.715289i
\(369\) 0 0
\(370\) 29.8871 + 43.7708i 0.0807759 + 0.118299i
\(371\) −233.301 404.089i −0.628843 1.08919i
\(372\) 0 0
\(373\) 55.1226 + 205.720i 0.147782 + 0.551529i 0.999616 + 0.0277173i \(0.00882383\pi\)
−0.851834 + 0.523812i \(0.824509\pi\)
\(374\) 325.251 + 187.784i 0.869656 + 0.502096i
\(375\) 0 0
\(376\) −33.8150 58.5693i −0.0899336 0.155770i
\(377\) −2.24492 2.24492i −0.00595470 0.00595470i
\(378\) 0 0
\(379\) 672.519i 1.77446i 0.461331 + 0.887228i \(0.347372\pi\)
−0.461331 + 0.887228i \(0.652628\pi\)
\(380\) 489.003 + 235.072i 1.28685 + 0.618611i
\(381\) 0 0
\(382\) −282.523 + 75.7019i −0.739590 + 0.198173i
\(383\) −78.8060 294.108i −0.205760 0.767906i −0.989217 0.146460i \(-0.953212\pi\)
0.783457 0.621446i \(-0.213455\pi\)
\(384\) 0 0
\(385\) −242.506 691.497i −0.629885 1.79610i
\(386\) 816.881 2.11627
\(387\) 0 0
\(388\) −58.6876 + 58.6876i −0.151257 + 0.151257i
\(389\) −616.350 + 355.850i −1.58445 + 0.914780i −0.590247 + 0.807223i \(0.700970\pi\)
−0.994199 + 0.107558i \(0.965697\pi\)
\(390\) 0 0
\(391\) −135.417 + 234.549i −0.346335 + 0.599870i
\(392\) 87.5898 23.4696i 0.223443 0.0598715i
\(393\) 0 0
\(394\) 18.6128 10.7461i 0.0472406 0.0272744i
\(395\) −85.5959 125.359i −0.216699 0.317363i
\(396\) 0 0
\(397\) −41.4605 41.4605i −0.104435 0.104435i 0.652959 0.757393i \(-0.273527\pi\)
−0.757393 + 0.652959i \(0.773527\pi\)
\(398\) 393.462 + 105.428i 0.988599 + 0.264894i
\(399\) 0 0
\(400\) 226.955 + 283.781i 0.567389 + 0.709454i
\(401\) 83.1858 144.082i 0.207446 0.359307i −0.743463 0.668777i \(-0.766818\pi\)
0.950909 + 0.309470i \(0.100152\pi\)
\(402\) 0 0
\(403\) −26.1785 7.01451i −0.0649591 0.0174057i
\(404\) 85.2394i 0.210989i
\(405\) 0 0
\(406\) 116.412 0.286729
\(407\) 11.6863 43.6140i 0.0287133 0.107160i
\(408\) 0 0
\(409\) −20.5577 11.8690i −0.0502632 0.0290195i 0.474658 0.880170i \(-0.342572\pi\)
−0.524921 + 0.851151i \(0.675905\pi\)
\(410\) −219.620 + 255.563i −0.535659 + 0.623324i
\(411\) 0 0
\(412\) −192.463 + 718.281i −0.467143 + 1.74340i
\(413\) −739.382 + 739.382i −1.79027 + 1.79027i
\(414\) 0 0
\(415\) 140.640 746.147i 0.338893 1.79794i
\(416\) −21.5213 37.2759i −0.0517338 0.0896056i
\(417\) 0 0
\(418\) −229.950 858.187i −0.550121 2.05308i
\(419\) 432.642 + 249.786i 1.03256 + 0.596147i 0.917716 0.397236i \(-0.130031\pi\)
0.114841 + 0.993384i \(0.463364\pi\)
\(420\) 0 0
\(421\) 1.90482 + 3.29924i 0.00452450 + 0.00783667i 0.868279 0.496077i \(-0.165226\pi\)
−0.863754 + 0.503913i \(0.831893\pi\)
\(422\) −92.0983 92.0983i −0.218242 0.218242i
\(423\) 0 0
\(424\) 38.1890i 0.0900685i
\(425\) −212.930 156.692i −0.501013 0.368688i
\(426\) 0 0
\(427\) 909.822 243.786i 2.13073 0.570928i
\(428\) −16.8044 62.7149i −0.0392626 0.146530i
\(429\) 0 0
\(430\) −214.093 102.918i −0.497892 0.239345i
\(431\) −767.834 −1.78152 −0.890759 0.454477i \(-0.849826\pi\)
−0.890759 + 0.454477i \(0.849826\pi\)
\(432\) 0 0
\(433\) 367.840 367.840i 0.849516 0.849516i −0.140557 0.990073i \(-0.544889\pi\)
0.990073 + 0.140557i \(0.0448893\pi\)
\(434\) 860.622 496.880i 1.98300 1.14489i
\(435\) 0 0
\(436\) −19.6945 + 34.1118i −0.0451708 + 0.0782381i
\(437\) 618.867 165.825i 1.41617 0.379462i
\(438\) 0 0
\(439\) −119.042 + 68.7289i −0.271166 + 0.156558i −0.629418 0.777067i \(-0.716706\pi\)
0.358251 + 0.933625i \(0.383373\pi\)
\(440\) −11.1090 + 58.9372i −0.0252478 + 0.133948i
\(441\) 0 0
\(442\) 20.2602 + 20.2602i 0.0458375 + 0.0458375i
\(443\) 426.956 + 114.403i 0.963783 + 0.258245i 0.706201 0.708011i \(-0.250408\pi\)
0.257582 + 0.966256i \(0.417074\pi\)
\(444\) 0 0
\(445\) −587.776 + 44.4593i −1.32084 + 0.0999085i
\(446\) 8.10216 14.0334i 0.0181663 0.0314649i
\(447\) 0 0
\(448\) 855.314 + 229.181i 1.90918 + 0.511564i
\(449\) 827.291i 1.84252i 0.388949 + 0.921259i \(0.372838\pi\)
−0.388949 + 0.921259i \(0.627162\pi\)
\(450\) 0 0
\(451\) 287.066 0.636509
\(452\) 172.765 644.769i 0.382224 1.42648i
\(453\) 0 0
\(454\) −190.084 109.745i −0.418688 0.241730i
\(455\) −4.21658 55.7454i −0.00926720 0.122517i
\(456\) 0 0
\(457\) −229.195 + 855.367i −0.501521 + 1.87170i −0.0116012 + 0.999933i \(0.503693\pi\)
−0.489919 + 0.871768i \(0.662974\pi\)
\(458\) 112.685 112.685i 0.246038 0.246038i
\(459\) 0 0
\(460\) −545.862 102.889i −1.18666 0.223672i
\(461\) −130.919 226.759i −0.283990 0.491885i 0.688374 0.725356i \(-0.258325\pi\)
−0.972364 + 0.233471i \(0.924992\pi\)
\(462\) 0 0
\(463\) 43.6260 + 162.814i 0.0942246 + 0.351651i 0.996901 0.0786695i \(-0.0250672\pi\)
−0.902676 + 0.430321i \(0.858401\pi\)
\(464\) 42.5893 + 24.5889i 0.0917872 + 0.0529934i
\(465\) 0 0
\(466\) −197.000 341.213i −0.422746 0.732217i
\(467\) −63.7603 63.7603i −0.136532 0.136532i 0.635538 0.772070i \(-0.280778\pi\)
−0.772070 + 0.635538i \(0.780778\pi\)
\(468\) 0 0
\(469\) 763.505i 1.62794i
\(470\) 433.780 902.360i 0.922936 1.91991i
\(471\) 0 0
\(472\) 82.6647 22.1499i 0.175137 0.0469278i
\(473\) 52.3770 + 195.474i 0.110734 + 0.413264i
\(474\) 0 0
\(475\) 94.0732 + 618.292i 0.198049 + 1.30167i
\(476\) −546.580 −1.14828
\(477\) 0 0
\(478\) −301.013 + 301.013i −0.629734 + 0.629734i
\(479\) −33.6305 + 19.4166i −0.0702099 + 0.0405357i −0.534694 0.845046i \(-0.679573\pi\)
0.464484 + 0.885581i \(0.346240\pi\)
\(480\) 0 0
\(481\) 1.72235 2.98320i 0.00358077 0.00620208i
\(482\) 1001.29 268.295i 2.07736 0.556628i
\(483\) 0 0
\(484\) 113.750 65.6736i 0.235021 0.135689i
\(485\) −94.0127 17.7204i −0.193841 0.0365369i
\(486\) 0 0
\(487\) 394.799 + 394.799i 0.810676 + 0.810676i 0.984735 0.174059i \(-0.0556883\pi\)
−0.174059 + 0.984735i \(0.555688\pi\)
\(488\) −74.4644 19.9527i −0.152591 0.0408867i
\(489\) 0 0
\(490\) 1018.14 + 874.947i 2.07784 + 1.78561i
\(491\) −230.371 + 399.015i −0.469188 + 0.812658i −0.999380 0.0352201i \(-0.988787\pi\)
0.530191 + 0.847878i \(0.322120\pi\)
\(492\) 0 0
\(493\) −34.5599 9.26030i −0.0701012 0.0187836i
\(494\) 67.7810i 0.137209i
\(495\) 0 0
\(496\) 419.811 0.846394
\(497\) 273.748 1021.64i 0.550800 2.05561i
\(498\) 0 0
\(499\) −736.679 425.322i −1.47631 0.852349i −0.476669 0.879083i \(-0.658156\pi\)
−0.999643 + 0.0267345i \(0.991489\pi\)
\(500\) 158.739 518.461i 0.317478 1.03692i
\(501\) 0 0
\(502\) −115.122 + 429.640i −0.229326 + 0.855857i
\(503\) 196.093 196.093i 0.389847 0.389847i −0.484786 0.874633i \(-0.661103\pi\)
0.874633 + 0.484786i \(0.161103\pi\)
\(504\) 0 0
\(505\) −81.1420 + 55.4045i −0.160677 + 0.109712i
\(506\) 454.795 + 787.728i 0.898804 + 1.55677i
\(507\) 0 0
\(508\) 182.856 + 682.429i 0.359953 + 1.34336i
\(509\) −338.026 195.159i −0.664098 0.383417i 0.129738 0.991548i \(-0.458586\pi\)
−0.793837 + 0.608131i \(0.791920\pi\)
\(510\) 0 0
\(511\) −107.995 187.052i −0.211340 0.366051i
\(512\) 511.543 + 511.543i 0.999108 + 0.999108i
\(513\) 0 0
\(514\) 997.044i 1.93977i
\(515\) −808.852 + 283.662i −1.57059 + 0.550800i
\(516\) 0 0
\(517\) −823.881 + 220.758i −1.59358 + 0.426999i
\(518\) 32.6910 + 122.005i 0.0631101 + 0.235530i
\(519\) 0 0
\(520\) −1.98237 + 4.12378i −0.00381226 + 0.00793035i
\(521\) 679.963 1.30511 0.652556 0.757741i \(-0.273697\pi\)
0.652556 + 0.757741i \(0.273697\pi\)
\(522\) 0 0
\(523\) 442.612 442.612i 0.846295 0.846295i −0.143374 0.989669i \(-0.545795\pi\)
0.989669 + 0.143374i \(0.0457951\pi\)
\(524\) −70.8410 + 40.9001i −0.135193 + 0.0780536i
\(525\) 0 0
\(526\) 376.307 651.783i 0.715413 1.23913i
\(527\) −295.024 + 79.0514i −0.559818 + 0.150003i
\(528\) 0 0
\(529\) −109.929 + 63.4674i −0.207805 + 0.119976i
\(530\) −466.899 + 318.803i −0.880941 + 0.601514i
\(531\) 0 0
\(532\) 914.300 + 914.300i 1.71861 + 1.71861i
\(533\) 21.1541 + 5.66823i 0.0396888 + 0.0106346i
\(534\) 0 0
\(535\) 48.7776 56.7605i 0.0911731 0.106094i
\(536\) −31.2445 + 54.1171i −0.0582921 + 0.100965i
\(537\) 0 0
\(538\) 543.421 + 145.609i 1.01008 + 0.270649i
\(539\) 1143.64i 2.12179i
\(540\) 0 0
\(541\) 780.447 1.44260 0.721300 0.692623i \(-0.243545\pi\)
0.721300 + 0.692623i \(0.243545\pi\)
\(542\) −229.532 + 856.624i −0.423490 + 1.58049i
\(543\) 0 0
\(544\) −420.088 242.538i −0.772221 0.445842i
\(545\) −45.2732 + 3.42446i −0.0830702 + 0.00628342i
\(546\) 0 0
\(547\) −89.8890 + 335.470i −0.164331 + 0.613291i 0.833794 + 0.552076i \(0.186164\pi\)
−0.998125 + 0.0612152i \(0.980502\pi\)
\(548\) 231.998 231.998i 0.423354 0.423354i
\(549\) 0 0
\(550\) −813.304 + 356.190i −1.47873 + 0.647618i
\(551\) 42.3203 + 73.3009i 0.0768063 + 0.133032i
\(552\) 0 0
\(553\) −93.6263 349.418i −0.169306 0.631859i
\(554\) 265.538 + 153.308i 0.479311 + 0.276730i
\(555\) 0 0
\(556\) 97.4968 + 168.869i 0.175354 + 0.303722i
\(557\) 670.322 + 670.322i 1.20345 + 1.20345i 0.973110 + 0.230341i \(0.0739840\pi\)
0.230341 + 0.973110i \(0.426016\pi\)
\(558\) 0 0
\(559\) 15.4388i 0.0276187i
\(560\) 286.580 + 817.172i 0.511749 + 1.45924i
\(561\) 0 0
\(562\) 3.20637 0.859143i 0.00570528 0.00152872i
\(563\) 112.795 + 420.955i 0.200346 + 0.747700i 0.990818 + 0.135202i \(0.0431684\pi\)
−0.790472 + 0.612498i \(0.790165\pi\)
\(564\) 0 0
\(565\) 726.071 254.631i 1.28508 0.450674i
\(566\) 926.373 1.63670
\(567\) 0 0
\(568\) −61.2113 + 61.2113i −0.107766 + 0.107766i
\(569\) 670.282 386.987i 1.17800 0.680118i 0.222448 0.974944i \(-0.428595\pi\)
0.955551 + 0.294826i \(0.0952618\pi\)
\(570\) 0 0
\(571\) −233.901 + 405.128i −0.409633 + 0.709506i −0.994849 0.101372i \(-0.967677\pi\)
0.585215 + 0.810878i \(0.301010\pi\)
\(572\) 48.3570 12.9572i 0.0845402 0.0226525i
\(573\) 0 0
\(574\) −695.444 + 401.515i −1.21158 + 0.699503i
\(575\) −256.860 586.500i −0.446713 1.02000i
\(576\) 0 0
\(577\) 272.029 + 272.029i 0.471454 + 0.471454i 0.902385 0.430931i \(-0.141815\pi\)
−0.430931 + 0.902385i \(0.641815\pi\)
\(578\) −494.158 132.409i −0.854945 0.229082i
\(579\) 0 0
\(580\) −5.53479 73.1730i −0.00954275 0.126160i
\(581\) 904.737 1567.05i 1.55721 2.69716i
\(582\) 0 0
\(583\) 465.226 + 124.657i 0.797986 + 0.213820i
\(584\) 17.6776i 0.0302699i
\(585\) 0 0
\(586\) 296.855 0.506578
\(587\) −36.5721 + 136.489i −0.0623034 + 0.232520i −0.990055 0.140678i \(-0.955072\pi\)
0.927752 + 0.373197i \(0.121739\pi\)
\(588\) 0 0
\(589\) 625.740 + 361.271i 1.06238 + 0.613363i
\(590\) 960.891 + 825.749i 1.62863 + 1.39958i
\(591\) 0 0
\(592\) −13.8102 + 51.5405i −0.0233281 + 0.0870617i
\(593\) 94.3094 94.3094i 0.159038 0.159038i −0.623102 0.782140i \(-0.714128\pi\)
0.782140 + 0.623102i \(0.214128\pi\)
\(594\) 0 0
\(595\) −355.270 520.307i −0.597093 0.874465i
\(596\) −356.194 616.946i −0.597641 1.03514i
\(597\) 0 0
\(598\) 17.9602 + 67.0285i 0.0300338 + 0.112088i
\(599\) −723.537 417.734i −1.20791 0.697386i −0.245606 0.969370i \(-0.578987\pi\)
−0.962302 + 0.271984i \(0.912320\pi\)
\(600\) 0 0
\(601\) −179.809 311.438i −0.299183 0.518200i 0.676766 0.736198i \(-0.263381\pi\)
−0.975949 + 0.217998i \(0.930047\pi\)
\(602\) −400.295 400.295i −0.664942 0.664942i
\(603\) 0 0
\(604\) 166.579i 0.275793i
\(605\) 136.453 + 65.5951i 0.225542 + 0.108422i
\(606\) 0 0
\(607\) −497.854 + 133.400i −0.820188 + 0.219769i −0.644428 0.764665i \(-0.722905\pi\)
−0.175759 + 0.984433i \(0.556238\pi\)
\(608\) 297.000 + 1108.42i 0.488486 + 1.82306i
\(609\) 0 0
\(610\) −377.689 1076.97i −0.619162 1.76552i
\(611\) −65.0715 −0.106500
\(612\) 0 0
\(613\) −470.150 + 470.150i −0.766965 + 0.766965i −0.977571 0.210606i \(-0.932456\pi\)
0.210606 + 0.977571i \(0.432456\pi\)
\(614\) −263.849 + 152.333i −0.429721 + 0.248099i
\(615\) 0 0
\(616\) −71.4640 + 123.779i −0.116013 + 0.200940i
\(617\) −244.836 + 65.6036i −0.396817 + 0.106327i −0.451708 0.892166i \(-0.649185\pi\)
0.0548918 + 0.998492i \(0.482519\pi\)
\(618\) 0 0
\(619\) 88.9466 51.3534i 0.143694 0.0829618i −0.426429 0.904521i \(-0.640229\pi\)
0.570123 + 0.821559i \(0.306895\pi\)
\(620\) −353.242 517.337i −0.569745 0.834414i
\(621\) 0 0
\(622\) −1219.47 1219.47i −1.96057 1.96057i
\(623\) −1356.88 363.575i −2.17798 0.583587i
\(624\) 0 0
\(625\) 596.718 185.885i 0.954748 0.297415i
\(626\) 244.862 424.113i 0.391153 0.677497i
\(627\) 0 0
\(628\) −272.964 73.1406i −0.434657 0.116466i
\(629\) 38.8208i 0.0617183i
\(630\) 0 0
\(631\) −1201.04 −1.90339 −0.951696 0.307042i \(-0.900661\pi\)
−0.951696 + 0.307042i \(0.900661\pi\)
\(632\) −7.66285 + 28.5981i −0.0121248 + 0.0452502i
\(633\) 0 0
\(634\) 1022.01 + 590.056i 1.61200 + 0.930688i
\(635\) −530.771 + 617.636i −0.835860 + 0.972656i
\(636\) 0 0
\(637\) 22.5817 84.2762i 0.0354501 0.132302i
\(638\) −84.9681 + 84.9681i −0.133179 + 0.133179i
\(639\) 0 0
\(640\) 28.7994 152.791i 0.0449991 0.238736i
\(641\) −285.201 493.982i −0.444931 0.770643i 0.553117 0.833104i \(-0.313438\pi\)
−0.998047 + 0.0624611i \(0.980105\pi\)
\(642\) 0 0
\(643\) −229.394 856.111i −0.356756 1.33143i −0.878260 0.478183i \(-0.841296\pi\)
0.521504 0.853249i \(-0.325371\pi\)
\(644\) −1146.41 661.883i −1.78015 1.02777i
\(645\) 0 0
\(646\) −381.936 661.532i −0.591232 1.02404i
\(647\) −254.010 254.010i −0.392596 0.392596i 0.483016 0.875612i \(-0.339541\pi\)
−0.875612 + 0.483016i \(0.839541\pi\)
\(648\) 0 0
\(649\) 1079.34i 1.66308i
\(650\) −66.9662 + 10.1889i −0.103025 + 0.0156753i
\(651\) 0 0
\(652\) −124.346 + 33.3183i −0.190714 + 0.0511017i
\(653\) 79.3045 + 295.968i 0.121446 + 0.453244i 0.999688 0.0249729i \(-0.00794995\pi\)
−0.878242 + 0.478217i \(0.841283\pi\)
\(654\) 0 0
\(655\) −84.9798 40.8513i −0.129740 0.0623683i
\(656\) −339.238 −0.517131
\(657\) 0 0
\(658\) 1687.16 1687.16i 2.56407 2.56407i
\(659\) 344.367 198.821i 0.522561 0.301701i −0.215421 0.976521i \(-0.569112\pi\)
0.737982 + 0.674821i \(0.235779\pi\)
\(660\) 0 0
\(661\) 347.289 601.522i 0.525399 0.910019i −0.474163 0.880437i \(-0.657249\pi\)
0.999562 0.0295815i \(-0.00941745\pi\)
\(662\) −1172.24 + 314.101i −1.77076 + 0.474473i
\(663\) 0 0
\(664\) −128.255 + 74.0482i −0.193156 + 0.111518i
\(665\) −276.067 + 1464.63i −0.415139 + 2.20246i
\(666\) 0 0
\(667\) −61.2733 61.2733i −0.0918640 0.0918640i
\(668\) 393.333 + 105.393i 0.588821 + 0.157774i
\(669\) 0 0
\(670\) −922.465 + 69.7752i −1.37681 + 0.104142i
\(671\) −486.135 + 842.010i −0.724493 + 1.25486i
\(672\) 0 0
\(673\) 163.161 + 43.7189i 0.242439 + 0.0649612i 0.377992 0.925809i \(-0.376615\pi\)
−0.135554 + 0.990770i \(0.543281\pi\)
\(674\) 839.406i 1.24541i
\(675\) 0 0
\(676\) −729.259 −1.07879
\(677\) −67.6670 + 252.537i −0.0999513 + 0.373023i −0.997724 0.0674366i \(-0.978518\pi\)
0.897772 + 0.440460i \(0.145185\pi\)
\(678\) 0 0
\(679\) −197.445 113.995i −0.290787 0.167886i
\(680\) 3.88924 + 51.4178i 0.00571947 + 0.0756145i
\(681\) 0 0
\(682\) −265.492 + 990.830i −0.389285 + 1.45283i
\(683\) −545.616 + 545.616i −0.798852 + 0.798852i −0.982915 0.184062i \(-0.941075\pi\)
0.184062 + 0.982915i \(0.441075\pi\)
\(684\) 0 0
\(685\) 371.642 + 70.0505i 0.542543 + 0.102263i
\(686\) 756.640 + 1310.54i 1.10297 + 1.91041i
\(687\) 0 0
\(688\) −61.8962 231.000i −0.0899654 0.335755i
\(689\) 31.8215 + 18.3722i 0.0461851 + 0.0266650i
\(690\) 0 0
\(691\) −178.080 308.443i −0.257713 0.446372i 0.707916 0.706297i \(-0.249636\pi\)
−0.965629 + 0.259925i \(0.916302\pi\)
\(692\) 611.281 + 611.281i 0.883355 + 0.883355i
\(693\) 0 0
\(694\) 1585.21i 2.28417i
\(695\) −97.3804 + 202.573i −0.140116 + 0.291472i
\(696\) 0 0
\(697\) 238.401 63.8792i 0.342038 0.0916488i
\(698\) −325.423 1214.49i −0.466222 1.73996i
\(699\) 0 0
\(700\) 765.870 1040.75i 1.09410 1.48678i
\(701\) −357.763 −0.510361 −0.255180 0.966893i \(-0.582135\pi\)
−0.255180 + 0.966893i \(0.582135\pi\)
\(702\) 0 0
\(703\) −64.9380 + 64.9380i −0.0923727 + 0.0923727i
\(704\) −791.564 + 457.010i −1.12438 + 0.649161i
\(705\) 0 0
\(706\) 480.517 832.280i 0.680619 1.17887i
\(707\) −226.171 + 60.6024i −0.319903 + 0.0857177i
\(708\) 0 0
\(709\) −324.344 + 187.260i −0.457467 + 0.264119i −0.710979 0.703213i \(-0.751748\pi\)
0.253511 + 0.967332i \(0.418414\pi\)
\(710\) −1259.36 237.376i −1.77375 0.334332i
\(711\) 0 0
\(712\) 81.2971 + 81.2971i 0.114181 + 0.114181i
\(713\) −714.520 191.455i −1.00213 0.268520i
\(714\) 0 0
\(715\) 43.7658 + 37.6105i 0.0612109 + 0.0526021i
\(716\) 98.9288 171.350i 0.138169 0.239315i
\(717\) 0 0
\(718\) 320.531 + 85.8861i 0.446422 + 0.119619i
\(719\) 889.235i 1.23677i −0.785877 0.618383i \(-0.787788\pi\)
0.785877 0.618383i \(-0.212212\pi\)
\(720\) 0 0
\(721\) −2042.70 −2.83314
\(722\) −197.908 + 738.601i −0.274110 + 1.02299i
\(723\) 0 0
\(724\) 393.666 + 227.283i 0.543737 + 0.313927i
\(725\) 66.0581 52.8302i 0.0911146 0.0728693i
\(726\) 0 0
\(727\) 116.187 433.617i 0.159818 0.596447i −0.838827 0.544398i \(-0.816758\pi\)
0.998645 0.0520491i \(-0.0165752\pi\)
\(728\) −7.71032 + 7.71032i −0.0105911 + 0.0105911i
\(729\) 0 0
\(730\) −216.127 + 147.573i −0.296064 + 0.202155i
\(731\) 86.9955 + 150.681i 0.119009 + 0.206129i
\(732\) 0 0
\(733\) 178.010 + 664.342i 0.242851 + 0.906333i 0.974451 + 0.224599i \(0.0721072\pi\)
−0.731600 + 0.681734i \(0.761226\pi\)
\(734\) −1307.55 754.912i −1.78140 1.02849i
\(735\) 0 0
\(736\) −587.404 1017.41i −0.798104 1.38236i
\(737\) 557.276 + 557.276i 0.756141 + 0.756141i
\(738\) 0 0
\(739\) 337.793i 0.457095i 0.973533 + 0.228547i \(0.0733976\pi\)
−0.973533 + 0.228547i \(0.926602\pi\)
\(740\) 75.1341 26.3493i 0.101533 0.0356072i
\(741\) 0 0
\(742\) −1301.41 + 348.712i −1.75392 + 0.469962i
\(743\) 27.1883 + 101.468i 0.0365926 + 0.136565i 0.981806 0.189889i \(-0.0608128\pi\)
−0.945213 + 0.326454i \(0.894146\pi\)
\(744\) 0 0
\(745\) 355.769 740.079i 0.477542 0.993395i
\(746\) 614.975 0.824364
\(747\) 0 0
\(748\) 398.945 398.945i 0.533349 0.533349i
\(749\) 154.458 89.1765i 0.206219 0.119061i
\(750\) 0 0
\(751\) −370.192 + 641.191i −0.492932 + 0.853783i −0.999967 0.00814279i \(-0.997408\pi\)
0.507035 + 0.861925i \(0.330741\pi\)
\(752\) 973.616 260.880i 1.29470 0.346914i
\(753\) 0 0
\(754\) −7.93910 + 4.58364i −0.0105293 + 0.00607910i
\(755\) −158.571 + 108.274i −0.210028 + 0.143409i
\(756\) 0 0
\(757\) 957.088 + 957.088i 1.26432 + 1.26432i 0.948980 + 0.315337i \(0.102118\pi\)
0.315337 + 0.948980i \(0.397882\pi\)
\(758\) 1875.74 + 502.603i 2.47459 + 0.663065i
\(759\) 0 0
\(760\) 79.5041 92.5157i 0.104611 0.121731i
\(761\) −202.869 + 351.380i −0.266582 + 0.461734i −0.967977 0.251039i \(-0.919228\pi\)
0.701395 + 0.712773i \(0.252561\pi\)
\(762\) 0 0
\(763\) −104.513 28.0042i −0.136977 0.0367028i
\(764\) 439.390i 0.575118i
\(765\) 0 0
\(766\) −879.199 −1.14778
\(767\) 21.3120 79.5374i 0.0277861 0.103699i
\(768\) 0 0
\(769\) −731.602 422.391i −0.951368 0.549273i −0.0578626 0.998325i \(-0.518429\pi\)
−0.893506 + 0.449052i \(0.851762\pi\)
\(770\) −2109.91 + 159.593i −2.74014 + 0.207264i
\(771\) 0 0
\(772\) 317.610 1185.34i 0.411412 1.53541i
\(773\) −501.313 + 501.313i −0.648529 + 0.648529i −0.952637 0.304108i \(-0.901642\pi\)
0.304108 + 0.952637i \(0.401642\pi\)
\(774\) 0 0
\(775\) 262.866 672.524i 0.339182 0.867773i
\(776\) 9.32990 + 16.1599i 0.0120231 + 0.0208246i
\(777\) 0 0
\(778\) 531.884 + 1985.02i 0.683655 + 2.55144i
\(779\) −505.643 291.933i −0.649092 0.374754i
\(780\) 0 0
\(781\) 545.881 + 945.494i 0.698951 + 1.21062i
\(782\) 552.984 + 552.984i 0.707141 + 0.707141i
\(783\) 0 0
\(784\) 1351.49i 1.72384i
\(785\) −107.798 307.384i −0.137323 0.391572i
\(786\) 0 0
\(787\) 983.133 263.430i 1.24922 0.334726i 0.427183 0.904165i \(-0.359506\pi\)
0.822034 + 0.569439i \(0.192839\pi\)
\(788\) −8.35636 31.1863i −0.0106045 0.0395766i
\(789\) 0 0
\(790\) −413.610 + 145.052i −0.523557 + 0.183610i
\(791\) 1833.64 2.31813
\(792\) 0 0
\(793\) −52.4495 + 52.4495i −0.0661406 + 0.0661406i
\(794\) −146.624 + 84.6533i −0.184665 + 0.106616i
\(795\) 0 0
\(796\) 305.963 529.943i 0.384376 0.665758i
\(797\) 1378.41 369.343i 1.72949 0.463416i 0.749427 0.662087i \(-0.230329\pi\)
0.980066 + 0.198670i \(0.0636622\pi\)
\(798\) 0 0
\(799\) −635.088 + 366.668i −0.794854 + 0.458909i
\(800\) 1050.45 460.048i 1.31306 0.575060i
\(801\) 0 0
\(802\) −339.695 339.695i −0.423559 0.423559i
\(803\) 215.352 + 57.7035i 0.268185 + 0.0718599i
\(804\) 0 0
\(805\) −115.088 1521.52i −0.142966 1.89009i
\(806\) −39.1287 + 67.7729i −0.0485468 + 0.0840855i
\(807\) 0 0
\(808\) 18.5110 + 4.96001i 0.0229097 + 0.00613862i
\(809\) 549.873i 0.679694i 0.940481 + 0.339847i \(0.110375\pi\)
−0.940481 + 0.339847i \(0.889625\pi\)
\(810\) 0 0
\(811\) 1542.32 1.90175 0.950876 0.309573i \(-0.100186\pi\)
0.950876 + 0.309573i \(0.100186\pi\)
\(812\) 45.2619 168.920i 0.0557413 0.208029i
\(813\) 0 0
\(814\) −112.911 65.1893i −0.138711 0.0800851i
\(815\) −112.540 96.7119i −0.138085 0.118665i
\(816\) 0 0
\(817\) 106.530 397.576i 0.130392 0.486629i
\(818\) −48.4677 + 48.4677i −0.0592514 + 0.0592514i
\(819\) 0 0
\(820\) 285.445 + 418.045i 0.348104 + 0.509811i
\(821\) 405.012 + 701.501i 0.493316 + 0.854448i 0.999970 0.00770144i \(-0.00245147\pi\)
−0.506655 + 0.862149i \(0.669118\pi\)
\(822\) 0 0
\(823\) −21.2506 79.3084i −0.0258209 0.0963650i 0.951813 0.306679i \(-0.0992179\pi\)
−0.977634 + 0.210314i \(0.932551\pi\)
\(824\) 144.786 + 83.5923i 0.175711 + 0.101447i
\(825\) 0 0
\(826\) 1509.66 + 2614.80i 1.82767 + 3.16562i
\(827\) −924.549 924.549i −1.11796 1.11796i −0.992041 0.125915i \(-0.959813\pi\)
−0.125915 0.992041i \(-0.540187\pi\)
\(828\) 0 0
\(829\) 114.907i 0.138610i −0.997596 0.0693048i \(-0.977922\pi\)
0.997596 0.0693048i \(-0.0220781\pi\)
\(830\) −1975.99 949.892i −2.38071 1.14445i
\(831\) 0 0
\(832\) −67.3549 + 18.0477i −0.0809554 + 0.0216919i
\(833\) −254.489 949.767i −0.305509 1.14018i
\(834\) 0 0
\(835\) 155.334 + 442.930i 0.186029 + 0.530455i
\(836\) −1334.68 −1.59651
\(837\) 0 0
\(838\) 1020.02 1020.02i 1.21720 1.21720i
\(839\) −661.782 + 382.080i −0.788774 + 0.455399i −0.839531 0.543312i \(-0.817170\pi\)
0.0507566 + 0.998711i \(0.483837\pi\)
\(840\) 0 0
\(841\) −414.776 + 718.414i −0.493194 + 0.854237i
\(842\) 10.6255 2.84711i 0.0126194 0.00338136i
\(843\) 0 0
\(844\) −169.448 + 97.8309i −0.200768 + 0.115913i
\(845\) −474.009 694.204i −0.560957 0.821544i
\(846\) 0 0
\(847\) 255.128 + 255.128i 0.301214 + 0.301214i
\(848\) −549.777 147.312i −0.648322 0.173717i
\(849\) 0 0
\(850\) −596.166 + 476.787i −0.701372 + 0.560925i
\(851\) 47.0101 81.4239i 0.0552410 0.0956803i
\(852\) 0 0
\(853\) −710.152 190.285i −0.832534 0.223077i −0.182715 0.983166i \(-0.558489\pi\)
−0.649819 + 0.760089i \(0.725155\pi\)
\(854\) 2719.80i 3.18478i
\(855\) 0 0
\(856\) −14.5973 −0.0170529
\(857\) −186.075 + 694.443i −0.217124 + 0.810319i 0.768284 + 0.640109i \(0.221111\pi\)
−0.985408 + 0.170209i \(0.945556\pi\)
\(858\) 0 0
\(859\) 1043.29 + 602.342i 1.21454 + 0.701213i 0.963744 0.266828i \(-0.0859755\pi\)
0.250792 + 0.968041i \(0.419309\pi\)
\(860\) −232.581 + 270.645i −0.270443 + 0.314704i
\(861\) 0 0
\(862\) −573.836 + 2141.58i −0.665703 + 2.48444i
\(863\) 214.571 214.571i 0.248634 0.248634i −0.571776 0.820410i \(-0.693745\pi\)
0.820410 + 0.571776i \(0.193745\pi\)
\(864\) 0 0
\(865\) −184.573 + 979.223i −0.213379 + 1.13205i
\(866\) −751.049 1300.86i −0.867263 1.50214i
\(867\) 0 0
\(868\) −386.382 1442.00i −0.445141 1.66129i
\(869\) 323.375 + 186.701i 0.372123 + 0.214845i
\(870\) 0 0
\(871\) 30.0625 + 52.0698i 0.0345150 + 0.0597817i
\(872\) 6.26188 + 6.26188i 0.00718106 + 0.00718106i
\(873\) 0 0
\(874\) 1850.02i 2.11673i
\(875\) 1488.53 + 52.5833i 1.70117 + 0.0600952i
\(876\) 0 0
\(877\) 305.581 81.8801i 0.348438 0.0933638i −0.0803551 0.996766i \(-0.525605\pi\)
0.428794 + 0.903402i \(0.358939\pi\)
\(878\) 102.728 + 383.387i 0.117003 + 0.436660i
\(879\) 0 0
\(880\) −805.620 387.275i −0.915477 0.440085i
\(881\) 435.585 0.494421 0.247211 0.968962i \(-0.420486\pi\)
0.247211 + 0.968962i \(0.420486\pi\)
\(882\) 0 0
\(883\) −434.695 + 434.695i −0.492293 + 0.492293i −0.909028 0.416735i \(-0.863174\pi\)
0.416735 + 0.909028i \(0.363174\pi\)
\(884\) 37.2759 21.5213i 0.0421673 0.0243453i
\(885\) 0 0
\(886\) 638.166 1105.34i 0.720277 1.24756i
\(887\) 553.319 148.261i 0.623810 0.167149i 0.0669506 0.997756i \(-0.478673\pi\)
0.556859 + 0.830607i \(0.312006\pi\)
\(888\) 0 0
\(889\) −1680.73 + 970.369i −1.89058 + 1.09153i
\(890\) −315.268 + 1672.61i −0.354234 + 1.87933i
\(891\) 0 0
\(892\) −17.2130 17.2130i −0.0192970 0.0192970i
\(893\) 1675.70 + 449.003i 1.87649 + 0.502803i
\(894\) 0 0
\(895\) 227.415 17.2017i 0.254096 0.0192198i
\(896\) 185.266 320.890i 0.206770 0.358136i
\(897\) 0 0
\(898\) 2307.42 + 618.271i 2.56951 + 0.688497i
\(899\) 97.7228i 0.108702i
\(900\) 0 0
\(901\) 414.097 0.459597
\(902\) 214.537 800.662i 0.237846 0.887652i
\(903\) 0 0
\(904\) −129.968 75.0371i −0.143770 0.0830057i
\(905\) 39.5198 + 522.474i 0.0436683 + 0.577319i
\(906\) 0 0
\(907\) 204.950 764.884i 0.225965 0.843312i −0.756051 0.654513i \(-0.772874\pi\)
0.982016 0.188799i \(-0.0604595\pi\)
\(908\) −233.153 + 233.153i −0.256776 + 0.256776i
\(909\) 0 0
\(910\) −158.632 29.9004i −0.174321 0.0328576i
\(911\) −472.743 818.815i −0.518928 0.898809i −0.999758 0.0219955i \(-0.992998\pi\)
0.480830 0.876814i \(-0.340335\pi\)
\(912\) 0 0
\(913\) 483.417 + 1804.14i 0.529482 + 1.97605i
\(914\) 2214.44 + 1278.51i 2.42280 + 1.39880i
\(915\) 0 0
\(916\) −119.699 207.325i −0.130676 0.226338i
\(917\) −158.889 158.889i −0.173270 0.173270i
\(918\) 0 0
\(919\) 825.147i 0.897875i −0.893563 0.448937i \(-0.851803\pi\)
0.893563 0.448937i \(-0.148197\pi\)
\(920\) −54.1072 + 112.555i −0.0588121 + 0.122342i
\(921\) 0 0
\(922\) −730.302 + 195.684i −0.792084 + 0.212238i
\(923\) 21.5573 + 80.4529i 0.0233557 + 0.0871646i
\(924\) 0 0
\(925\) 73.9189 + 54.3958i 0.0799124 + 0.0588063i
\(926\) 486.714 0.525609
\(927\) 0 0
\(928\) 109.743 109.743i 0.118258 0.118258i
\(929\) −799.415 + 461.543i −0.860511 + 0.496817i −0.864184 0.503177i \(-0.832164\pi\)
0.00367207 + 0.999993i \(0.498831\pi\)
\(930\) 0 0
\(931\) −1163.04 + 2014.44i −1.24923 + 2.16374i
\(932\) −571.714 + 153.190i −0.613427 + 0.164367i
\(933\) 0 0
\(934\) −225.486 + 130.185i −0.241420 + 0.139384i
\(935\) 639.077 + 120.459i 0.683505 + 0.128833i
\(936\) 0 0
\(937\) 967.522 + 967.522i 1.03257 + 1.03257i 0.999451 + 0.0331234i \(0.0105454\pi\)
0.0331234 + 0.999451i \(0.489455\pi\)
\(938\) −2129.51 570.601i −2.27027 0.608316i
\(939\) 0 0
\(940\) −1140.71 980.282i −1.21353 1.04285i
\(941\) −405.942 + 703.113i −0.431395 + 0.747197i −0.996994 0.0774830i \(-0.975312\pi\)
0.565599 + 0.824680i \(0.308645\pi\)
\(942\) 0 0
\(943\) 577.384 + 154.709i 0.612284 + 0.164061i
\(944\) 1275.50i 1.35117i
\(945\) 0 0
\(946\) 584.344 0.617700
\(947\) −319.307 + 1191.67i −0.337177 + 1.25836i 0.564312 + 0.825562i \(0.309142\pi\)
−0.901489 + 0.432802i \(0.857525\pi\)
\(948\) 0 0
\(949\) 14.7301 + 8.50444i 0.0155217 + 0.00896147i
\(950\) 1794.80 + 199.694i 1.88926 + 0.210205i
\(951\) 0 0
\(952\) −31.8050 + 118.698i −0.0334087 + 0.124683i
\(953\) 719.749 719.749i 0.755245 0.755245i −0.220208 0.975453i \(-0.570674\pi\)
0.975453 + 0.220208i \(0.0706736\pi\)
\(954\) 0 0
\(955\) −418.269 + 285.598i −0.437978 + 0.299055i
\(956\) 319.749 + 553.822i 0.334466 + 0.579312i
\(957\) 0 0
\(958\) 29.0218 + 108.311i 0.0302941 + 0.113059i
\(959\) 780.519 + 450.633i 0.813888 + 0.469899i
\(960\) 0 0
\(961\) 63.3899 + 109.795i 0.0659625 + 0.114250i
\(962\) −7.03333 7.03333i −0.00731116 0.00731116i
\(963\) 0 0
\(964\) 1557.24i 1.61539i
\(965\) 1334.80 468.111i 1.38321 0.485089i
\(966\) 0 0
\(967\) 1432.50 383.836i 1.48138 0.396935i 0.574564 0.818460i \(-0.305172\pi\)
0.906817 + 0.421525i \(0.138505\pi\)
\(968\) −7.64298 28.5240i −0.00789564 0.0294669i
\(969\) 0 0
\(970\) −119.684 + 248.970i −0.123386 + 0.256670i
\(971\) −798.883 −0.822742 −0.411371 0.911468i \(-0.634950\pi\)
−0.411371 + 0.911468i \(0.634950\pi\)
\(972\) 0 0
\(973\) −378.755 + 378.755i −0.389266 + 0.389266i
\(974\) 1396.20 806.094i 1.43347 0.827612i
\(975\) 0 0
\(976\) 574.486 995.039i 0.588613 1.01951i
\(977\) −413.244 + 110.728i −0.422972 + 0.113335i −0.464025 0.885822i \(-0.653595\pi\)
0.0410533 + 0.999157i \(0.486929\pi\)
\(978\) 0 0
\(979\) 1255.75 725.006i 1.28268 0.740558i
\(980\) 1665.46 1137.19i 1.69945 1.16040i
\(981\) 0 0
\(982\) 940.736 + 940.736i 0.957980 + 0.957980i
\(983\) −415.799 111.413i −0.422990 0.113340i 0.0410437 0.999157i \(-0.486932\pi\)
−0.464034 + 0.885817i \(0.653598\pi\)
\(984\) 0 0
\(985\) 24.2557 28.2254i 0.0246251 0.0286552i
\(986\) −51.6563 + 89.4713i −0.0523897 + 0.0907417i
\(987\) 0 0
\(988\) −98.3538 26.3538i −0.0995484 0.0266739i
\(989\) 421.390i 0.426077i
\(990\) 0 0
\(991\) 575.226 0.580450 0.290225 0.956958i \(-0.406270\pi\)
0.290225 + 0.956958i \(0.406270\pi\)
\(992\) 342.905 1279.74i 0.345670 1.29006i
\(993\) 0 0
\(994\) −2644.90 1527.03i −2.66086 1.53625i
\(995\) 703.342 53.2007i 0.706876 0.0534680i
\(996\) 0 0
\(997\) 106.861 398.810i 0.107182 0.400010i −0.891401 0.453215i \(-0.850277\pi\)
0.998584 + 0.0532048i \(0.0169436\pi\)
\(998\) −1736.83 + 1736.83i −1.74031 + 1.74031i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.n.352.7 32
3.2 odd 2 inner 405.3.l.n.352.2 32
5.3 odd 4 inner 405.3.l.n.28.2 32
9.2 odd 6 inner 405.3.l.n.217.7 32
9.4 even 3 135.3.g.b.82.7 yes 16
9.5 odd 6 135.3.g.b.82.2 yes 16
9.7 even 3 inner 405.3.l.n.217.2 32
15.8 even 4 inner 405.3.l.n.28.7 32
45.4 even 6 675.3.g.j.82.2 16
45.13 odd 12 135.3.g.b.28.7 yes 16
45.14 odd 6 675.3.g.j.82.7 16
45.22 odd 12 675.3.g.j.568.2 16
45.23 even 12 135.3.g.b.28.2 16
45.32 even 12 675.3.g.j.568.7 16
45.38 even 12 inner 405.3.l.n.298.2 32
45.43 odd 12 inner 405.3.l.n.298.7 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.g.b.28.2 16 45.23 even 12
135.3.g.b.28.7 yes 16 45.13 odd 12
135.3.g.b.82.2 yes 16 9.5 odd 6
135.3.g.b.82.7 yes 16 9.4 even 3
405.3.l.n.28.2 32 5.3 odd 4 inner
405.3.l.n.28.7 32 15.8 even 4 inner
405.3.l.n.217.2 32 9.7 even 3 inner
405.3.l.n.217.7 32 9.2 odd 6 inner
405.3.l.n.298.2 32 45.38 even 12 inner
405.3.l.n.298.7 32 45.43 odd 12 inner
405.3.l.n.352.2 32 3.2 odd 2 inner
405.3.l.n.352.7 32 1.1 even 1 trivial
675.3.g.j.82.2 16 45.4 even 6
675.3.g.j.82.7 16 45.14 odd 6
675.3.g.j.568.2 16 45.22 odd 12
675.3.g.j.568.7 16 45.32 even 12