L(s) = 1 | + (−1.29 + 2.23i)2-s + (0.659 + 1.14i)4-s + (2.5 + 4.33i)5-s + (11.4 − 19.8i)7-s − 24.0·8-s − 12.9·10-s + (5.54 − 9.59i)11-s + (5.81 + 10.0i)13-s + (29.5 + 51.2i)14-s + (25.8 − 44.7i)16-s − 10.0·17-s + 117.·19-s + (−3.29 + 5.70i)20-s + (14.3 + 24.8i)22-s + (86.2 + 149. i)23-s + ⋯ |
L(s) = 1 | + (−0.456 + 0.791i)2-s + (0.0824 + 0.142i)4-s + (0.223 + 0.387i)5-s + (0.618 − 1.07i)7-s − 1.06·8-s − 0.408·10-s + (0.151 − 0.263i)11-s + (0.124 + 0.215i)13-s + (0.564 + 0.978i)14-s + (0.404 − 0.699i)16-s − 0.143·17-s + 1.42·19-s + (−0.0368 + 0.0638i)20-s + (0.138 + 0.240i)22-s + (0.781 + 1.35i)23-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(0.173−0.984i)Λ(4−s)
Λ(s)=(=(405s/2ΓC(s+3/2)L(s)(0.173−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
0.173−0.984i
|
Analytic conductor: |
23.8957 |
Root analytic conductor: |
4.88833 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(136,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :3/2), 0.173−0.984i)
|
Particular Values
L(2) |
≈ |
1.762961602 |
L(21) |
≈ |
1.762961602 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−2.5−4.33i)T |
good | 2 | 1+(1.29−2.23i)T+(−4−6.92i)T2 |
| 7 | 1+(−11.4+19.8i)T+(−171.5−297.i)T2 |
| 11 | 1+(−5.54+9.59i)T+(−665.5−1.15e3i)T2 |
| 13 | 1+(−5.81−10.0i)T+(−1.09e3+1.90e3i)T2 |
| 17 | 1+10.0T+4.91e3T2 |
| 19 | 1−117.T+6.85e3T2 |
| 23 | 1+(−86.2−149.i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(−89.1+154.i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+(70.2+121.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1−250.T+5.06e4T2 |
| 41 | 1+(−180.−313.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(−180.+312.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+(300.−519.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+201.T+1.48e5T2 |
| 59 | 1+(−207.−360.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−27.3+47.3i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(−265.−459.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−933.T+3.57e5T2 |
| 73 | 1+560.T+3.89e5T2 |
| 79 | 1+(405.−702.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+(−269.+466.i)T+(−2.85e5−4.95e5i)T2 |
| 89 | 1+686.T+7.04e5T2 |
| 97 | 1+(357.−618.i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27040484114700649437261921582, −9.875116775668530232380435138556, −9.188615980609972601371980205757, −7.85783933925918910048124937291, −7.52205351350530879758988650098, −6.53829152378334720035292922936, −5.53069238968657897966893684976, −4.09028969771938343144417076991, −2.89355350135783222998598041858, −1.04656788045226044229322834463,
0.898097363904004679357912518585, 2.04837573381708597743935586071, 3.09325254621515075778209379249, 4.89367165732304538371634187047, 5.66442700022471041518212490021, 6.81786012983747723282525547457, 8.266881974465515637421131142219, 8.997957079093037564436216190591, 9.680004430075025725644371110276, 10.71557291909569432062262385286