Properties

Label 405.4.e.v
Level $405$
Weight $4$
Character orbit 405.e
Analytic conductor $23.896$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,4,Mod(136,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.136");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 405.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.8957735523\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.84779568.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 13x^{4} - 4x^{3} + 152x^{2} - 96x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{5} - 2 \beta_{3} + 2) q^{2} + (3 \beta_{5} + \beta_{4} + \cdots - 3 \beta_1) q^{4} + 5 \beta_{3} q^{5} + ( - \beta_{5} + 3 \beta_{4} - 2 \beta_{3} + 2) q^{7} + ( - 5 \beta_{2} - 7 \beta_1 - 29) q^{8}+ \cdots + (135 \beta_{2} + 97 \beta_1 + 179) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{2} - 17 q^{4} + 15 q^{5} + 4 q^{7} - 150 q^{8} + 50 q^{10} + 5 q^{11} - 7 q^{13} + 60 q^{14} - 161 q^{16} - 310 q^{17} - 100 q^{19} + 85 q^{20} + 229 q^{22} + 285 q^{23} - 75 q^{25} - 370 q^{26}+ \cdots + 610 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 13x^{4} - 4x^{3} + 152x^{2} - 96x + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -11\nu^{5} + 143\nu^{4} + 21\nu^{3} + 1672\nu^{2} - 1056\nu + 13728 ) / 3760 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -17\nu^{5} + 221\nu^{4} - 993\nu^{3} + 2584\nu^{2} - 1632\nu + 17456 ) / 3760 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 39\nu^{5} - 37\nu^{4} + 481\nu^{3} + 182\nu^{2} + 5624\nu + 208 ) / 3760 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -61\nu^{5} + 88\nu^{4} - 1144\nu^{3} + 1047\nu^{2} - 13376\nu + 8448 ) / 1880 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -31\nu^{5} + 27\nu^{4} - 351\nu^{3} + 200\nu^{2} - 4104\nu + 2592 ) / 752 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} - \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_{5} + \beta_{4} + 23\beta_{3} - 23 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -11\beta_{2} + 17\beta _1 - 11 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -23\beta_{5} - 3\beta_{4} - 93\beta_{3} + 3\beta_{2} + 23\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -233\beta_{5} + 131\beta_{4} - 227\beta_{3} + 227 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(-\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
136.1
1.83685 + 3.18152i
−1.66402 2.88216i
0.327167 + 0.566669i
1.83685 3.18152i
−1.66402 + 2.88216i
0.327167 0.566669i
−1.29244 + 2.23857i 0 0.659207 + 1.14178i 2.50000 + 4.33013i 0 11.4468 19.8264i −24.0869 0 −12.9244
136.2 1.06306 1.84127i 0 1.73981 + 3.01344i 2.50000 + 4.33013i 0 −15.3500 + 26.5870i 24.4070 0 10.6306
136.3 2.72938 4.72742i 0 −10.8990 18.8776i 2.50000 + 4.33013i 0 5.90326 10.2247i −75.3201 0 27.2938
271.1 −1.29244 2.23857i 0 0.659207 1.14178i 2.50000 4.33013i 0 11.4468 + 19.8264i −24.0869 0 −12.9244
271.2 1.06306 + 1.84127i 0 1.73981 3.01344i 2.50000 4.33013i 0 −15.3500 26.5870i 24.4070 0 10.6306
271.3 2.72938 + 4.72742i 0 −10.8990 + 18.8776i 2.50000 4.33013i 0 5.90326 + 10.2247i −75.3201 0 27.2938
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 136.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.4.e.v 6
3.b odd 2 1 405.4.e.q 6
9.c even 3 1 135.4.a.e 3
9.c even 3 1 inner 405.4.e.v 6
9.d odd 6 1 135.4.a.h yes 3
9.d odd 6 1 405.4.e.q 6
36.f odd 6 1 2160.4.a.bi 3
36.h even 6 1 2160.4.a.bq 3
45.h odd 6 1 675.4.a.p 3
45.j even 6 1 675.4.a.s 3
45.k odd 12 2 675.4.b.m 6
45.l even 12 2 675.4.b.n 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.4.a.e 3 9.c even 3 1
135.4.a.h yes 3 9.d odd 6 1
405.4.e.q 6 3.b odd 2 1
405.4.e.q 6 9.d odd 6 1
405.4.e.v 6 1.a even 1 1 trivial
405.4.e.v 6 9.c even 3 1 inner
675.4.a.p 3 45.h odd 6 1
675.4.a.s 3 45.j even 6 1
675.4.b.m 6 45.k odd 12 2
675.4.b.n 6 45.l even 12 2
2160.4.a.bi 3 36.f odd 6 1
2160.4.a.bq 3 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(405, [\chi])\):

\( T_{2}^{6} - 5T_{2}^{5} + 33T_{2}^{4} - 20T_{2}^{3} + 214T_{2}^{2} - 240T_{2} + 900 \) Copy content Toggle raw display
\( T_{7}^{6} - 4T_{7}^{5} + 811T_{7}^{4} - 13416T_{7}^{3} + 665217T_{7}^{2} - 6596910T_{7} + 68856804 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 5 T^{5} + \cdots + 900 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( (T^{2} - 5 T + 25)^{3} \) Copy content Toggle raw display
$7$ \( T^{6} - 4 T^{5} + \cdots + 68856804 \) Copy content Toggle raw display
$11$ \( T^{6} - 5 T^{5} + \cdots + 977187600 \) Copy content Toggle raw display
$13$ \( T^{6} + 7 T^{5} + \cdots + 41280625 \) Copy content Toggle raw display
$17$ \( (T^{3} + 155 T^{2} + \cdots + 41760)^{2} \) Copy content Toggle raw display
$19$ \( (T^{3} + 50 T^{2} + \cdots - 368012)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 306362250000 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 41477979315600 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 880414396416 \) Copy content Toggle raw display
$37$ \( (T^{3} + 384 T^{2} + \cdots - 22667198)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 15345082598400 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 28707478180096 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 207021450297600 \) Copy content Toggle raw display
$53$ \( (T^{3} - 400 T^{2} + \cdots + 12658320)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 27093274214400 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 25695430112356 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 431363822490000 \) Copy content Toggle raw display
$71$ \( (T^{3} + 40 T^{2} + \cdots - 216071280)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} + 980 T^{2} + \cdots + 16447954)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 82\!\cdots\!25 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 71\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{3} + 1020 T^{2} + \cdots - 125064000)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 752435512191364 \) Copy content Toggle raw display
show more
show less