Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [405,4,Mod(136,405)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(405, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("405.136");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 405.e (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 6.0.84779568.3 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 135) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
136.1 |
|
−1.29244 | + | 2.23857i | 0 | 0.659207 | + | 1.14178i | 2.50000 | + | 4.33013i | 0 | 11.4468 | − | 19.8264i | −24.0869 | 0 | −12.9244 | ||||||||||||||||||||||||||||
136.2 | 1.06306 | − | 1.84127i | 0 | 1.73981 | + | 3.01344i | 2.50000 | + | 4.33013i | 0 | −15.3500 | + | 26.5870i | 24.4070 | 0 | 10.6306 | |||||||||||||||||||||||||||||
136.3 | 2.72938 | − | 4.72742i | 0 | −10.8990 | − | 18.8776i | 2.50000 | + | 4.33013i | 0 | 5.90326 | − | 10.2247i | −75.3201 | 0 | 27.2938 | |||||||||||||||||||||||||||||
271.1 | −1.29244 | − | 2.23857i | 0 | 0.659207 | − | 1.14178i | 2.50000 | − | 4.33013i | 0 | 11.4468 | + | 19.8264i | −24.0869 | 0 | −12.9244 | |||||||||||||||||||||||||||||
271.2 | 1.06306 | + | 1.84127i | 0 | 1.73981 | − | 3.01344i | 2.50000 | − | 4.33013i | 0 | −15.3500 | − | 26.5870i | 24.4070 | 0 | 10.6306 | |||||||||||||||||||||||||||||
271.3 | 2.72938 | + | 4.72742i | 0 | −10.8990 | + | 18.8776i | 2.50000 | − | 4.33013i | 0 | 5.90326 | + | 10.2247i | −75.3201 | 0 | 27.2938 | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 405.4.e.v | 6 | |
3.b | odd | 2 | 1 | 405.4.e.q | 6 | ||
9.c | even | 3 | 1 | 135.4.a.e | ✓ | 3 | |
9.c | even | 3 | 1 | inner | 405.4.e.v | 6 | |
9.d | odd | 6 | 1 | 135.4.a.h | yes | 3 | |
9.d | odd | 6 | 1 | 405.4.e.q | 6 | ||
36.f | odd | 6 | 1 | 2160.4.a.bi | 3 | ||
36.h | even | 6 | 1 | 2160.4.a.bq | 3 | ||
45.h | odd | 6 | 1 | 675.4.a.p | 3 | ||
45.j | even | 6 | 1 | 675.4.a.s | 3 | ||
45.k | odd | 12 | 2 | 675.4.b.m | 6 | ||
45.l | even | 12 | 2 | 675.4.b.n | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
135.4.a.e | ✓ | 3 | 9.c | even | 3 | 1 | |
135.4.a.h | yes | 3 | 9.d | odd | 6 | 1 | |
405.4.e.q | 6 | 3.b | odd | 2 | 1 | ||
405.4.e.q | 6 | 9.d | odd | 6 | 1 | ||
405.4.e.v | 6 | 1.a | even | 1 | 1 | trivial | |
405.4.e.v | 6 | 9.c | even | 3 | 1 | inner | |
675.4.a.p | 3 | 45.h | odd | 6 | 1 | ||
675.4.a.s | 3 | 45.j | even | 6 | 1 | ||
675.4.b.m | 6 | 45.k | odd | 12 | 2 | ||
675.4.b.n | 6 | 45.l | even | 12 | 2 | ||
2160.4.a.bi | 3 | 36.f | odd | 6 | 1 | ||
2160.4.a.bq | 3 | 36.h | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|