Properties

Label 405.4.e.v
Level 405405
Weight 44
Character orbit 405.e
Analytic conductor 23.89623.896
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,4,Mod(136,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.136");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 405=345 405 = 3^{4} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 405.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 23.895773552323.8957735523
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.84779568.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+13x44x3+152x296x+64 x^{6} - x^{5} + 13x^{4} - 4x^{3} + 152x^{2} - 96x + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 32 3^{2}
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β52β3+2)q2+(3β5+β4+3β1)q4+5β3q5+(β5+3β42β3+2)q7+(5β27β129)q8++(135β2+97β1+179)q98+O(q100) q + (\beta_{5} - 2 \beta_{3} + 2) q^{2} + (3 \beta_{5} + \beta_{4} + \cdots - 3 \beta_1) q^{4} + 5 \beta_{3} q^{5} + ( - \beta_{5} + 3 \beta_{4} - 2 \beta_{3} + 2) q^{7} + ( - 5 \beta_{2} - 7 \beta_1 - 29) q^{8}+ \cdots + (135 \beta_{2} + 97 \beta_1 + 179) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+5q217q4+15q5+4q7150q8+50q10+5q117q13+60q14161q16310q17100q19+85q20+229q22+285q2375q25370q26++610q98+O(q100) 6 q + 5 q^{2} - 17 q^{4} + 15 q^{5} + 4 q^{7} - 150 q^{8} + 50 q^{10} + 5 q^{11} - 7 q^{13} + 60 q^{14} - 161 q^{16} - 310 q^{17} - 100 q^{19} + 85 q^{20} + 229 q^{22} + 285 q^{23} - 75 q^{25} - 370 q^{26}+ \cdots + 610 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x5+13x44x3+152x296x+64 x^{6} - x^{5} + 13x^{4} - 4x^{3} + 152x^{2} - 96x + 64 : Copy content Toggle raw display

β1\beta_{1}== (11ν5+143ν4+21ν3+1672ν21056ν+13728)/3760 ( -11\nu^{5} + 143\nu^{4} + 21\nu^{3} + 1672\nu^{2} - 1056\nu + 13728 ) / 3760 Copy content Toggle raw display
β2\beta_{2}== (17ν5+221ν4993ν3+2584ν21632ν+17456)/3760 ( -17\nu^{5} + 221\nu^{4} - 993\nu^{3} + 2584\nu^{2} - 1632\nu + 17456 ) / 3760 Copy content Toggle raw display
β3\beta_{3}== (39ν537ν4+481ν3+182ν2+5624ν+208)/3760 ( 39\nu^{5} - 37\nu^{4} + 481\nu^{3} + 182\nu^{2} + 5624\nu + 208 ) / 3760 Copy content Toggle raw display
β4\beta_{4}== (61ν5+88ν41144ν3+1047ν213376ν+8448)/1880 ( -61\nu^{5} + 88\nu^{4} - 1144\nu^{3} + 1047\nu^{2} - 13376\nu + 8448 ) / 1880 Copy content Toggle raw display
β5\beta_{5}== (31ν5+27ν4351ν3+200ν24104ν+2592)/752 ( -31\nu^{5} + 27\nu^{4} - 351\nu^{3} + 200\nu^{2} - 4104\nu + 2592 ) / 752 Copy content Toggle raw display
ν\nu== (β5β4+β3+β2β1)/3 ( \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} - \beta_1 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (5β5+β4+23β323)/3 ( 5\beta_{5} + \beta_{4} + 23\beta_{3} - 23 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (11β2+17β111)/3 ( -11\beta_{2} + 17\beta _1 - 11 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== 23β53β493β3+3β2+23β1 -23\beta_{5} - 3\beta_{4} - 93\beta_{3} + 3\beta_{2} + 23\beta_1 Copy content Toggle raw display
ν5\nu^{5}== (233β5+131β4227β3+227)/3 ( -233\beta_{5} + 131\beta_{4} - 227\beta_{3} + 227 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/405Z)×\left(\mathbb{Z}/405\mathbb{Z}\right)^\times.

nn 8282 326326
χ(n)\chi(n) 11 β3-\beta_{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
136.1
1.83685 + 3.18152i
−1.66402 2.88216i
0.327167 + 0.566669i
1.83685 3.18152i
−1.66402 + 2.88216i
0.327167 0.566669i
−1.29244 + 2.23857i 0 0.659207 + 1.14178i 2.50000 + 4.33013i 0 11.4468 19.8264i −24.0869 0 −12.9244
136.2 1.06306 1.84127i 0 1.73981 + 3.01344i 2.50000 + 4.33013i 0 −15.3500 + 26.5870i 24.4070 0 10.6306
136.3 2.72938 4.72742i 0 −10.8990 18.8776i 2.50000 + 4.33013i 0 5.90326 10.2247i −75.3201 0 27.2938
271.1 −1.29244 2.23857i 0 0.659207 1.14178i 2.50000 4.33013i 0 11.4468 + 19.8264i −24.0869 0 −12.9244
271.2 1.06306 + 1.84127i 0 1.73981 3.01344i 2.50000 4.33013i 0 −15.3500 26.5870i 24.4070 0 10.6306
271.3 2.72938 + 4.72742i 0 −10.8990 + 18.8776i 2.50000 4.33013i 0 5.90326 + 10.2247i −75.3201 0 27.2938
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 136.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.4.e.v 6
3.b odd 2 1 405.4.e.q 6
9.c even 3 1 135.4.a.e 3
9.c even 3 1 inner 405.4.e.v 6
9.d odd 6 1 135.4.a.h yes 3
9.d odd 6 1 405.4.e.q 6
36.f odd 6 1 2160.4.a.bi 3
36.h even 6 1 2160.4.a.bq 3
45.h odd 6 1 675.4.a.p 3
45.j even 6 1 675.4.a.s 3
45.k odd 12 2 675.4.b.m 6
45.l even 12 2 675.4.b.n 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.4.a.e 3 9.c even 3 1
135.4.a.h yes 3 9.d odd 6 1
405.4.e.q 6 3.b odd 2 1
405.4.e.q 6 9.d odd 6 1
405.4.e.v 6 1.a even 1 1 trivial
405.4.e.v 6 9.c even 3 1 inner
675.4.a.p 3 45.h odd 6 1
675.4.a.s 3 45.j even 6 1
675.4.b.m 6 45.k odd 12 2
675.4.b.n 6 45.l even 12 2
2160.4.a.bi 3 36.f odd 6 1
2160.4.a.bq 3 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(405,[χ])S_{4}^{\mathrm{new}}(405, [\chi]):

T265T25+33T2420T23+214T22240T2+900 T_{2}^{6} - 5T_{2}^{5} + 33T_{2}^{4} - 20T_{2}^{3} + 214T_{2}^{2} - 240T_{2} + 900 Copy content Toggle raw display
T764T75+811T7413416T73+665217T726596910T7+68856804 T_{7}^{6} - 4T_{7}^{5} + 811T_{7}^{4} - 13416T_{7}^{3} + 665217T_{7}^{2} - 6596910T_{7} + 68856804 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T65T5++900 T^{6} - 5 T^{5} + \cdots + 900 Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 (T25T+25)3 (T^{2} - 5 T + 25)^{3} Copy content Toggle raw display
77 T64T5++68856804 T^{6} - 4 T^{5} + \cdots + 68856804 Copy content Toggle raw display
1111 T65T5++977187600 T^{6} - 5 T^{5} + \cdots + 977187600 Copy content Toggle raw display
1313 T6+7T5++41280625 T^{6} + 7 T^{5} + \cdots + 41280625 Copy content Toggle raw display
1717 (T3+155T2++41760)2 (T^{3} + 155 T^{2} + \cdots + 41760)^{2} Copy content Toggle raw display
1919 (T3+50T2+368012)2 (T^{3} + 50 T^{2} + \cdots - 368012)^{2} Copy content Toggle raw display
2323 T6++306362250000 T^{6} + \cdots + 306362250000 Copy content Toggle raw display
2929 T6++41477979315600 T^{6} + \cdots + 41477979315600 Copy content Toggle raw display
3131 T6++880414396416 T^{6} + \cdots + 880414396416 Copy content Toggle raw display
3737 (T3+384T2+22667198)2 (T^{3} + 384 T^{2} + \cdots - 22667198)^{2} Copy content Toggle raw display
4141 T6++15345082598400 T^{6} + \cdots + 15345082598400 Copy content Toggle raw display
4343 T6++28707478180096 T^{6} + \cdots + 28707478180096 Copy content Toggle raw display
4747 T6++207021450297600 T^{6} + \cdots + 207021450297600 Copy content Toggle raw display
5353 (T3400T2++12658320)2 (T^{3} - 400 T^{2} + \cdots + 12658320)^{2} Copy content Toggle raw display
5959 T6++27093274214400 T^{6} + \cdots + 27093274214400 Copy content Toggle raw display
6161 T6++25695430112356 T^{6} + \cdots + 25695430112356 Copy content Toggle raw display
6767 T6++431363822490000 T^{6} + \cdots + 431363822490000 Copy content Toggle raw display
7171 (T3+40T2+216071280)2 (T^{3} + 40 T^{2} + \cdots - 216071280)^{2} Copy content Toggle raw display
7373 (T3+980T2++16447954)2 (T^{3} + 980 T^{2} + \cdots + 16447954)^{2} Copy content Toggle raw display
7979 T6++82 ⁣ ⁣25 T^{6} + \cdots + 82\!\cdots\!25 Copy content Toggle raw display
8383 T6++71 ⁣ ⁣00 T^{6} + \cdots + 71\!\cdots\!00 Copy content Toggle raw display
8989 (T3+1020T2+125064000)2 (T^{3} + 1020 T^{2} + \cdots - 125064000)^{2} Copy content Toggle raw display
9797 T6++752435512191364 T^{6} + \cdots + 752435512191364 Copy content Toggle raw display
show more
show less