Properties

Label 2-405-3.2-c4-0-54
Degree $2$
Conductor $405$
Sign $-1$
Analytic cond. $41.8648$
Root an. cond. $6.47030$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.73i·2-s + 2.01·4-s − 11.1i·5-s + 39.4·7-s − 67.3i·8-s − 41.8·10-s + 194. i·11-s − 96.0·13-s − 147. i·14-s − 219.·16-s − 404. i·17-s − 559.·19-s − 22.5i·20-s + 728.·22-s − 780. i·23-s + ⋯
L(s)  = 1  − 0.934i·2-s + 0.126·4-s − 0.447i·5-s + 0.804·7-s − 1.05i·8-s − 0.418·10-s + 1.61i·11-s − 0.568·13-s − 0.751i·14-s − 0.857·16-s − 1.39i·17-s − 1.54·19-s − 0.0564i·20-s + 1.50·22-s − 1.47i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(41.8648\)
Root analytic conductor: \(6.47030\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{405} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 405,\ (\ :2),\ -1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.698309620\)
\(L(\frac12)\) \(\approx\) \(1.698309620\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 11.1iT \)
good2 \( 1 + 3.73iT - 16T^{2} \)
7 \( 1 - 39.4T + 2.40e3T^{2} \)
11 \( 1 - 194. iT - 1.46e4T^{2} \)
13 \( 1 + 96.0T + 2.85e4T^{2} \)
17 \( 1 + 404. iT - 8.35e4T^{2} \)
19 \( 1 + 559.T + 1.30e5T^{2} \)
23 \( 1 + 780. iT - 2.79e5T^{2} \)
29 \( 1 + 478. iT - 7.07e5T^{2} \)
31 \( 1 - 622.T + 9.23e5T^{2} \)
37 \( 1 - 1.40e3T + 1.87e6T^{2} \)
41 \( 1 + 100. iT - 2.82e6T^{2} \)
43 \( 1 + 598.T + 3.41e6T^{2} \)
47 \( 1 + 2.13e3iT - 4.87e6T^{2} \)
53 \( 1 + 2.45e3iT - 7.89e6T^{2} \)
59 \( 1 + 4.17e3iT - 1.21e7T^{2} \)
61 \( 1 - 691.T + 1.38e7T^{2} \)
67 \( 1 + 5.43e3T + 2.01e7T^{2} \)
71 \( 1 - 199. iT - 2.54e7T^{2} \)
73 \( 1 + 5.15e3T + 2.83e7T^{2} \)
79 \( 1 + 5.53e3T + 3.89e7T^{2} \)
83 \( 1 - 952. iT - 4.74e7T^{2} \)
89 \( 1 - 8.55e3iT - 6.27e7T^{2} \)
97 \( 1 + 5.11e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18875956446321669173989314542, −9.623332995686760722204690604918, −8.445149506394672257208718288488, −7.36545382395647712102945570217, −6.52034528089159174012367371011, −4.80616836652594174256298058966, −4.34069112152252836757972605417, −2.55107968720205861653720107506, −1.88257221340627612596175234893, −0.43268447335937283607040419827, 1.62529673935207366584335480125, 2.97458778220005020176562364585, 4.41474326189660329052501321031, 5.76657684650770927718034849783, 6.21639200136508973277260796815, 7.42039678740021540868843795893, 8.181141035034467642743931190307, 8.821308643615657394044750144869, 10.40203100373139118218526739840, 11.08174430164396092560248769391

Graph of the $Z$-function along the critical line