Properties

Label 405.5.c.b.161.9
Level $405$
Weight $5$
Character 405.161
Analytic conductor $41.865$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,5,Mod(161,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.161");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 405.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.8648350490\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.9
Character \(\chi\) \(=\) 405.161
Dual form 405.5.c.b.161.24

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.73920i q^{2} +2.01838 q^{4} -11.1803i q^{5} +39.4150 q^{7} -67.3743i q^{8} -41.8055 q^{10} +194.836i q^{11} -96.0237 q^{13} -147.381i q^{14} -219.632 q^{16} -404.005i q^{17} -559.350 q^{19} -22.5662i q^{20} +728.531 q^{22} -780.548i q^{23} -125.000 q^{25} +359.052i q^{26} +79.5545 q^{28} -478.560i q^{29} +622.668 q^{31} -256.741i q^{32} -1510.65 q^{34} -440.673i q^{35} +1404.72 q^{37} +2091.52i q^{38} -753.268 q^{40} -100.775i q^{41} -598.795 q^{43} +393.253i q^{44} -2918.63 q^{46} -2136.73i q^{47} -847.457 q^{49} +467.400i q^{50} -193.812 q^{52} -2456.58i q^{53} +2178.33 q^{55} -2655.56i q^{56} -1789.43 q^{58} -4176.14i q^{59} +691.586 q^{61} -2328.28i q^{62} -4474.12 q^{64} +1073.58i q^{65} -5439.08 q^{67} -815.435i q^{68} -1647.77 q^{70} +199.240i q^{71} -5155.25 q^{73} -5252.52i q^{74} -1128.98 q^{76} +7679.46i q^{77} -5537.57 q^{79} +2455.56i q^{80} -376.819 q^{82} +952.982i q^{83} -4516.91 q^{85} +2239.02i q^{86} +13126.9 q^{88} +8559.26i q^{89} -3784.78 q^{91} -1575.44i q^{92} -7989.67 q^{94} +6253.72i q^{95} -5110.24 q^{97} +3168.81i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 256 q^{4} + 52 q^{7} - 20 q^{13} + 2048 q^{16} + 508 q^{19} - 1344 q^{22} - 4000 q^{25} - 1664 q^{28} + 2944 q^{31} + 1188 q^{34} + 2068 q^{37} - 3300 q^{40} - 1136 q^{43} + 5724 q^{46} + 3348 q^{49}+ \cdots - 46532 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 3.73920i − 0.934800i −0.884046 0.467400i \(-0.845191\pi\)
0.884046 0.467400i \(-0.154809\pi\)
\(3\) 0 0
\(4\) 2.01838 0.126149
\(5\) − 11.1803i − 0.447214i
\(6\) 0 0
\(7\) 39.4150 0.804388 0.402194 0.915554i \(-0.368248\pi\)
0.402194 + 0.915554i \(0.368248\pi\)
\(8\) − 67.3743i − 1.05272i
\(9\) 0 0
\(10\) −41.8055 −0.418055
\(11\) 194.836i 1.61021i 0.593129 + 0.805107i \(0.297892\pi\)
−0.593129 + 0.805107i \(0.702108\pi\)
\(12\) 0 0
\(13\) −96.0237 −0.568188 −0.284094 0.958796i \(-0.591693\pi\)
−0.284094 + 0.958796i \(0.591693\pi\)
\(14\) − 147.381i − 0.751942i
\(15\) 0 0
\(16\) −219.632 −0.857938
\(17\) − 404.005i − 1.39794i −0.715151 0.698970i \(-0.753642\pi\)
0.715151 0.698970i \(-0.246358\pi\)
\(18\) 0 0
\(19\) −559.350 −1.54945 −0.774723 0.632301i \(-0.782111\pi\)
−0.774723 + 0.632301i \(0.782111\pi\)
\(20\) − 22.5662i − 0.0564154i
\(21\) 0 0
\(22\) 728.531 1.50523
\(23\) − 780.548i − 1.47552i −0.675065 0.737758i \(-0.735884\pi\)
0.675065 0.737758i \(-0.264116\pi\)
\(24\) 0 0
\(25\) −125.000 −0.200000
\(26\) 359.052i 0.531142i
\(27\) 0 0
\(28\) 79.5545 0.101473
\(29\) − 478.560i − 0.569037i −0.958671 0.284518i \(-0.908166\pi\)
0.958671 0.284518i \(-0.0918337\pi\)
\(30\) 0 0
\(31\) 622.668 0.647938 0.323969 0.946068i \(-0.394983\pi\)
0.323969 + 0.946068i \(0.394983\pi\)
\(32\) − 256.741i − 0.250724i
\(33\) 0 0
\(34\) −1510.65 −1.30679
\(35\) − 440.673i − 0.359733i
\(36\) 0 0
\(37\) 1404.72 1.02609 0.513045 0.858362i \(-0.328517\pi\)
0.513045 + 0.858362i \(0.328517\pi\)
\(38\) 2091.52i 1.44842i
\(39\) 0 0
\(40\) −753.268 −0.470792
\(41\) − 100.775i − 0.0599496i −0.999551 0.0299748i \(-0.990457\pi\)
0.999551 0.0299748i \(-0.00954270\pi\)
\(42\) 0 0
\(43\) −598.795 −0.323848 −0.161924 0.986803i \(-0.551770\pi\)
−0.161924 + 0.986803i \(0.551770\pi\)
\(44\) 393.253i 0.203127i
\(45\) 0 0
\(46\) −2918.63 −1.37931
\(47\) − 2136.73i − 0.967285i −0.875266 0.483642i \(-0.839314\pi\)
0.875266 0.483642i \(-0.160686\pi\)
\(48\) 0 0
\(49\) −847.457 −0.352960
\(50\) 467.400i 0.186960i
\(51\) 0 0
\(52\) −193.812 −0.0716762
\(53\) − 2456.58i − 0.874540i −0.899330 0.437270i \(-0.855945\pi\)
0.899330 0.437270i \(-0.144055\pi\)
\(54\) 0 0
\(55\) 2178.33 0.720110
\(56\) − 2655.56i − 0.846798i
\(57\) 0 0
\(58\) −1789.43 −0.531936
\(59\) − 4176.14i − 1.19970i −0.800114 0.599848i \(-0.795228\pi\)
0.800114 0.599848i \(-0.204772\pi\)
\(60\) 0 0
\(61\) 691.586 0.185860 0.0929301 0.995673i \(-0.470377\pi\)
0.0929301 + 0.995673i \(0.470377\pi\)
\(62\) − 2328.28i − 0.605692i
\(63\) 0 0
\(64\) −4474.12 −1.09231
\(65\) 1073.58i 0.254101i
\(66\) 0 0
\(67\) −5439.08 −1.21165 −0.605823 0.795599i \(-0.707156\pi\)
−0.605823 + 0.795599i \(0.707156\pi\)
\(68\) − 815.435i − 0.176348i
\(69\) 0 0
\(70\) −1647.77 −0.336279
\(71\) 199.240i 0.0395239i 0.999805 + 0.0197620i \(0.00629084\pi\)
−0.999805 + 0.0197620i \(0.993709\pi\)
\(72\) 0 0
\(73\) −5155.25 −0.967395 −0.483698 0.875235i \(-0.660707\pi\)
−0.483698 + 0.875235i \(0.660707\pi\)
\(74\) − 5252.52i − 0.959189i
\(75\) 0 0
\(76\) −1128.98 −0.195461
\(77\) 7679.46i 1.29524i
\(78\) 0 0
\(79\) −5537.57 −0.887288 −0.443644 0.896203i \(-0.646315\pi\)
−0.443644 + 0.896203i \(0.646315\pi\)
\(80\) 2455.56i 0.383681i
\(81\) 0 0
\(82\) −376.819 −0.0560409
\(83\) 952.982i 0.138334i 0.997605 + 0.0691670i \(0.0220341\pi\)
−0.997605 + 0.0691670i \(0.977966\pi\)
\(84\) 0 0
\(85\) −4516.91 −0.625178
\(86\) 2239.02i 0.302733i
\(87\) 0 0
\(88\) 13126.9 1.69511
\(89\) 8559.26i 1.08058i 0.841479 + 0.540289i \(0.181685\pi\)
−0.841479 + 0.540289i \(0.818315\pi\)
\(90\) 0 0
\(91\) −3784.78 −0.457043
\(92\) − 1575.44i − 0.186135i
\(93\) 0 0
\(94\) −7989.67 −0.904218
\(95\) 6253.72i 0.692933i
\(96\) 0 0
\(97\) −5110.24 −0.543122 −0.271561 0.962421i \(-0.587540\pi\)
−0.271561 + 0.962421i \(0.587540\pi\)
\(98\) 3168.81i 0.329947i
\(99\) 0 0
\(100\) −252.298 −0.0252298
\(101\) 12646.4i 1.23973i 0.784710 + 0.619863i \(0.212812\pi\)
−0.784710 + 0.619863i \(0.787188\pi\)
\(102\) 0 0
\(103\) 7094.84 0.668756 0.334378 0.942439i \(-0.391474\pi\)
0.334378 + 0.942439i \(0.391474\pi\)
\(104\) 6469.54i 0.598145i
\(105\) 0 0
\(106\) −9185.66 −0.817520
\(107\) − 8389.28i − 0.732752i −0.930467 0.366376i \(-0.880598\pi\)
0.930467 0.366376i \(-0.119402\pi\)
\(108\) 0 0
\(109\) 18772.4 1.58004 0.790018 0.613084i \(-0.210071\pi\)
0.790018 + 0.613084i \(0.210071\pi\)
\(110\) − 8145.22i − 0.673159i
\(111\) 0 0
\(112\) −8656.80 −0.690115
\(113\) − 9416.81i − 0.737474i −0.929534 0.368737i \(-0.879790\pi\)
0.929534 0.368737i \(-0.120210\pi\)
\(114\) 0 0
\(115\) −8726.80 −0.659871
\(116\) − 965.916i − 0.0717833i
\(117\) 0 0
\(118\) −15615.4 −1.12148
\(119\) − 15923.8i − 1.12449i
\(120\) 0 0
\(121\) −23320.0 −1.59279
\(122\) − 2585.98i − 0.173742i
\(123\) 0 0
\(124\) 1256.78 0.0817366
\(125\) 1397.54i 0.0894427i
\(126\) 0 0
\(127\) 2810.49 0.174251 0.0871253 0.996197i \(-0.472232\pi\)
0.0871253 + 0.996197i \(0.472232\pi\)
\(128\) 12621.8i 0.770372i
\(129\) 0 0
\(130\) 4014.32 0.237534
\(131\) − 4025.51i − 0.234573i −0.993098 0.117287i \(-0.962580\pi\)
0.993098 0.117287i \(-0.0374196\pi\)
\(132\) 0 0
\(133\) −22046.8 −1.24636
\(134\) 20337.8i 1.13265i
\(135\) 0 0
\(136\) −27219.5 −1.47164
\(137\) 30008.6i 1.59884i 0.600773 + 0.799419i \(0.294859\pi\)
−0.600773 + 0.799419i \(0.705141\pi\)
\(138\) 0 0
\(139\) 36870.4 1.90831 0.954153 0.299319i \(-0.0967595\pi\)
0.954153 + 0.299319i \(0.0967595\pi\)
\(140\) − 889.446i − 0.0453799i
\(141\) 0 0
\(142\) 744.999 0.0369470
\(143\) − 18708.9i − 0.914904i
\(144\) 0 0
\(145\) −5350.46 −0.254481
\(146\) 19276.5i 0.904321i
\(147\) 0 0
\(148\) 2835.25 0.129440
\(149\) 1198.03i 0.0539629i 0.999636 + 0.0269815i \(0.00858951\pi\)
−0.999636 + 0.0269815i \(0.991410\pi\)
\(150\) 0 0
\(151\) −4160.96 −0.182490 −0.0912452 0.995828i \(-0.529085\pi\)
−0.0912452 + 0.995828i \(0.529085\pi\)
\(152\) 37685.8i 1.63114i
\(153\) 0 0
\(154\) 28715.0 1.21079
\(155\) − 6961.64i − 0.289767i
\(156\) 0 0
\(157\) 34111.3 1.38388 0.691941 0.721954i \(-0.256756\pi\)
0.691941 + 0.721954i \(0.256756\pi\)
\(158\) 20706.1i 0.829437i
\(159\) 0 0
\(160\) −2870.45 −0.112127
\(161\) − 30765.3i − 1.18689i
\(162\) 0 0
\(163\) −44109.2 −1.66017 −0.830087 0.557634i \(-0.811709\pi\)
−0.830087 + 0.557634i \(0.811709\pi\)
\(164\) − 203.403i − 0.00756257i
\(165\) 0 0
\(166\) 3563.39 0.129315
\(167\) − 1388.36i − 0.0497816i −0.999690 0.0248908i \(-0.992076\pi\)
0.999690 0.0248908i \(-0.00792380\pi\)
\(168\) 0 0
\(169\) −19340.4 −0.677163
\(170\) 16889.6i 0.584416i
\(171\) 0 0
\(172\) −1208.60 −0.0408530
\(173\) 37629.2i 1.25728i 0.777695 + 0.628642i \(0.216389\pi\)
−0.777695 + 0.628642i \(0.783611\pi\)
\(174\) 0 0
\(175\) −4926.88 −0.160878
\(176\) − 42792.2i − 1.38146i
\(177\) 0 0
\(178\) 32004.8 1.01012
\(179\) − 36571.1i − 1.14138i −0.821164 0.570692i \(-0.806675\pi\)
0.821164 0.570692i \(-0.193325\pi\)
\(180\) 0 0
\(181\) 6564.99 0.200390 0.100195 0.994968i \(-0.468053\pi\)
0.100195 + 0.994968i \(0.468053\pi\)
\(182\) 14152.0i 0.427244i
\(183\) 0 0
\(184\) −52588.9 −1.55331
\(185\) − 15705.2i − 0.458881i
\(186\) 0 0
\(187\) 78714.6 2.25098
\(188\) − 4312.74i − 0.122022i
\(189\) 0 0
\(190\) 23383.9 0.647754
\(191\) − 37757.9i − 1.03500i −0.855682 0.517501i \(-0.826862\pi\)
0.855682 0.517501i \(-0.173138\pi\)
\(192\) 0 0
\(193\) 10782.7 0.289477 0.144738 0.989470i \(-0.453766\pi\)
0.144738 + 0.989470i \(0.453766\pi\)
\(194\) 19108.2i 0.507711i
\(195\) 0 0
\(196\) −1710.49 −0.0445255
\(197\) − 10726.4i − 0.276390i −0.990405 0.138195i \(-0.955870\pi\)
0.990405 0.138195i \(-0.0441301\pi\)
\(198\) 0 0
\(199\) 73986.5 1.86830 0.934150 0.356882i \(-0.116160\pi\)
0.934150 + 0.356882i \(0.116160\pi\)
\(200\) 8421.79i 0.210545i
\(201\) 0 0
\(202\) 47287.6 1.15890
\(203\) − 18862.5i − 0.457726i
\(204\) 0 0
\(205\) −1126.70 −0.0268103
\(206\) − 26529.0i − 0.625153i
\(207\) 0 0
\(208\) 21089.9 0.487470
\(209\) − 108981.i − 2.49494i
\(210\) 0 0
\(211\) 1863.40 0.0418545 0.0209272 0.999781i \(-0.493338\pi\)
0.0209272 + 0.999781i \(0.493338\pi\)
\(212\) − 4958.32i − 0.110322i
\(213\) 0 0
\(214\) −31369.2 −0.684977
\(215\) 6694.73i 0.144829i
\(216\) 0 0
\(217\) 24542.5 0.521193
\(218\) − 70193.8i − 1.47702i
\(219\) 0 0
\(220\) 4396.70 0.0908410
\(221\) 38794.0i 0.794292i
\(222\) 0 0
\(223\) 58130.7 1.16895 0.584475 0.811411i \(-0.301300\pi\)
0.584475 + 0.811411i \(0.301300\pi\)
\(224\) − 10119.5i − 0.201679i
\(225\) 0 0
\(226\) −35211.3 −0.689391
\(227\) − 35042.0i − 0.680045i −0.940417 0.340022i \(-0.889565\pi\)
0.940417 0.340022i \(-0.110435\pi\)
\(228\) 0 0
\(229\) −35184.8 −0.670940 −0.335470 0.942051i \(-0.608895\pi\)
−0.335470 + 0.942051i \(0.608895\pi\)
\(230\) 32631.2i 0.616848i
\(231\) 0 0
\(232\) −32242.7 −0.599039
\(233\) − 45567.1i − 0.839342i −0.907676 0.419671i \(-0.862145\pi\)
0.907676 0.419671i \(-0.137855\pi\)
\(234\) 0 0
\(235\) −23889.4 −0.432583
\(236\) − 8429.05i − 0.151340i
\(237\) 0 0
\(238\) −59542.5 −1.05117
\(239\) − 33460.4i − 0.585781i −0.956146 0.292891i \(-0.905383\pi\)
0.956146 0.292891i \(-0.0946172\pi\)
\(240\) 0 0
\(241\) 15156.6 0.260957 0.130478 0.991451i \(-0.458349\pi\)
0.130478 + 0.991451i \(0.458349\pi\)
\(242\) 87198.3i 1.48894i
\(243\) 0 0
\(244\) 1395.88 0.0234460
\(245\) 9474.86i 0.157849i
\(246\) 0 0
\(247\) 53710.9 0.880376
\(248\) − 41951.9i − 0.682100i
\(249\) 0 0
\(250\) 5225.69 0.0836111
\(251\) 105439.i 1.67361i 0.547498 + 0.836807i \(0.315581\pi\)
−0.547498 + 0.836807i \(0.684419\pi\)
\(252\) 0 0
\(253\) 152079. 2.37590
\(254\) − 10509.0i − 0.162889i
\(255\) 0 0
\(256\) −24390.6 −0.372171
\(257\) 48805.9i 0.738935i 0.929244 + 0.369468i \(0.120460\pi\)
−0.929244 + 0.369468i \(0.879540\pi\)
\(258\) 0 0
\(259\) 55366.9 0.825374
\(260\) 2166.89i 0.0320546i
\(261\) 0 0
\(262\) −15052.2 −0.219279
\(263\) 55153.5i 0.797373i 0.917087 + 0.398686i \(0.130534\pi\)
−0.917087 + 0.398686i \(0.869466\pi\)
\(264\) 0 0
\(265\) −27465.4 −0.391106
\(266\) 82437.3i 1.16509i
\(267\) 0 0
\(268\) −10978.1 −0.152848
\(269\) 20335.5i 0.281028i 0.990079 + 0.140514i \(0.0448755\pi\)
−0.990079 + 0.140514i \(0.955124\pi\)
\(270\) 0 0
\(271\) −35462.8 −0.482874 −0.241437 0.970416i \(-0.577619\pi\)
−0.241437 + 0.970416i \(0.577619\pi\)
\(272\) 88732.4i 1.19935i
\(273\) 0 0
\(274\) 112208. 1.49459
\(275\) − 24354.5i − 0.322043i
\(276\) 0 0
\(277\) 131199. 1.70990 0.854948 0.518714i \(-0.173589\pi\)
0.854948 + 0.518714i \(0.173589\pi\)
\(278\) − 137866.i − 1.78388i
\(279\) 0 0
\(280\) −29690.1 −0.378700
\(281\) − 47907.8i − 0.606727i −0.952875 0.303364i \(-0.901890\pi\)
0.952875 0.303364i \(-0.0981097\pi\)
\(282\) 0 0
\(283\) 96557.4 1.20563 0.602813 0.797883i \(-0.294047\pi\)
0.602813 + 0.797883i \(0.294047\pi\)
\(284\) 402.142i 0.00498590i
\(285\) 0 0
\(286\) −69956.2 −0.855253
\(287\) − 3972.06i − 0.0482227i
\(288\) 0 0
\(289\) −79698.8 −0.954236
\(290\) 20006.5i 0.237889i
\(291\) 0 0
\(292\) −10405.3 −0.122036
\(293\) − 54246.3i − 0.631881i −0.948779 0.315940i \(-0.897680\pi\)
0.948779 0.315940i \(-0.102320\pi\)
\(294\) 0 0
\(295\) −46690.7 −0.536521
\(296\) − 94641.9i − 1.08019i
\(297\) 0 0
\(298\) 4479.68 0.0504445
\(299\) 74951.2i 0.838371i
\(300\) 0 0
\(301\) −23601.5 −0.260500
\(302\) 15558.7i 0.170592i
\(303\) 0 0
\(304\) 122851. 1.32933
\(305\) − 7732.16i − 0.0831192i
\(306\) 0 0
\(307\) 94546.7 1.00316 0.501579 0.865112i \(-0.332753\pi\)
0.501579 + 0.865112i \(0.332753\pi\)
\(308\) 15500.1i 0.163393i
\(309\) 0 0
\(310\) −26031.0 −0.270874
\(311\) − 150838.i − 1.55951i −0.626082 0.779757i \(-0.715343\pi\)
0.626082 0.779757i \(-0.284657\pi\)
\(312\) 0 0
\(313\) 7404.54 0.0755804 0.0377902 0.999286i \(-0.487968\pi\)
0.0377902 + 0.999286i \(0.487968\pi\)
\(314\) − 127549.i − 1.29365i
\(315\) 0 0
\(316\) −11176.9 −0.111930
\(317\) 34534.4i 0.343664i 0.985126 + 0.171832i \(0.0549686\pi\)
−0.985126 + 0.171832i \(0.945031\pi\)
\(318\) 0 0
\(319\) 93240.7 0.916272
\(320\) 50022.2i 0.488498i
\(321\) 0 0
\(322\) −115038. −1.10950
\(323\) 225980.i 2.16603i
\(324\) 0 0
\(325\) 12003.0 0.113638
\(326\) 164933.i 1.55193i
\(327\) 0 0
\(328\) −6789.67 −0.0631104
\(329\) − 84219.3i − 0.778072i
\(330\) 0 0
\(331\) −10569.7 −0.0964730 −0.0482365 0.998836i \(-0.515360\pi\)
−0.0482365 + 0.998836i \(0.515360\pi\)
\(332\) 1923.48i 0.0174507i
\(333\) 0 0
\(334\) −5191.35 −0.0465358
\(335\) 60810.8i 0.541865i
\(336\) 0 0
\(337\) −51655.3 −0.454837 −0.227418 0.973797i \(-0.573028\pi\)
−0.227418 + 0.973797i \(0.573028\pi\)
\(338\) 72317.8i 0.633012i
\(339\) 0 0
\(340\) −9116.84 −0.0788654
\(341\) 121318.i 1.04332i
\(342\) 0 0
\(343\) −128038. −1.08830
\(344\) 40343.4i 0.340923i
\(345\) 0 0
\(346\) 140703. 1.17531
\(347\) 149562.i 1.24212i 0.783764 + 0.621059i \(0.213297\pi\)
−0.783764 + 0.621059i \(0.786703\pi\)
\(348\) 0 0
\(349\) −33931.9 −0.278585 −0.139293 0.990251i \(-0.544483\pi\)
−0.139293 + 0.990251i \(0.544483\pi\)
\(350\) 18422.6i 0.150388i
\(351\) 0 0
\(352\) 50022.4 0.403719
\(353\) − 194511.i − 1.56097i −0.625176 0.780484i \(-0.714973\pi\)
0.625176 0.780484i \(-0.285027\pi\)
\(354\) 0 0
\(355\) 2227.57 0.0176756
\(356\) 17275.8i 0.136314i
\(357\) 0 0
\(358\) −136747. −1.06697
\(359\) − 111524.i − 0.865328i −0.901555 0.432664i \(-0.857574\pi\)
0.901555 0.432664i \(-0.142426\pi\)
\(360\) 0 0
\(361\) 182551. 1.40078
\(362\) − 24547.8i − 0.187325i
\(363\) 0 0
\(364\) −7639.12 −0.0576555
\(365\) 57637.4i 0.432632i
\(366\) 0 0
\(367\) −109590. −0.813649 −0.406824 0.913506i \(-0.633364\pi\)
−0.406824 + 0.913506i \(0.633364\pi\)
\(368\) 171433.i 1.26590i
\(369\) 0 0
\(370\) −58724.9 −0.428962
\(371\) − 96826.2i − 0.703469i
\(372\) 0 0
\(373\) 198092. 1.42380 0.711899 0.702282i \(-0.247835\pi\)
0.711899 + 0.702282i \(0.247835\pi\)
\(374\) − 294330.i − 2.10422i
\(375\) 0 0
\(376\) −143961. −1.01828
\(377\) 45953.1i 0.323320i
\(378\) 0 0
\(379\) −210813. −1.46764 −0.733820 0.679344i \(-0.762265\pi\)
−0.733820 + 0.679344i \(0.762265\pi\)
\(380\) 12622.4i 0.0874127i
\(381\) 0 0
\(382\) −141184. −0.967521
\(383\) 27083.6i 0.184633i 0.995730 + 0.0923165i \(0.0294272\pi\)
−0.995730 + 0.0923165i \(0.970573\pi\)
\(384\) 0 0
\(385\) 85859.0 0.579248
\(386\) − 40318.7i − 0.270603i
\(387\) 0 0
\(388\) −10314.4 −0.0685142
\(389\) 103620.i 0.684770i 0.939560 + 0.342385i \(0.111235\pi\)
−0.939560 + 0.342385i \(0.888765\pi\)
\(390\) 0 0
\(391\) −315345. −2.06268
\(392\) 57096.9i 0.371570i
\(393\) 0 0
\(394\) −40108.3 −0.258370
\(395\) 61911.9i 0.396807i
\(396\) 0 0
\(397\) −7753.40 −0.0491939 −0.0245970 0.999697i \(-0.507830\pi\)
−0.0245970 + 0.999697i \(0.507830\pi\)
\(398\) − 276650.i − 1.74649i
\(399\) 0 0
\(400\) 27454.0 0.171588
\(401\) 276889.i 1.72194i 0.508660 + 0.860968i \(0.330141\pi\)
−0.508660 + 0.860968i \(0.669859\pi\)
\(402\) 0 0
\(403\) −59790.9 −0.368150
\(404\) 25525.3i 0.156390i
\(405\) 0 0
\(406\) −70530.5 −0.427883
\(407\) 273689.i 1.65222i
\(408\) 0 0
\(409\) −75753.2 −0.452850 −0.226425 0.974029i \(-0.572704\pi\)
−0.226425 + 0.974029i \(0.572704\pi\)
\(410\) 4212.96i 0.0250622i
\(411\) 0 0
\(412\) 14320.1 0.0843628
\(413\) − 164603.i − 0.965022i
\(414\) 0 0
\(415\) 10654.7 0.0618648
\(416\) 24653.2i 0.142458i
\(417\) 0 0
\(418\) −407504. −2.33227
\(419\) − 193009.i − 1.09938i −0.835368 0.549691i \(-0.814746\pi\)
0.835368 0.549691i \(-0.185254\pi\)
\(420\) 0 0
\(421\) 249334. 1.40675 0.703375 0.710819i \(-0.251675\pi\)
0.703375 + 0.710819i \(0.251675\pi\)
\(422\) − 6967.64i − 0.0391256i
\(423\) 0 0
\(424\) −165511. −0.920649
\(425\) 50500.6i 0.279588i
\(426\) 0 0
\(427\) 27258.9 0.149504
\(428\) − 16932.8i − 0.0924358i
\(429\) 0 0
\(430\) 25032.9 0.135386
\(431\) 2912.99i 0.0156814i 0.999969 + 0.00784068i \(0.00249579\pi\)
−0.999969 + 0.00784068i \(0.997504\pi\)
\(432\) 0 0
\(433\) 100384. 0.535411 0.267706 0.963501i \(-0.413735\pi\)
0.267706 + 0.963501i \(0.413735\pi\)
\(434\) − 91769.2i − 0.487212i
\(435\) 0 0
\(436\) 37889.8 0.199319
\(437\) 436600.i 2.28623i
\(438\) 0 0
\(439\) 324968. 1.68621 0.843105 0.537749i \(-0.180725\pi\)
0.843105 + 0.537749i \(0.180725\pi\)
\(440\) − 146764.i − 0.758077i
\(441\) 0 0
\(442\) 145059. 0.742505
\(443\) − 46397.7i − 0.236423i −0.992988 0.118211i \(-0.962284\pi\)
0.992988 0.118211i \(-0.0377160\pi\)
\(444\) 0 0
\(445\) 95695.4 0.483249
\(446\) − 217363.i − 1.09274i
\(447\) 0 0
\(448\) −176347. −0.878644
\(449\) − 267544.i − 1.32710i −0.748133 0.663549i \(-0.769049\pi\)
0.748133 0.663549i \(-0.230951\pi\)
\(450\) 0 0
\(451\) 19634.6 0.0965317
\(452\) − 19006.7i − 0.0930315i
\(453\) 0 0
\(454\) −131029. −0.635706
\(455\) 42315.1i 0.204396i
\(456\) 0 0
\(457\) −105948. −0.507293 −0.253647 0.967297i \(-0.581630\pi\)
−0.253647 + 0.967297i \(0.581630\pi\)
\(458\) 131563.i 0.627195i
\(459\) 0 0
\(460\) −17614.0 −0.0832419
\(461\) − 104388.i − 0.491187i −0.969373 0.245594i \(-0.921017\pi\)
0.969373 0.245594i \(-0.0789829\pi\)
\(462\) 0 0
\(463\) −71157.0 −0.331937 −0.165968 0.986131i \(-0.553075\pi\)
−0.165968 + 0.986131i \(0.553075\pi\)
\(464\) 105107.i 0.488198i
\(465\) 0 0
\(466\) −170384. −0.784617
\(467\) 335261.i 1.53727i 0.639690 + 0.768633i \(0.279063\pi\)
−0.639690 + 0.768633i \(0.720937\pi\)
\(468\) 0 0
\(469\) −214381. −0.974634
\(470\) 89327.2i 0.404378i
\(471\) 0 0
\(472\) −281365. −1.26295
\(473\) − 116667.i − 0.521465i
\(474\) 0 0
\(475\) 69918.7 0.309889
\(476\) − 32140.4i − 0.141853i
\(477\) 0 0
\(478\) −125115. −0.547589
\(479\) − 187820.i − 0.818599i −0.912400 0.409299i \(-0.865773\pi\)
0.912400 0.409299i \(-0.134227\pi\)
\(480\) 0 0
\(481\) −134886. −0.583012
\(482\) − 56673.6i − 0.243942i
\(483\) 0 0
\(484\) −47068.7 −0.200929
\(485\) 57134.2i 0.242892i
\(486\) 0 0
\(487\) −376679. −1.58823 −0.794115 0.607768i \(-0.792065\pi\)
−0.794115 + 0.607768i \(0.792065\pi\)
\(488\) − 46595.1i − 0.195659i
\(489\) 0 0
\(490\) 35428.4 0.147557
\(491\) − 435214.i − 1.80526i −0.430416 0.902630i \(-0.641633\pi\)
0.430416 0.902630i \(-0.358367\pi\)
\(492\) 0 0
\(493\) −193341. −0.795480
\(494\) − 200836.i − 0.822976i
\(495\) 0 0
\(496\) −136758. −0.555890
\(497\) 7853.05i 0.0317926i
\(498\) 0 0
\(499\) 183510. 0.736985 0.368492 0.929631i \(-0.379874\pi\)
0.368492 + 0.929631i \(0.379874\pi\)
\(500\) 2820.77i 0.0112831i
\(501\) 0 0
\(502\) 394259. 1.56449
\(503\) − 402594.i − 1.59123i −0.605806 0.795613i \(-0.707149\pi\)
0.605806 0.795613i \(-0.292851\pi\)
\(504\) 0 0
\(505\) 141392. 0.554422
\(506\) − 568653.i − 2.22099i
\(507\) 0 0
\(508\) 5672.63 0.0219815
\(509\) 390783.i 1.50834i 0.656678 + 0.754171i \(0.271961\pi\)
−0.656678 + 0.754171i \(0.728039\pi\)
\(510\) 0 0
\(511\) −203194. −0.778161
\(512\) 293150.i 1.11828i
\(513\) 0 0
\(514\) 182495. 0.690757
\(515\) − 79322.7i − 0.299077i
\(516\) 0 0
\(517\) 416312. 1.55754
\(518\) − 207028.i − 0.771560i
\(519\) 0 0
\(520\) 72331.6 0.267499
\(521\) − 4492.48i − 0.0165505i −0.999966 0.00827524i \(-0.997366\pi\)
0.999966 0.00827524i \(-0.00263412\pi\)
\(522\) 0 0
\(523\) 365385. 1.33582 0.667909 0.744243i \(-0.267189\pi\)
0.667909 + 0.744243i \(0.267189\pi\)
\(524\) − 8125.01i − 0.0295911i
\(525\) 0 0
\(526\) 206230. 0.745384
\(527\) − 251561.i − 0.905778i
\(528\) 0 0
\(529\) −329415. −1.17715
\(530\) 102699.i 0.365606i
\(531\) 0 0
\(532\) −44498.8 −0.157226
\(533\) 9676.82i 0.0340626i
\(534\) 0 0
\(535\) −93795.0 −0.327697
\(536\) 366454.i 1.27553i
\(537\) 0 0
\(538\) 76038.5 0.262705
\(539\) − 165115.i − 0.568341i
\(540\) 0 0
\(541\) 325408. 1.11182 0.555909 0.831243i \(-0.312370\pi\)
0.555909 + 0.831243i \(0.312370\pi\)
\(542\) 132602.i 0.451391i
\(543\) 0 0
\(544\) −103725. −0.350497
\(545\) − 209882.i − 0.706613i
\(546\) 0 0
\(547\) −504866. −1.68734 −0.843669 0.536864i \(-0.819609\pi\)
−0.843669 + 0.536864i \(0.819609\pi\)
\(548\) 60568.8i 0.201692i
\(549\) 0 0
\(550\) −91066.3 −0.301046
\(551\) 267683.i 0.881692i
\(552\) 0 0
\(553\) −218263. −0.713724
\(554\) − 490578.i − 1.59841i
\(555\) 0 0
\(556\) 74418.4 0.240730
\(557\) − 68974.4i − 0.222320i −0.993803 0.111160i \(-0.964543\pi\)
0.993803 0.111160i \(-0.0354565\pi\)
\(558\) 0 0
\(559\) 57498.6 0.184007
\(560\) 96786.0i 0.308629i
\(561\) 0 0
\(562\) −179137. −0.567169
\(563\) 167958.i 0.529888i 0.964264 + 0.264944i \(0.0853535\pi\)
−0.964264 + 0.264944i \(0.914647\pi\)
\(564\) 0 0
\(565\) −105283. −0.329809
\(566\) − 361047.i − 1.12702i
\(567\) 0 0
\(568\) 13423.7 0.0416078
\(569\) 132519.i 0.409310i 0.978834 + 0.204655i \(0.0656073\pi\)
−0.978834 + 0.204655i \(0.934393\pi\)
\(570\) 0 0
\(571\) 448800. 1.37651 0.688257 0.725467i \(-0.258376\pi\)
0.688257 + 0.725467i \(0.258376\pi\)
\(572\) − 37761.6i − 0.115414i
\(573\) 0 0
\(574\) −14852.3 −0.0450786
\(575\) 97568.5i 0.295103i
\(576\) 0 0
\(577\) −206080. −0.618991 −0.309496 0.950901i \(-0.600160\pi\)
−0.309496 + 0.950901i \(0.600160\pi\)
\(578\) 298010.i 0.892020i
\(579\) 0 0
\(580\) −10799.3 −0.0321025
\(581\) 37561.8i 0.111274i
\(582\) 0 0
\(583\) 478631. 1.40820
\(584\) 347331.i 1.01840i
\(585\) 0 0
\(586\) −202838. −0.590682
\(587\) 147864.i 0.429126i 0.976710 + 0.214563i \(0.0688327\pi\)
−0.976710 + 0.214563i \(0.931167\pi\)
\(588\) 0 0
\(589\) −348289. −1.00394
\(590\) 174586.i 0.501540i
\(591\) 0 0
\(592\) −308521. −0.880321
\(593\) 22222.5i 0.0631951i 0.999501 + 0.0315975i \(0.0100595\pi\)
−0.999501 + 0.0315975i \(0.989941\pi\)
\(594\) 0 0
\(595\) −178034. −0.502885
\(596\) 2418.08i 0.00680735i
\(597\) 0 0
\(598\) 280257. 0.783709
\(599\) − 31912.6i − 0.0889425i −0.999011 0.0444712i \(-0.985840\pi\)
0.999011 0.0444712i \(-0.0141603\pi\)
\(600\) 0 0
\(601\) 433326. 1.19968 0.599841 0.800119i \(-0.295231\pi\)
0.599841 + 0.800119i \(0.295231\pi\)
\(602\) 88250.8i 0.243515i
\(603\) 0 0
\(604\) −8398.41 −0.0230209
\(605\) 260726.i 0.712318i
\(606\) 0 0
\(607\) 135910. 0.368871 0.184435 0.982845i \(-0.440954\pi\)
0.184435 + 0.982845i \(0.440954\pi\)
\(608\) 143608.i 0.388483i
\(609\) 0 0
\(610\) −28912.1 −0.0776998
\(611\) 205177.i 0.549599i
\(612\) 0 0
\(613\) 205158. 0.545967 0.272984 0.962019i \(-0.411989\pi\)
0.272984 + 0.962019i \(0.411989\pi\)
\(614\) − 353529.i − 0.937752i
\(615\) 0 0
\(616\) 517399. 1.36353
\(617\) − 224.386i 0 0.000589421i −1.00000 0.000294711i \(-0.999906\pi\)
1.00000 0.000294711i \(-9.38093e-5\pi\)
\(618\) 0 0
\(619\) −428963. −1.11954 −0.559769 0.828649i \(-0.689110\pi\)
−0.559769 + 0.828649i \(0.689110\pi\)
\(620\) − 14051.2i − 0.0365537i
\(621\) 0 0
\(622\) −564013. −1.45783
\(623\) 337363.i 0.869204i
\(624\) 0 0
\(625\) 15625.0 0.0400000
\(626\) − 27687.0i − 0.0706526i
\(627\) 0 0
\(628\) 68849.6 0.174575
\(629\) − 567512.i − 1.43441i
\(630\) 0 0
\(631\) 587087. 1.47450 0.737248 0.675623i \(-0.236125\pi\)
0.737248 + 0.675623i \(0.236125\pi\)
\(632\) 373090.i 0.934070i
\(633\) 0 0
\(634\) 129131. 0.321257
\(635\) − 31422.2i − 0.0779272i
\(636\) 0 0
\(637\) 81376.0 0.200548
\(638\) − 348646.i − 0.856531i
\(639\) 0 0
\(640\) 141116. 0.344521
\(641\) 191293.i 0.465567i 0.972529 + 0.232784i \(0.0747834\pi\)
−0.972529 + 0.232784i \(0.925217\pi\)
\(642\) 0 0
\(643\) 406807. 0.983936 0.491968 0.870613i \(-0.336278\pi\)
0.491968 + 0.870613i \(0.336278\pi\)
\(644\) − 62096.1i − 0.149724i
\(645\) 0 0
\(646\) 844984. 2.02481
\(647\) 408318.i 0.975416i 0.873007 + 0.487708i \(0.162167\pi\)
−0.873007 + 0.487708i \(0.837833\pi\)
\(648\) 0 0
\(649\) 813663. 1.93177
\(650\) − 44881.5i − 0.106228i
\(651\) 0 0
\(652\) −89029.1 −0.209429
\(653\) − 217919.i − 0.511055i −0.966802 0.255528i \(-0.917751\pi\)
0.966802 0.255528i \(-0.0822492\pi\)
\(654\) 0 0
\(655\) −45006.6 −0.104904
\(656\) 22133.5i 0.0514330i
\(657\) 0 0
\(658\) −314913. −0.727342
\(659\) − 228067.i − 0.525160i −0.964910 0.262580i \(-0.915427\pi\)
0.964910 0.262580i \(-0.0845734\pi\)
\(660\) 0 0
\(661\) 454570. 1.04039 0.520196 0.854047i \(-0.325859\pi\)
0.520196 + 0.854047i \(0.325859\pi\)
\(662\) 39522.1i 0.0901829i
\(663\) 0 0
\(664\) 64206.5 0.145627
\(665\) 246490.i 0.557387i
\(666\) 0 0
\(667\) −373539. −0.839624
\(668\) − 2802.23i − 0.00627988i
\(669\) 0 0
\(670\) 227384. 0.506535
\(671\) 134746.i 0.299275i
\(672\) 0 0
\(673\) 262700. 0.580002 0.290001 0.957026i \(-0.406344\pi\)
0.290001 + 0.957026i \(0.406344\pi\)
\(674\) 193150.i 0.425181i
\(675\) 0 0
\(676\) −39036.4 −0.0854232
\(677\) 235310.i 0.513409i 0.966490 + 0.256705i \(0.0826367\pi\)
−0.966490 + 0.256705i \(0.917363\pi\)
\(678\) 0 0
\(679\) −201420. −0.436881
\(680\) 304324.i 0.658140i
\(681\) 0 0
\(682\) 453633. 0.975295
\(683\) − 103031.i − 0.220864i −0.993884 0.110432i \(-0.964777\pi\)
0.993884 0.110432i \(-0.0352235\pi\)
\(684\) 0 0
\(685\) 335506. 0.715022
\(686\) 478760.i 1.01735i
\(687\) 0 0
\(688\) 131515. 0.277842
\(689\) 235890.i 0.496903i
\(690\) 0 0
\(691\) 183510. 0.384330 0.192165 0.981363i \(-0.438449\pi\)
0.192165 + 0.981363i \(0.438449\pi\)
\(692\) 75950.1i 0.158605i
\(693\) 0 0
\(694\) 559243. 1.16113
\(695\) − 412223.i − 0.853420i
\(696\) 0 0
\(697\) −40713.7 −0.0838059
\(698\) 126878.i 0.260421i
\(699\) 0 0
\(700\) −9944.31 −0.0202945
\(701\) 740488.i 1.50689i 0.657510 + 0.753445i \(0.271610\pi\)
−0.657510 + 0.753445i \(0.728390\pi\)
\(702\) 0 0
\(703\) −785728. −1.58987
\(704\) − 871719.i − 1.75886i
\(705\) 0 0
\(706\) −727314. −1.45919
\(707\) 498460.i 0.997221i
\(708\) 0 0
\(709\) 89664.5 0.178373 0.0891863 0.996015i \(-0.471573\pi\)
0.0891863 + 0.996015i \(0.471573\pi\)
\(710\) − 8329.34i − 0.0165232i
\(711\) 0 0
\(712\) 576674. 1.13755
\(713\) − 486023.i − 0.956043i
\(714\) 0 0
\(715\) −209172. −0.409158
\(716\) − 73814.4i − 0.143984i
\(717\) 0 0
\(718\) −417012. −0.808909
\(719\) 764844.i 1.47950i 0.672882 + 0.739750i \(0.265056\pi\)
−0.672882 + 0.739750i \(0.734944\pi\)
\(720\) 0 0
\(721\) 279643. 0.537939
\(722\) − 682596.i − 1.30945i
\(723\) 0 0
\(724\) 13250.6 0.0252790
\(725\) 59820.0i 0.113807i
\(726\) 0 0
\(727\) −48065.0 −0.0909410 −0.0454705 0.998966i \(-0.514479\pi\)
−0.0454705 + 0.998966i \(0.514479\pi\)
\(728\) 254997.i 0.481141i
\(729\) 0 0
\(730\) 215518. 0.404425
\(731\) 241916.i 0.452720i
\(732\) 0 0
\(733\) −339984. −0.632776 −0.316388 0.948630i \(-0.602470\pi\)
−0.316388 + 0.948630i \(0.602470\pi\)
\(734\) 409777.i 0.760599i
\(735\) 0 0
\(736\) −200399. −0.369947
\(737\) − 1.05973e6i − 1.95101i
\(738\) 0 0
\(739\) −591893. −1.08381 −0.541907 0.840439i \(-0.682297\pi\)
−0.541907 + 0.840439i \(0.682297\pi\)
\(740\) − 31699.1i − 0.0578873i
\(741\) 0 0
\(742\) −362053. −0.657603
\(743\) − 312219.i − 0.565563i −0.959184 0.282782i \(-0.908743\pi\)
0.959184 0.282782i \(-0.0912572\pi\)
\(744\) 0 0
\(745\) 13394.4 0.0241329
\(746\) − 740705.i − 1.33097i
\(747\) 0 0
\(748\) 158876. 0.283959
\(749\) − 330664.i − 0.589417i
\(750\) 0 0
\(751\) −623828. −1.10608 −0.553038 0.833156i \(-0.686532\pi\)
−0.553038 + 0.833156i \(0.686532\pi\)
\(752\) 469295.i 0.829870i
\(753\) 0 0
\(754\) 171828. 0.302239
\(755\) 46521.0i 0.0816122i
\(756\) 0 0
\(757\) 992275. 1.73157 0.865785 0.500416i \(-0.166820\pi\)
0.865785 + 0.500416i \(0.166820\pi\)
\(758\) 788273.i 1.37195i
\(759\) 0 0
\(760\) 421340. 0.729467
\(761\) 8453.84i 0.0145977i 0.999973 + 0.00729885i \(0.00232332\pi\)
−0.999973 + 0.00729885i \(0.997677\pi\)
\(762\) 0 0
\(763\) 739914. 1.27096
\(764\) − 76209.9i − 0.130564i
\(765\) 0 0
\(766\) 101271. 0.172595
\(767\) 401009.i 0.681653i
\(768\) 0 0
\(769\) −181141. −0.306312 −0.153156 0.988202i \(-0.548944\pi\)
−0.153156 + 0.988202i \(0.548944\pi\)
\(770\) − 321044.i − 0.541481i
\(771\) 0 0
\(772\) 21763.6 0.0365171
\(773\) − 384785.i − 0.643961i −0.946746 0.321980i \(-0.895651\pi\)
0.946746 0.321980i \(-0.104349\pi\)
\(774\) 0 0
\(775\) −77833.5 −0.129588
\(776\) 344299.i 0.571758i
\(777\) 0 0
\(778\) 387456. 0.640123
\(779\) 56368.6i 0.0928886i
\(780\) 0 0
\(781\) −38819.2 −0.0636420
\(782\) 1.17914e6i 1.92820i
\(783\) 0 0
\(784\) 186129. 0.302818
\(785\) − 381376.i − 0.618891i
\(786\) 0 0
\(787\) −400539. −0.646689 −0.323345 0.946281i \(-0.604807\pi\)
−0.323345 + 0.946281i \(0.604807\pi\)
\(788\) − 21650.0i − 0.0348663i
\(789\) 0 0
\(790\) 231501. 0.370936
\(791\) − 371164.i − 0.593216i
\(792\) 0 0
\(793\) −66408.7 −0.105603
\(794\) 28991.5i 0.0459865i
\(795\) 0 0
\(796\) 149333. 0.235684
\(797\) − 212231.i − 0.334112i −0.985947 0.167056i \(-0.946574\pi\)
0.985947 0.167056i \(-0.0534261\pi\)
\(798\) 0 0
\(799\) −863250. −1.35221
\(800\) 32092.6i 0.0501447i
\(801\) 0 0
\(802\) 1.03534e6 1.60967
\(803\) − 1.00443e6i − 1.55771i
\(804\) 0 0
\(805\) −343967. −0.530792
\(806\) 223570.i 0.344147i
\(807\) 0 0
\(808\) 852046. 1.30509
\(809\) 804505.i 1.22923i 0.788829 + 0.614613i \(0.210688\pi\)
−0.788829 + 0.614613i \(0.789312\pi\)
\(810\) 0 0
\(811\) −400098. −0.608310 −0.304155 0.952623i \(-0.598374\pi\)
−0.304155 + 0.952623i \(0.598374\pi\)
\(812\) − 38071.6i − 0.0577416i
\(813\) 0 0
\(814\) 1.02338e6 1.54450
\(815\) 493156.i 0.742453i
\(816\) 0 0
\(817\) 334936. 0.501785
\(818\) 283256.i 0.423324i
\(819\) 0 0
\(820\) −2274.11 −0.00338208
\(821\) − 170567.i − 0.253051i −0.991963 0.126525i \(-0.959617\pi\)
0.991963 0.126525i \(-0.0403825\pi\)
\(822\) 0 0
\(823\) 325490. 0.480550 0.240275 0.970705i \(-0.422762\pi\)
0.240275 + 0.970705i \(0.422762\pi\)
\(824\) − 478010.i − 0.704016i
\(825\) 0 0
\(826\) −615483. −0.902102
\(827\) − 1.18917e6i − 1.73873i −0.494173 0.869363i \(-0.664529\pi\)
0.494173 0.869363i \(-0.335471\pi\)
\(828\) 0 0
\(829\) −995746. −1.44890 −0.724452 0.689325i \(-0.757907\pi\)
−0.724452 + 0.689325i \(0.757907\pi\)
\(830\) − 39839.9i − 0.0578312i
\(831\) 0 0
\(832\) 429622. 0.620640
\(833\) 342377.i 0.493417i
\(834\) 0 0
\(835\) −15522.3 −0.0222630
\(836\) − 219966.i − 0.314734i
\(837\) 0 0
\(838\) −721697. −1.02770
\(839\) 428816.i 0.609182i 0.952483 + 0.304591i \(0.0985198\pi\)
−0.952483 + 0.304591i \(0.901480\pi\)
\(840\) 0 0
\(841\) 478261. 0.676197
\(842\) − 932309.i − 1.31503i
\(843\) 0 0
\(844\) 3761.05 0.00527989
\(845\) 216233.i 0.302836i
\(846\) 0 0
\(847\) −919160. −1.28122
\(848\) 539544.i 0.750301i
\(849\) 0 0
\(850\) 188832. 0.261359
\(851\) − 1.09645e6i − 1.51401i
\(852\) 0 0
\(853\) −710107. −0.975945 −0.487973 0.872859i \(-0.662263\pi\)
−0.487973 + 0.872859i \(0.662263\pi\)
\(854\) − 101926.i − 0.139756i
\(855\) 0 0
\(856\) −565222. −0.771386
\(857\) − 737753.i − 1.00450i −0.864723 0.502250i \(-0.832506\pi\)
0.864723 0.502250i \(-0.167494\pi\)
\(858\) 0 0
\(859\) −93951.8 −0.127326 −0.0636632 0.997971i \(-0.520278\pi\)
−0.0636632 + 0.997971i \(0.520278\pi\)
\(860\) 13512.5i 0.0182700i
\(861\) 0 0
\(862\) 10892.2 0.0146589
\(863\) − 142070.i − 0.190757i −0.995441 0.0953787i \(-0.969594\pi\)
0.995441 0.0953787i \(-0.0304062\pi\)
\(864\) 0 0
\(865\) 420708. 0.562274
\(866\) − 375355.i − 0.500502i
\(867\) 0 0
\(868\) 49536.0 0.0657479
\(869\) − 1.07892e6i − 1.42872i
\(870\) 0 0
\(871\) 522281. 0.688443
\(872\) − 1.26478e6i − 1.66334i
\(873\) 0 0
\(874\) 1.63253e6 2.13717
\(875\) 55084.1i 0.0719466i
\(876\) 0 0
\(877\) 747229. 0.971526 0.485763 0.874091i \(-0.338542\pi\)
0.485763 + 0.874091i \(0.338542\pi\)
\(878\) − 1.21512e6i − 1.57627i
\(879\) 0 0
\(880\) −478432. −0.617809
\(881\) − 227197.i − 0.292718i −0.989232 0.146359i \(-0.953244\pi\)
0.989232 0.146359i \(-0.0467555\pi\)
\(882\) 0 0
\(883\) −924566. −1.18581 −0.592907 0.805271i \(-0.702020\pi\)
−0.592907 + 0.805271i \(0.702020\pi\)
\(884\) 78301.1i 0.100199i
\(885\) 0 0
\(886\) −173490. −0.221008
\(887\) 181751.i 0.231009i 0.993307 + 0.115504i \(0.0368485\pi\)
−0.993307 + 0.115504i \(0.963152\pi\)
\(888\) 0 0
\(889\) 110775. 0.140165
\(890\) − 357824.i − 0.451741i
\(891\) 0 0
\(892\) 117330. 0.147462
\(893\) 1.19518e6i 1.49875i
\(894\) 0 0
\(895\) −408877. −0.510443
\(896\) 497487.i 0.619678i
\(897\) 0 0
\(898\) −1.00040e6 −1.24057
\(899\) − 297984.i − 0.368701i
\(900\) 0 0
\(901\) −992471. −1.22255
\(902\) − 73417.9i − 0.0902378i
\(903\) 0 0
\(904\) −634451. −0.776357
\(905\) − 73398.8i − 0.0896172i
\(906\) 0 0
\(907\) −679686. −0.826216 −0.413108 0.910682i \(-0.635557\pi\)
−0.413108 + 0.910682i \(0.635557\pi\)
\(908\) − 70728.2i − 0.0857868i
\(909\) 0 0
\(910\) 158225. 0.191069
\(911\) − 102126.i − 0.123055i −0.998105 0.0615277i \(-0.980403\pi\)
0.998105 0.0615277i \(-0.0195972\pi\)
\(912\) 0 0
\(913\) −185675. −0.222747
\(914\) 396160.i 0.474218i
\(915\) 0 0
\(916\) −71016.2 −0.0846382
\(917\) − 158665.i − 0.188688i
\(918\) 0 0
\(919\) −160680. −0.190252 −0.0951262 0.995465i \(-0.530325\pi\)
−0.0951262 + 0.995465i \(0.530325\pi\)
\(920\) 587962.i 0.694662i
\(921\) 0 0
\(922\) −390326. −0.459162
\(923\) − 19131.8i − 0.0224570i
\(924\) 0 0
\(925\) −175590. −0.205218
\(926\) 266070.i 0.310295i
\(927\) 0 0
\(928\) −122866. −0.142671
\(929\) 774310.i 0.897188i 0.893736 + 0.448594i \(0.148075\pi\)
−0.893736 + 0.448594i \(0.851925\pi\)
\(930\) 0 0
\(931\) 474025. 0.546892
\(932\) − 91971.6i − 0.105882i
\(933\) 0 0
\(934\) 1.25361e6 1.43704
\(935\) − 880056.i − 1.00667i
\(936\) 0 0
\(937\) −505619. −0.575896 −0.287948 0.957646i \(-0.592973\pi\)
−0.287948 + 0.957646i \(0.592973\pi\)
\(938\) 801615.i 0.911088i
\(939\) 0 0
\(940\) −48217.9 −0.0545698
\(941\) − 413188.i − 0.466626i −0.972402 0.233313i \(-0.925043\pi\)
0.972402 0.233313i \(-0.0749567\pi\)
\(942\) 0 0
\(943\) −78659.9 −0.0884566
\(944\) 917215.i 1.02927i
\(945\) 0 0
\(946\) −436241. −0.487465
\(947\) 111959.i 0.124841i 0.998050 + 0.0624206i \(0.0198820\pi\)
−0.998050 + 0.0624206i \(0.980118\pi\)
\(948\) 0 0
\(949\) 495026. 0.549662
\(950\) − 261440.i − 0.289684i
\(951\) 0 0
\(952\) −1.07286e6 −1.18377
\(953\) 180864.i 0.199143i 0.995030 + 0.0995717i \(0.0317473\pi\)
−0.995030 + 0.0995717i \(0.968253\pi\)
\(954\) 0 0
\(955\) −422147. −0.462867
\(956\) − 67535.8i − 0.0738956i
\(957\) 0 0
\(958\) −702297. −0.765226
\(959\) 1.18279e6i 1.28609i
\(960\) 0 0
\(961\) −535805. −0.580177
\(962\) 504367.i 0.545000i
\(963\) 0 0
\(964\) 30591.8 0.0329193
\(965\) − 120554.i − 0.129458i
\(966\) 0 0
\(967\) −768555. −0.821906 −0.410953 0.911656i \(-0.634804\pi\)
−0.410953 + 0.911656i \(0.634804\pi\)
\(968\) 1.57117e6i 1.67677i
\(969\) 0 0
\(970\) 213636. 0.227055
\(971\) 1.66534e6i 1.76630i 0.469095 + 0.883148i \(0.344580\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(972\) 0 0
\(973\) 1.45325e6 1.53502
\(974\) 1.40848e6i 1.48468i
\(975\) 0 0
\(976\) −151894. −0.159456
\(977\) 261412.i 0.273865i 0.990580 + 0.136932i \(0.0437243\pi\)
−0.990580 + 0.136932i \(0.956276\pi\)
\(978\) 0 0
\(979\) −1.66765e6 −1.73996
\(980\) 19123.9i 0.0199124i
\(981\) 0 0
\(982\) −1.62735e6 −1.68756
\(983\) − 1.51022e6i − 1.56291i −0.623963 0.781454i \(-0.714479\pi\)
0.623963 0.781454i \(-0.285521\pi\)
\(984\) 0 0
\(985\) −119925. −0.123606
\(986\) 722939.i 0.743614i
\(987\) 0 0
\(988\) 108409. 0.111058
\(989\) 467389.i 0.477843i
\(990\) 0 0
\(991\) 1.25493e6 1.27783 0.638914 0.769278i \(-0.279384\pi\)
0.638914 + 0.769278i \(0.279384\pi\)
\(992\) − 159865.i − 0.162453i
\(993\) 0 0
\(994\) 29364.1 0.0297197
\(995\) − 827194.i − 0.835529i
\(996\) 0 0
\(997\) 1.12846e6 1.13527 0.567633 0.823282i \(-0.307859\pi\)
0.567633 + 0.823282i \(0.307859\pi\)
\(998\) − 686180.i − 0.688933i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.5.c.b.161.9 32
3.2 odd 2 inner 405.5.c.b.161.24 32
9.2 odd 6 135.5.i.a.71.12 32
9.4 even 3 135.5.i.a.116.12 32
9.5 odd 6 45.5.i.a.11.5 32
9.7 even 3 45.5.i.a.41.5 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.5.i.a.11.5 32 9.5 odd 6
45.5.i.a.41.5 yes 32 9.7 even 3
135.5.i.a.71.12 32 9.2 odd 6
135.5.i.a.116.12 32 9.4 even 3
405.5.c.b.161.9 32 1.1 even 1 trivial
405.5.c.b.161.24 32 3.2 odd 2 inner