Properties

Label 2-4050-1.1-c1-0-42
Degree $2$
Conductor $4050$
Sign $-1$
Analytic cond. $32.3394$
Root an. cond. $5.68677$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 4.44·7-s − 8-s − 1.44·11-s + 2.44·13-s + 4.44·14-s + 16-s + 3.89·17-s − 0.550·19-s + 1.44·22-s − 2.89·23-s − 2.44·26-s − 4.44·28-s + 6·29-s + 6.44·31-s − 32-s − 3.89·34-s − 8·37-s + 0.550·38-s + 41-s − 7.44·43-s − 1.44·44-s + 2.89·46-s + 0.449·47-s + 12.7·49-s + 2.44·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 1.68·7-s − 0.353·8-s − 0.437·11-s + 0.679·13-s + 1.18·14-s + 0.250·16-s + 0.945·17-s − 0.126·19-s + 0.309·22-s − 0.604·23-s − 0.480·26-s − 0.840·28-s + 1.11·29-s + 1.15·31-s − 0.176·32-s − 0.668·34-s − 1.31·37-s + 0.0893·38-s + 0.156·41-s − 1.13·43-s − 0.218·44-s + 0.427·46-s + 0.0655·47-s + 1.82·49-s + 0.339·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4050\)    =    \(2 \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(32.3394\)
Root analytic conductor: \(5.68677\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4050,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 4.44T + 7T^{2} \)
11 \( 1 + 1.44T + 11T^{2} \)
13 \( 1 - 2.44T + 13T^{2} \)
17 \( 1 - 3.89T + 17T^{2} \)
19 \( 1 + 0.550T + 19T^{2} \)
23 \( 1 + 2.89T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 6.44T + 31T^{2} \)
37 \( 1 + 8T + 37T^{2} \)
41 \( 1 - T + 41T^{2} \)
43 \( 1 + 7.44T + 43T^{2} \)
47 \( 1 - 0.449T + 47T^{2} \)
53 \( 1 - 8.44T + 53T^{2} \)
59 \( 1 - 11.2T + 59T^{2} \)
61 \( 1 + 0.449T + 61T^{2} \)
67 \( 1 + 9.44T + 67T^{2} \)
71 \( 1 + 2.44T + 71T^{2} \)
73 \( 1 - 4.79T + 73T^{2} \)
79 \( 1 + 7.34T + 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 + 12.8T + 89T^{2} \)
97 \( 1 + 13T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.302815122357674970102595899963, −7.29154537082269082549887394396, −6.65804367629973027316048428085, −6.07241967297884031258675785047, −5.31771719187244213030494224087, −4.01285725293355569658865985821, −3.23186992717430230942811359677, −2.56242775054916790578048754790, −1.17631391823707943161975143880, 0, 1.17631391823707943161975143880, 2.56242775054916790578048754790, 3.23186992717430230942811359677, 4.01285725293355569658865985821, 5.31771719187244213030494224087, 6.07241967297884031258675785047, 6.65804367629973027316048428085, 7.29154537082269082549887394396, 8.302815122357674970102595899963

Graph of the $Z$-function along the critical line