Properties

Label 4050.2.a.bm.1.1
Level $4050$
Weight $2$
Character 4050.1
Self dual yes
Analytic conductor $32.339$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4050,2,Mod(1,4050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4050.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4050 = 2 \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4050.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.3394128186\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.44949\) of defining polynomial
Character \(\chi\) \(=\) 4050.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -4.44949 q^{7} -1.00000 q^{8} -1.44949 q^{11} +2.44949 q^{13} +4.44949 q^{14} +1.00000 q^{16} +3.89898 q^{17} -0.550510 q^{19} +1.44949 q^{22} -2.89898 q^{23} -2.44949 q^{26} -4.44949 q^{28} +6.00000 q^{29} +6.44949 q^{31} -1.00000 q^{32} -3.89898 q^{34} -8.00000 q^{37} +0.550510 q^{38} +1.00000 q^{41} -7.44949 q^{43} -1.44949 q^{44} +2.89898 q^{46} +0.449490 q^{47} +12.7980 q^{49} +2.44949 q^{52} +8.44949 q^{53} +4.44949 q^{56} -6.00000 q^{58} +11.2474 q^{59} -0.449490 q^{61} -6.44949 q^{62} +1.00000 q^{64} -9.44949 q^{67} +3.89898 q^{68} -2.44949 q^{71} +4.79796 q^{73} +8.00000 q^{74} -0.550510 q^{76} +6.44949 q^{77} -7.34847 q^{79} -1.00000 q^{82} -4.00000 q^{83} +7.44949 q^{86} +1.44949 q^{88} -12.8990 q^{89} -10.8990 q^{91} -2.89898 q^{92} -0.449490 q^{94} -13.0000 q^{97} -12.7980 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 4 q^{7} - 2 q^{8} + 2 q^{11} + 4 q^{14} + 2 q^{16} - 2 q^{17} - 6 q^{19} - 2 q^{22} + 4 q^{23} - 4 q^{28} + 12 q^{29} + 8 q^{31} - 2 q^{32} + 2 q^{34} - 16 q^{37} + 6 q^{38} + 2 q^{41}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −4.44949 −1.68175 −0.840875 0.541230i \(-0.817959\pi\)
−0.840875 + 0.541230i \(0.817959\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −1.44949 −0.437038 −0.218519 0.975833i \(-0.570122\pi\)
−0.218519 + 0.975833i \(0.570122\pi\)
\(12\) 0 0
\(13\) 2.44949 0.679366 0.339683 0.940540i \(-0.389680\pi\)
0.339683 + 0.940540i \(0.389680\pi\)
\(14\) 4.44949 1.18918
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.89898 0.945641 0.472821 0.881159i \(-0.343236\pi\)
0.472821 + 0.881159i \(0.343236\pi\)
\(18\) 0 0
\(19\) −0.550510 −0.126296 −0.0631479 0.998004i \(-0.520114\pi\)
−0.0631479 + 0.998004i \(0.520114\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.44949 0.309032
\(23\) −2.89898 −0.604479 −0.302240 0.953232i \(-0.597734\pi\)
−0.302240 + 0.953232i \(0.597734\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.44949 −0.480384
\(27\) 0 0
\(28\) −4.44949 −0.840875
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 6.44949 1.15836 0.579181 0.815199i \(-0.303372\pi\)
0.579181 + 0.815199i \(0.303372\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −3.89898 −0.668669
\(35\) 0 0
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0.550510 0.0893046
\(39\) 0 0
\(40\) 0 0
\(41\) 1.00000 0.156174 0.0780869 0.996947i \(-0.475119\pi\)
0.0780869 + 0.996947i \(0.475119\pi\)
\(42\) 0 0
\(43\) −7.44949 −1.13604 −0.568018 0.823016i \(-0.692290\pi\)
−0.568018 + 0.823016i \(0.692290\pi\)
\(44\) −1.44949 −0.218519
\(45\) 0 0
\(46\) 2.89898 0.427431
\(47\) 0.449490 0.0655648 0.0327824 0.999463i \(-0.489563\pi\)
0.0327824 + 0.999463i \(0.489563\pi\)
\(48\) 0 0
\(49\) 12.7980 1.82828
\(50\) 0 0
\(51\) 0 0
\(52\) 2.44949 0.339683
\(53\) 8.44949 1.16063 0.580313 0.814393i \(-0.302930\pi\)
0.580313 + 0.814393i \(0.302930\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.44949 0.594588
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) 11.2474 1.46429 0.732147 0.681147i \(-0.238519\pi\)
0.732147 + 0.681147i \(0.238519\pi\)
\(60\) 0 0
\(61\) −0.449490 −0.0575513 −0.0287756 0.999586i \(-0.509161\pi\)
−0.0287756 + 0.999586i \(0.509161\pi\)
\(62\) −6.44949 −0.819086
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −9.44949 −1.15444 −0.577219 0.816589i \(-0.695862\pi\)
−0.577219 + 0.816589i \(0.695862\pi\)
\(68\) 3.89898 0.472821
\(69\) 0 0
\(70\) 0 0
\(71\) −2.44949 −0.290701 −0.145350 0.989380i \(-0.546431\pi\)
−0.145350 + 0.989380i \(0.546431\pi\)
\(72\) 0 0
\(73\) 4.79796 0.561559 0.280779 0.959772i \(-0.409407\pi\)
0.280779 + 0.959772i \(0.409407\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) −0.550510 −0.0631479
\(77\) 6.44949 0.734988
\(78\) 0 0
\(79\) −7.34847 −0.826767 −0.413384 0.910557i \(-0.635653\pi\)
−0.413384 + 0.910557i \(0.635653\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −1.00000 −0.110432
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 7.44949 0.803299
\(87\) 0 0
\(88\) 1.44949 0.154516
\(89\) −12.8990 −1.36729 −0.683645 0.729815i \(-0.739606\pi\)
−0.683645 + 0.729815i \(0.739606\pi\)
\(90\) 0 0
\(91\) −10.8990 −1.14252
\(92\) −2.89898 −0.302240
\(93\) 0 0
\(94\) −0.449490 −0.0463613
\(95\) 0 0
\(96\) 0 0
\(97\) −13.0000 −1.31995 −0.659975 0.751288i \(-0.729433\pi\)
−0.659975 + 0.751288i \(0.729433\pi\)
\(98\) −12.7980 −1.29279
\(99\) 0 0
\(100\) 0 0
\(101\) 8.00000 0.796030 0.398015 0.917379i \(-0.369699\pi\)
0.398015 + 0.917379i \(0.369699\pi\)
\(102\) 0 0
\(103\) −10.2474 −1.00971 −0.504856 0.863204i \(-0.668454\pi\)
−0.504856 + 0.863204i \(0.668454\pi\)
\(104\) −2.44949 −0.240192
\(105\) 0 0
\(106\) −8.44949 −0.820687
\(107\) 1.65153 0.159660 0.0798298 0.996809i \(-0.474562\pi\)
0.0798298 + 0.996809i \(0.474562\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.44949 −0.420437
\(113\) 4.89898 0.460857 0.230429 0.973089i \(-0.425987\pi\)
0.230429 + 0.973089i \(0.425987\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) −11.2474 −1.03541
\(119\) −17.3485 −1.59033
\(120\) 0 0
\(121\) −8.89898 −0.808998
\(122\) 0.449490 0.0406949
\(123\) 0 0
\(124\) 6.44949 0.579181
\(125\) 0 0
\(126\) 0 0
\(127\) 2.89898 0.257243 0.128621 0.991694i \(-0.458945\pi\)
0.128621 + 0.991694i \(0.458945\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 4.89898 0.428026 0.214013 0.976831i \(-0.431347\pi\)
0.214013 + 0.976831i \(0.431347\pi\)
\(132\) 0 0
\(133\) 2.44949 0.212398
\(134\) 9.44949 0.816312
\(135\) 0 0
\(136\) −3.89898 −0.334335
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) −11.2474 −0.953996 −0.476998 0.878904i \(-0.658275\pi\)
−0.476998 + 0.878904i \(0.658275\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.44949 0.205557
\(143\) −3.55051 −0.296909
\(144\) 0 0
\(145\) 0 0
\(146\) −4.79796 −0.397082
\(147\) 0 0
\(148\) −8.00000 −0.657596
\(149\) −16.2474 −1.33104 −0.665521 0.746379i \(-0.731791\pi\)
−0.665521 + 0.746379i \(0.731791\pi\)
\(150\) 0 0
\(151\) −6.89898 −0.561431 −0.280715 0.959791i \(-0.590572\pi\)
−0.280715 + 0.959791i \(0.590572\pi\)
\(152\) 0.550510 0.0446523
\(153\) 0 0
\(154\) −6.44949 −0.519715
\(155\) 0 0
\(156\) 0 0
\(157\) −16.0000 −1.27694 −0.638470 0.769647i \(-0.720432\pi\)
−0.638470 + 0.769647i \(0.720432\pi\)
\(158\) 7.34847 0.584613
\(159\) 0 0
\(160\) 0 0
\(161\) 12.8990 1.01658
\(162\) 0 0
\(163\) 0.898979 0.0704135 0.0352068 0.999380i \(-0.488791\pi\)
0.0352068 + 0.999380i \(0.488791\pi\)
\(164\) 1.00000 0.0780869
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) −24.2474 −1.87632 −0.938162 0.346197i \(-0.887473\pi\)
−0.938162 + 0.346197i \(0.887473\pi\)
\(168\) 0 0
\(169\) −7.00000 −0.538462
\(170\) 0 0
\(171\) 0 0
\(172\) −7.44949 −0.568018
\(173\) 7.79796 0.592868 0.296434 0.955053i \(-0.404203\pi\)
0.296434 + 0.955053i \(0.404203\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.44949 −0.109259
\(177\) 0 0
\(178\) 12.8990 0.966819
\(179\) −8.89898 −0.665141 −0.332570 0.943078i \(-0.607916\pi\)
−0.332570 + 0.943078i \(0.607916\pi\)
\(180\) 0 0
\(181\) 10.4495 0.776704 0.388352 0.921511i \(-0.373044\pi\)
0.388352 + 0.921511i \(0.373044\pi\)
\(182\) 10.8990 0.807886
\(183\) 0 0
\(184\) 2.89898 0.213716
\(185\) 0 0
\(186\) 0 0
\(187\) −5.65153 −0.413281
\(188\) 0.449490 0.0327824
\(189\) 0 0
\(190\) 0 0
\(191\) 6.24745 0.452050 0.226025 0.974122i \(-0.427427\pi\)
0.226025 + 0.974122i \(0.427427\pi\)
\(192\) 0 0
\(193\) 15.6969 1.12989 0.564945 0.825128i \(-0.308897\pi\)
0.564945 + 0.825128i \(0.308897\pi\)
\(194\) 13.0000 0.933346
\(195\) 0 0
\(196\) 12.7980 0.914140
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 0 0
\(199\) 20.4495 1.44963 0.724813 0.688946i \(-0.241926\pi\)
0.724813 + 0.688946i \(0.241926\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −8.00000 −0.562878
\(203\) −26.6969 −1.87376
\(204\) 0 0
\(205\) 0 0
\(206\) 10.2474 0.713974
\(207\) 0 0
\(208\) 2.44949 0.169842
\(209\) 0.797959 0.0551960
\(210\) 0 0
\(211\) −15.7980 −1.08758 −0.543788 0.839223i \(-0.683011\pi\)
−0.543788 + 0.839223i \(0.683011\pi\)
\(212\) 8.44949 0.580313
\(213\) 0 0
\(214\) −1.65153 −0.112896
\(215\) 0 0
\(216\) 0 0
\(217\) −28.6969 −1.94808
\(218\) 8.00000 0.541828
\(219\) 0 0
\(220\) 0 0
\(221\) 9.55051 0.642437
\(222\) 0 0
\(223\) −18.8990 −1.26557 −0.632785 0.774328i \(-0.718088\pi\)
−0.632785 + 0.774328i \(0.718088\pi\)
\(224\) 4.44949 0.297294
\(225\) 0 0
\(226\) −4.89898 −0.325875
\(227\) 1.44949 0.0962060 0.0481030 0.998842i \(-0.484682\pi\)
0.0481030 + 0.998842i \(0.484682\pi\)
\(228\) 0 0
\(229\) −13.5505 −0.895443 −0.447721 0.894173i \(-0.647764\pi\)
−0.447721 + 0.894173i \(0.647764\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) 15.6969 1.02834 0.514170 0.857688i \(-0.328100\pi\)
0.514170 + 0.857688i \(0.328100\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 11.2474 0.732147
\(237\) 0 0
\(238\) 17.3485 1.12453
\(239\) −28.6969 −1.85625 −0.928125 0.372268i \(-0.878580\pi\)
−0.928125 + 0.372268i \(0.878580\pi\)
\(240\) 0 0
\(241\) 1.00000 0.0644157 0.0322078 0.999481i \(-0.489746\pi\)
0.0322078 + 0.999481i \(0.489746\pi\)
\(242\) 8.89898 0.572048
\(243\) 0 0
\(244\) −0.449490 −0.0287756
\(245\) 0 0
\(246\) 0 0
\(247\) −1.34847 −0.0858010
\(248\) −6.44949 −0.409543
\(249\) 0 0
\(250\) 0 0
\(251\) −11.4495 −0.722685 −0.361343 0.932433i \(-0.617682\pi\)
−0.361343 + 0.932433i \(0.617682\pi\)
\(252\) 0 0
\(253\) 4.20204 0.264180
\(254\) −2.89898 −0.181898
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 19.8990 1.24126 0.620632 0.784102i \(-0.286876\pi\)
0.620632 + 0.784102i \(0.286876\pi\)
\(258\) 0 0
\(259\) 35.5959 2.21182
\(260\) 0 0
\(261\) 0 0
\(262\) −4.89898 −0.302660
\(263\) −7.55051 −0.465584 −0.232792 0.972526i \(-0.574786\pi\)
−0.232792 + 0.972526i \(0.574786\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.44949 −0.150188
\(267\) 0 0
\(268\) −9.44949 −0.577219
\(269\) 28.0454 1.70996 0.854979 0.518662i \(-0.173570\pi\)
0.854979 + 0.518662i \(0.173570\pi\)
\(270\) 0 0
\(271\) 23.5959 1.43335 0.716675 0.697407i \(-0.245663\pi\)
0.716675 + 0.697407i \(0.245663\pi\)
\(272\) 3.89898 0.236410
\(273\) 0 0
\(274\) −3.00000 −0.181237
\(275\) 0 0
\(276\) 0 0
\(277\) −9.59592 −0.576563 −0.288281 0.957546i \(-0.593084\pi\)
−0.288281 + 0.957546i \(0.593084\pi\)
\(278\) 11.2474 0.674577
\(279\) 0 0
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) −2.44949 −0.145350
\(285\) 0 0
\(286\) 3.55051 0.209946
\(287\) −4.44949 −0.262645
\(288\) 0 0
\(289\) −1.79796 −0.105762
\(290\) 0 0
\(291\) 0 0
\(292\) 4.79796 0.280779
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) 16.2474 0.941189
\(299\) −7.10102 −0.410663
\(300\) 0 0
\(301\) 33.1464 1.91053
\(302\) 6.89898 0.396992
\(303\) 0 0
\(304\) −0.550510 −0.0315739
\(305\) 0 0
\(306\) 0 0
\(307\) 23.9444 1.36658 0.683289 0.730148i \(-0.260549\pi\)
0.683289 + 0.730148i \(0.260549\pi\)
\(308\) 6.44949 0.367494
\(309\) 0 0
\(310\) 0 0
\(311\) −22.8990 −1.29848 −0.649241 0.760583i \(-0.724913\pi\)
−0.649241 + 0.760583i \(0.724913\pi\)
\(312\) 0 0
\(313\) −7.69694 −0.435057 −0.217528 0.976054i \(-0.569799\pi\)
−0.217528 + 0.976054i \(0.569799\pi\)
\(314\) 16.0000 0.902932
\(315\) 0 0
\(316\) −7.34847 −0.413384
\(317\) −30.9444 −1.73801 −0.869005 0.494803i \(-0.835240\pi\)
−0.869005 + 0.494803i \(0.835240\pi\)
\(318\) 0 0
\(319\) −8.69694 −0.486935
\(320\) 0 0
\(321\) 0 0
\(322\) −12.8990 −0.718832
\(323\) −2.14643 −0.119430
\(324\) 0 0
\(325\) 0 0
\(326\) −0.898979 −0.0497899
\(327\) 0 0
\(328\) −1.00000 −0.0552158
\(329\) −2.00000 −0.110264
\(330\) 0 0
\(331\) 33.3939 1.83549 0.917747 0.397166i \(-0.130006\pi\)
0.917747 + 0.397166i \(0.130006\pi\)
\(332\) −4.00000 −0.219529
\(333\) 0 0
\(334\) 24.2474 1.32676
\(335\) 0 0
\(336\) 0 0
\(337\) 20.5959 1.12193 0.560966 0.827839i \(-0.310430\pi\)
0.560966 + 0.827839i \(0.310430\pi\)
\(338\) 7.00000 0.380750
\(339\) 0 0
\(340\) 0 0
\(341\) −9.34847 −0.506248
\(342\) 0 0
\(343\) −25.7980 −1.39296
\(344\) 7.44949 0.401650
\(345\) 0 0
\(346\) −7.79796 −0.419221
\(347\) −15.2474 −0.818526 −0.409263 0.912416i \(-0.634214\pi\)
−0.409263 + 0.912416i \(0.634214\pi\)
\(348\) 0 0
\(349\) 11.5959 0.620715 0.310358 0.950620i \(-0.399551\pi\)
0.310358 + 0.950620i \(0.399551\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.44949 0.0772581
\(353\) −6.59592 −0.351065 −0.175533 0.984474i \(-0.556165\pi\)
−0.175533 + 0.984474i \(0.556165\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −12.8990 −0.683645
\(357\) 0 0
\(358\) 8.89898 0.470326
\(359\) −8.44949 −0.445947 −0.222974 0.974825i \(-0.571576\pi\)
−0.222974 + 0.974825i \(0.571576\pi\)
\(360\) 0 0
\(361\) −18.6969 −0.984049
\(362\) −10.4495 −0.549213
\(363\) 0 0
\(364\) −10.8990 −0.571262
\(365\) 0 0
\(366\) 0 0
\(367\) 11.5959 0.605302 0.302651 0.953101i \(-0.402128\pi\)
0.302651 + 0.953101i \(0.402128\pi\)
\(368\) −2.89898 −0.151120
\(369\) 0 0
\(370\) 0 0
\(371\) −37.5959 −1.95188
\(372\) 0 0
\(373\) −25.5959 −1.32531 −0.662653 0.748926i \(-0.730570\pi\)
−0.662653 + 0.748926i \(0.730570\pi\)
\(374\) 5.65153 0.292234
\(375\) 0 0
\(376\) −0.449490 −0.0231807
\(377\) 14.6969 0.756931
\(378\) 0 0
\(379\) −30.1464 −1.54852 −0.774259 0.632869i \(-0.781877\pi\)
−0.774259 + 0.632869i \(0.781877\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −6.24745 −0.319647
\(383\) 1.79796 0.0918714 0.0459357 0.998944i \(-0.485373\pi\)
0.0459357 + 0.998944i \(0.485373\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −15.6969 −0.798953
\(387\) 0 0
\(388\) −13.0000 −0.659975
\(389\) −22.4495 −1.13823 −0.569117 0.822256i \(-0.692715\pi\)
−0.569117 + 0.822256i \(0.692715\pi\)
\(390\) 0 0
\(391\) −11.3031 −0.571620
\(392\) −12.7980 −0.646395
\(393\) 0 0
\(394\) 8.00000 0.403034
\(395\) 0 0
\(396\) 0 0
\(397\) −17.7980 −0.893254 −0.446627 0.894720i \(-0.647375\pi\)
−0.446627 + 0.894720i \(0.647375\pi\)
\(398\) −20.4495 −1.02504
\(399\) 0 0
\(400\) 0 0
\(401\) −28.7980 −1.43810 −0.719051 0.694958i \(-0.755423\pi\)
−0.719051 + 0.694958i \(0.755423\pi\)
\(402\) 0 0
\(403\) 15.7980 0.786952
\(404\) 8.00000 0.398015
\(405\) 0 0
\(406\) 26.6969 1.32495
\(407\) 11.5959 0.574788
\(408\) 0 0
\(409\) 6.10102 0.301676 0.150838 0.988558i \(-0.451803\pi\)
0.150838 + 0.988558i \(0.451803\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −10.2474 −0.504856
\(413\) −50.0454 −2.46257
\(414\) 0 0
\(415\) 0 0
\(416\) −2.44949 −0.120096
\(417\) 0 0
\(418\) −0.797959 −0.0390294
\(419\) −0.898979 −0.0439180 −0.0219590 0.999759i \(-0.506990\pi\)
−0.0219590 + 0.999759i \(0.506990\pi\)
\(420\) 0 0
\(421\) −16.4495 −0.801699 −0.400850 0.916144i \(-0.631285\pi\)
−0.400850 + 0.916144i \(0.631285\pi\)
\(422\) 15.7980 0.769033
\(423\) 0 0
\(424\) −8.44949 −0.410343
\(425\) 0 0
\(426\) 0 0
\(427\) 2.00000 0.0967868
\(428\) 1.65153 0.0798298
\(429\) 0 0
\(430\) 0 0
\(431\) −13.7526 −0.662437 −0.331219 0.943554i \(-0.607460\pi\)
−0.331219 + 0.943554i \(0.607460\pi\)
\(432\) 0 0
\(433\) −23.0000 −1.10531 −0.552655 0.833410i \(-0.686385\pi\)
−0.552655 + 0.833410i \(0.686385\pi\)
\(434\) 28.6969 1.37750
\(435\) 0 0
\(436\) −8.00000 −0.383131
\(437\) 1.59592 0.0763431
\(438\) 0 0
\(439\) −22.0454 −1.05217 −0.526085 0.850432i \(-0.676341\pi\)
−0.526085 + 0.850432i \(0.676341\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −9.55051 −0.454271
\(443\) −3.24745 −0.154291 −0.0771455 0.997020i \(-0.524581\pi\)
−0.0771455 + 0.997020i \(0.524581\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 18.8990 0.894893
\(447\) 0 0
\(448\) −4.44949 −0.210219
\(449\) 0.797959 0.0376580 0.0188290 0.999823i \(-0.494006\pi\)
0.0188290 + 0.999823i \(0.494006\pi\)
\(450\) 0 0
\(451\) −1.44949 −0.0682538
\(452\) 4.89898 0.230429
\(453\) 0 0
\(454\) −1.44949 −0.0680279
\(455\) 0 0
\(456\) 0 0
\(457\) 8.10102 0.378950 0.189475 0.981886i \(-0.439321\pi\)
0.189475 + 0.981886i \(0.439321\pi\)
\(458\) 13.5505 0.633174
\(459\) 0 0
\(460\) 0 0
\(461\) −2.44949 −0.114084 −0.0570421 0.998372i \(-0.518167\pi\)
−0.0570421 + 0.998372i \(0.518167\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) −15.6969 −0.727147
\(467\) 4.34847 0.201223 0.100612 0.994926i \(-0.467920\pi\)
0.100612 + 0.994926i \(0.467920\pi\)
\(468\) 0 0
\(469\) 42.0454 1.94148
\(470\) 0 0
\(471\) 0 0
\(472\) −11.2474 −0.517706
\(473\) 10.7980 0.496491
\(474\) 0 0
\(475\) 0 0
\(476\) −17.3485 −0.795166
\(477\) 0 0
\(478\) 28.6969 1.31257
\(479\) 12.6969 0.580138 0.290069 0.957006i \(-0.406322\pi\)
0.290069 + 0.957006i \(0.406322\pi\)
\(480\) 0 0
\(481\) −19.5959 −0.893497
\(482\) −1.00000 −0.0455488
\(483\) 0 0
\(484\) −8.89898 −0.404499
\(485\) 0 0
\(486\) 0 0
\(487\) 34.8990 1.58142 0.790712 0.612188i \(-0.209711\pi\)
0.790712 + 0.612188i \(0.209711\pi\)
\(488\) 0.449490 0.0203474
\(489\) 0 0
\(490\) 0 0
\(491\) −23.4495 −1.05826 −0.529130 0.848541i \(-0.677482\pi\)
−0.529130 + 0.848541i \(0.677482\pi\)
\(492\) 0 0
\(493\) 23.3939 1.05361
\(494\) 1.34847 0.0606705
\(495\) 0 0
\(496\) 6.44949 0.289591
\(497\) 10.8990 0.488886
\(498\) 0 0
\(499\) 3.24745 0.145376 0.0726879 0.997355i \(-0.476842\pi\)
0.0726879 + 0.997355i \(0.476842\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 11.4495 0.511016
\(503\) 9.55051 0.425836 0.212918 0.977070i \(-0.431703\pi\)
0.212918 + 0.977070i \(0.431703\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −4.20204 −0.186804
\(507\) 0 0
\(508\) 2.89898 0.128621
\(509\) 7.59592 0.336683 0.168342 0.985729i \(-0.446159\pi\)
0.168342 + 0.985729i \(0.446159\pi\)
\(510\) 0 0
\(511\) −21.3485 −0.944401
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −19.8990 −0.877706
\(515\) 0 0
\(516\) 0 0
\(517\) −0.651531 −0.0286543
\(518\) −35.5959 −1.56399
\(519\) 0 0
\(520\) 0 0
\(521\) 7.69694 0.337209 0.168604 0.985684i \(-0.446074\pi\)
0.168604 + 0.985684i \(0.446074\pi\)
\(522\) 0 0
\(523\) 29.7980 1.30297 0.651487 0.758660i \(-0.274146\pi\)
0.651487 + 0.758660i \(0.274146\pi\)
\(524\) 4.89898 0.214013
\(525\) 0 0
\(526\) 7.55051 0.329218
\(527\) 25.1464 1.09540
\(528\) 0 0
\(529\) −14.5959 −0.634605
\(530\) 0 0
\(531\) 0 0
\(532\) 2.44949 0.106199
\(533\) 2.44949 0.106099
\(534\) 0 0
\(535\) 0 0
\(536\) 9.44949 0.408156
\(537\) 0 0
\(538\) −28.0454 −1.20912
\(539\) −18.5505 −0.799027
\(540\) 0 0
\(541\) −39.5959 −1.70236 −0.851181 0.524873i \(-0.824113\pi\)
−0.851181 + 0.524873i \(0.824113\pi\)
\(542\) −23.5959 −1.01353
\(543\) 0 0
\(544\) −3.89898 −0.167167
\(545\) 0 0
\(546\) 0 0
\(547\) 7.24745 0.309879 0.154939 0.987924i \(-0.450482\pi\)
0.154939 + 0.987924i \(0.450482\pi\)
\(548\) 3.00000 0.128154
\(549\) 0 0
\(550\) 0 0
\(551\) −3.30306 −0.140715
\(552\) 0 0
\(553\) 32.6969 1.39042
\(554\) 9.59592 0.407691
\(555\) 0 0
\(556\) −11.2474 −0.476998
\(557\) −38.9444 −1.65013 −0.825063 0.565040i \(-0.808861\pi\)
−0.825063 + 0.565040i \(0.808861\pi\)
\(558\) 0 0
\(559\) −18.2474 −0.771785
\(560\) 0 0
\(561\) 0 0
\(562\) 12.0000 0.506189
\(563\) 36.1464 1.52339 0.761695 0.647936i \(-0.224367\pi\)
0.761695 + 0.647936i \(0.224367\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) 2.44949 0.102778
\(569\) −17.4949 −0.733424 −0.366712 0.930334i \(-0.619517\pi\)
−0.366712 + 0.930334i \(0.619517\pi\)
\(570\) 0 0
\(571\) 12.7526 0.533678 0.266839 0.963741i \(-0.414021\pi\)
0.266839 + 0.963741i \(0.414021\pi\)
\(572\) −3.55051 −0.148454
\(573\) 0 0
\(574\) 4.44949 0.185718
\(575\) 0 0
\(576\) 0 0
\(577\) −13.6969 −0.570211 −0.285106 0.958496i \(-0.592029\pi\)
−0.285106 + 0.958496i \(0.592029\pi\)
\(578\) 1.79796 0.0747852
\(579\) 0 0
\(580\) 0 0
\(581\) 17.7980 0.738384
\(582\) 0 0
\(583\) −12.2474 −0.507237
\(584\) −4.79796 −0.198541
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 29.9444 1.23594 0.617969 0.786203i \(-0.287956\pi\)
0.617969 + 0.786203i \(0.287956\pi\)
\(588\) 0 0
\(589\) −3.55051 −0.146296
\(590\) 0 0
\(591\) 0 0
\(592\) −8.00000 −0.328798
\(593\) 41.3939 1.69984 0.849921 0.526910i \(-0.176649\pi\)
0.849921 + 0.526910i \(0.176649\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −16.2474 −0.665521
\(597\) 0 0
\(598\) 7.10102 0.290382
\(599\) −14.2020 −0.580280 −0.290140 0.956984i \(-0.593702\pi\)
−0.290140 + 0.956984i \(0.593702\pi\)
\(600\) 0 0
\(601\) 19.2020 0.783268 0.391634 0.920121i \(-0.371910\pi\)
0.391634 + 0.920121i \(0.371910\pi\)
\(602\) −33.1464 −1.35095
\(603\) 0 0
\(604\) −6.89898 −0.280715
\(605\) 0 0
\(606\) 0 0
\(607\) −11.5959 −0.470664 −0.235332 0.971915i \(-0.575618\pi\)
−0.235332 + 0.971915i \(0.575618\pi\)
\(608\) 0.550510 0.0223261
\(609\) 0 0
\(610\) 0 0
\(611\) 1.10102 0.0445425
\(612\) 0 0
\(613\) −16.9444 −0.684377 −0.342189 0.939631i \(-0.611168\pi\)
−0.342189 + 0.939631i \(0.611168\pi\)
\(614\) −23.9444 −0.966317
\(615\) 0 0
\(616\) −6.44949 −0.259857
\(617\) 37.6969 1.51762 0.758811 0.651311i \(-0.225781\pi\)
0.758811 + 0.651311i \(0.225781\pi\)
\(618\) 0 0
\(619\) −33.4495 −1.34445 −0.672224 0.740348i \(-0.734661\pi\)
−0.672224 + 0.740348i \(0.734661\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 22.8990 0.918165
\(623\) 57.3939 2.29944
\(624\) 0 0
\(625\) 0 0
\(626\) 7.69694 0.307632
\(627\) 0 0
\(628\) −16.0000 −0.638470
\(629\) −31.1918 −1.24370
\(630\) 0 0
\(631\) 3.34847 0.133300 0.0666502 0.997776i \(-0.478769\pi\)
0.0666502 + 0.997776i \(0.478769\pi\)
\(632\) 7.34847 0.292306
\(633\) 0 0
\(634\) 30.9444 1.22896
\(635\) 0 0
\(636\) 0 0
\(637\) 31.3485 1.24207
\(638\) 8.69694 0.344315
\(639\) 0 0
\(640\) 0 0
\(641\) 37.0000 1.46141 0.730706 0.682692i \(-0.239191\pi\)
0.730706 + 0.682692i \(0.239191\pi\)
\(642\) 0 0
\(643\) 9.24745 0.364684 0.182342 0.983235i \(-0.441632\pi\)
0.182342 + 0.983235i \(0.441632\pi\)
\(644\) 12.8990 0.508291
\(645\) 0 0
\(646\) 2.14643 0.0844501
\(647\) 25.1010 0.986823 0.493411 0.869796i \(-0.335750\pi\)
0.493411 + 0.869796i \(0.335750\pi\)
\(648\) 0 0
\(649\) −16.3031 −0.639951
\(650\) 0 0
\(651\) 0 0
\(652\) 0.898979 0.0352068
\(653\) −34.0000 −1.33052 −0.665261 0.746611i \(-0.731680\pi\)
−0.665261 + 0.746611i \(0.731680\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.00000 0.0390434
\(657\) 0 0
\(658\) 2.00000 0.0779681
\(659\) 16.2020 0.631142 0.315571 0.948902i \(-0.397804\pi\)
0.315571 + 0.948902i \(0.397804\pi\)
\(660\) 0 0
\(661\) −13.7980 −0.536678 −0.268339 0.963324i \(-0.586475\pi\)
−0.268339 + 0.963324i \(0.586475\pi\)
\(662\) −33.3939 −1.29789
\(663\) 0 0
\(664\) 4.00000 0.155230
\(665\) 0 0
\(666\) 0 0
\(667\) −17.3939 −0.673494
\(668\) −24.2474 −0.938162
\(669\) 0 0
\(670\) 0 0
\(671\) 0.651531 0.0251521
\(672\) 0 0
\(673\) 19.1010 0.736290 0.368145 0.929768i \(-0.379993\pi\)
0.368145 + 0.929768i \(0.379993\pi\)
\(674\) −20.5959 −0.793325
\(675\) 0 0
\(676\) −7.00000 −0.269231
\(677\) 0.404082 0.0155301 0.00776507 0.999970i \(-0.497528\pi\)
0.00776507 + 0.999970i \(0.497528\pi\)
\(678\) 0 0
\(679\) 57.8434 2.21982
\(680\) 0 0
\(681\) 0 0
\(682\) 9.34847 0.357971
\(683\) −40.5505 −1.55162 −0.775811 0.630965i \(-0.782659\pi\)
−0.775811 + 0.630965i \(0.782659\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 25.7980 0.984971
\(687\) 0 0
\(688\) −7.44949 −0.284009
\(689\) 20.6969 0.788491
\(690\) 0 0
\(691\) −21.5959 −0.821547 −0.410774 0.911737i \(-0.634741\pi\)
−0.410774 + 0.911737i \(0.634741\pi\)
\(692\) 7.79796 0.296434
\(693\) 0 0
\(694\) 15.2474 0.578785
\(695\) 0 0
\(696\) 0 0
\(697\) 3.89898 0.147684
\(698\) −11.5959 −0.438912
\(699\) 0 0
\(700\) 0 0
\(701\) −19.3939 −0.732497 −0.366248 0.930517i \(-0.619358\pi\)
−0.366248 + 0.930517i \(0.619358\pi\)
\(702\) 0 0
\(703\) 4.40408 0.166103
\(704\) −1.44949 −0.0546297
\(705\) 0 0
\(706\) 6.59592 0.248241
\(707\) −35.5959 −1.33872
\(708\) 0 0
\(709\) 22.6515 0.850696 0.425348 0.905030i \(-0.360152\pi\)
0.425348 + 0.905030i \(0.360152\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 12.8990 0.483410
\(713\) −18.6969 −0.700206
\(714\) 0 0
\(715\) 0 0
\(716\) −8.89898 −0.332570
\(717\) 0 0
\(718\) 8.44949 0.315332
\(719\) −22.2020 −0.827996 −0.413998 0.910278i \(-0.635868\pi\)
−0.413998 + 0.910278i \(0.635868\pi\)
\(720\) 0 0
\(721\) 45.5959 1.69808
\(722\) 18.6969 0.695828
\(723\) 0 0
\(724\) 10.4495 0.388352
\(725\) 0 0
\(726\) 0 0
\(727\) 10.6515 0.395043 0.197522 0.980299i \(-0.436711\pi\)
0.197522 + 0.980299i \(0.436711\pi\)
\(728\) 10.8990 0.403943
\(729\) 0 0
\(730\) 0 0
\(731\) −29.0454 −1.07428
\(732\) 0 0
\(733\) 13.1464 0.485574 0.242787 0.970080i \(-0.421938\pi\)
0.242787 + 0.970080i \(0.421938\pi\)
\(734\) −11.5959 −0.428013
\(735\) 0 0
\(736\) 2.89898 0.106858
\(737\) 13.6969 0.504533
\(738\) 0 0
\(739\) 7.24745 0.266602 0.133301 0.991076i \(-0.457442\pi\)
0.133301 + 0.991076i \(0.457442\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 37.5959 1.38019
\(743\) −13.1010 −0.480630 −0.240315 0.970695i \(-0.577251\pi\)
−0.240315 + 0.970695i \(0.577251\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 25.5959 0.937133
\(747\) 0 0
\(748\) −5.65153 −0.206640
\(749\) −7.34847 −0.268507
\(750\) 0 0
\(751\) 44.9898 1.64170 0.820850 0.571143i \(-0.193500\pi\)
0.820850 + 0.571143i \(0.193500\pi\)
\(752\) 0.449490 0.0163912
\(753\) 0 0
\(754\) −14.6969 −0.535231
\(755\) 0 0
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 30.1464 1.09497
\(759\) 0 0
\(760\) 0 0
\(761\) 48.4949 1.75794 0.878969 0.476878i \(-0.158232\pi\)
0.878969 + 0.476878i \(0.158232\pi\)
\(762\) 0 0
\(763\) 35.5959 1.28866
\(764\) 6.24745 0.226025
\(765\) 0 0
\(766\) −1.79796 −0.0649629
\(767\) 27.5505 0.994791
\(768\) 0 0
\(769\) −24.4949 −0.883309 −0.441654 0.897185i \(-0.645608\pi\)
−0.441654 + 0.897185i \(0.645608\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 15.6969 0.564945
\(773\) −23.3939 −0.841419 −0.420710 0.907195i \(-0.638219\pi\)
−0.420710 + 0.907195i \(0.638219\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 13.0000 0.466673
\(777\) 0 0
\(778\) 22.4495 0.804853
\(779\) −0.550510 −0.0197241
\(780\) 0 0
\(781\) 3.55051 0.127047
\(782\) 11.3031 0.404197
\(783\) 0 0
\(784\) 12.7980 0.457070
\(785\) 0 0
\(786\) 0 0
\(787\) −7.39388 −0.263563 −0.131782 0.991279i \(-0.542070\pi\)
−0.131782 + 0.991279i \(0.542070\pi\)
\(788\) −8.00000 −0.284988
\(789\) 0 0
\(790\) 0 0
\(791\) −21.7980 −0.775046
\(792\) 0 0
\(793\) −1.10102 −0.0390984
\(794\) 17.7980 0.631626
\(795\) 0 0
\(796\) 20.4495 0.724813
\(797\) −35.5959 −1.26087 −0.630436 0.776241i \(-0.717124\pi\)
−0.630436 + 0.776241i \(0.717124\pi\)
\(798\) 0 0
\(799\) 1.75255 0.0620008
\(800\) 0 0
\(801\) 0 0
\(802\) 28.7980 1.01689
\(803\) −6.95459 −0.245422
\(804\) 0 0
\(805\) 0 0
\(806\) −15.7980 −0.556459
\(807\) 0 0
\(808\) −8.00000 −0.281439
\(809\) −47.0908 −1.65562 −0.827812 0.561005i \(-0.810415\pi\)
−0.827812 + 0.561005i \(0.810415\pi\)
\(810\) 0 0
\(811\) −17.2474 −0.605640 −0.302820 0.953048i \(-0.597928\pi\)
−0.302820 + 0.953048i \(0.597928\pi\)
\(812\) −26.6969 −0.936879
\(813\) 0 0
\(814\) −11.5959 −0.406437
\(815\) 0 0
\(816\) 0 0
\(817\) 4.10102 0.143477
\(818\) −6.10102 −0.213317
\(819\) 0 0
\(820\) 0 0
\(821\) 42.0454 1.46739 0.733697 0.679476i \(-0.237793\pi\)
0.733697 + 0.679476i \(0.237793\pi\)
\(822\) 0 0
\(823\) −7.59592 −0.264777 −0.132389 0.991198i \(-0.542265\pi\)
−0.132389 + 0.991198i \(0.542265\pi\)
\(824\) 10.2474 0.356987
\(825\) 0 0
\(826\) 50.0454 1.74130
\(827\) −13.7980 −0.479802 −0.239901 0.970797i \(-0.577115\pi\)
−0.239901 + 0.970797i \(0.577115\pi\)
\(828\) 0 0
\(829\) −21.5505 −0.748480 −0.374240 0.927332i \(-0.622096\pi\)
−0.374240 + 0.927332i \(0.622096\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.44949 0.0849208
\(833\) 49.8990 1.72890
\(834\) 0 0
\(835\) 0 0
\(836\) 0.797959 0.0275980
\(837\) 0 0
\(838\) 0.898979 0.0310547
\(839\) −15.7526 −0.543838 −0.271919 0.962320i \(-0.587658\pi\)
−0.271919 + 0.962320i \(0.587658\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 16.4495 0.566887
\(843\) 0 0
\(844\) −15.7980 −0.543788
\(845\) 0 0
\(846\) 0 0
\(847\) 39.5959 1.36053
\(848\) 8.44949 0.290157
\(849\) 0 0
\(850\) 0 0
\(851\) 23.1918 0.795006
\(852\) 0 0
\(853\) 25.1464 0.860997 0.430499 0.902591i \(-0.358338\pi\)
0.430499 + 0.902591i \(0.358338\pi\)
\(854\) −2.00000 −0.0684386
\(855\) 0 0
\(856\) −1.65153 −0.0564482
\(857\) −53.3939 −1.82390 −0.911950 0.410301i \(-0.865424\pi\)
−0.911950 + 0.410301i \(0.865424\pi\)
\(858\) 0 0
\(859\) 35.7423 1.21951 0.609757 0.792589i \(-0.291267\pi\)
0.609757 + 0.792589i \(0.291267\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 13.7526 0.468414
\(863\) 21.5505 0.733588 0.366794 0.930302i \(-0.380455\pi\)
0.366794 + 0.930302i \(0.380455\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 23.0000 0.781572
\(867\) 0 0
\(868\) −28.6969 −0.974038
\(869\) 10.6515 0.361328
\(870\) 0 0
\(871\) −23.1464 −0.784287
\(872\) 8.00000 0.270914
\(873\) 0 0
\(874\) −1.59592 −0.0539827
\(875\) 0 0
\(876\) 0 0
\(877\) 55.1464 1.86216 0.931081 0.364812i \(-0.118867\pi\)
0.931081 + 0.364812i \(0.118867\pi\)
\(878\) 22.0454 0.743996
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 11.4495 0.385306 0.192653 0.981267i \(-0.438291\pi\)
0.192653 + 0.981267i \(0.438291\pi\)
\(884\) 9.55051 0.321218
\(885\) 0 0
\(886\) 3.24745 0.109100
\(887\) 4.65153 0.156183 0.0780916 0.996946i \(-0.475117\pi\)
0.0780916 + 0.996946i \(0.475117\pi\)
\(888\) 0 0
\(889\) −12.8990 −0.432618
\(890\) 0 0
\(891\) 0 0
\(892\) −18.8990 −0.632785
\(893\) −0.247449 −0.00828056
\(894\) 0 0
\(895\) 0 0
\(896\) 4.44949 0.148647
\(897\) 0 0
\(898\) −0.797959 −0.0266282
\(899\) 38.6969 1.29062
\(900\) 0 0
\(901\) 32.9444 1.09754
\(902\) 1.44949 0.0482627
\(903\) 0 0
\(904\) −4.89898 −0.162938
\(905\) 0 0
\(906\) 0 0
\(907\) −33.7423 −1.12040 −0.560198 0.828359i \(-0.689275\pi\)
−0.560198 + 0.828359i \(0.689275\pi\)
\(908\) 1.44949 0.0481030
\(909\) 0 0
\(910\) 0 0
\(911\) 0.247449 0.00819834 0.00409917 0.999992i \(-0.498695\pi\)
0.00409917 + 0.999992i \(0.498695\pi\)
\(912\) 0 0
\(913\) 5.79796 0.191884
\(914\) −8.10102 −0.267958
\(915\) 0 0
\(916\) −13.5505 −0.447721
\(917\) −21.7980 −0.719832
\(918\) 0 0
\(919\) 10.8990 0.359524 0.179762 0.983710i \(-0.442467\pi\)
0.179762 + 0.983710i \(0.442467\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 2.44949 0.0806696
\(923\) −6.00000 −0.197492
\(924\) 0 0
\(925\) 0 0
\(926\) 24.0000 0.788689
\(927\) 0 0
\(928\) −6.00000 −0.196960
\(929\) 55.5959 1.82404 0.912021 0.410143i \(-0.134521\pi\)
0.912021 + 0.410143i \(0.134521\pi\)
\(930\) 0 0
\(931\) −7.04541 −0.230904
\(932\) 15.6969 0.514170
\(933\) 0 0
\(934\) −4.34847 −0.142286
\(935\) 0 0
\(936\) 0 0
\(937\) 39.5959 1.29354 0.646771 0.762684i \(-0.276119\pi\)
0.646771 + 0.762684i \(0.276119\pi\)
\(938\) −42.0454 −1.37283
\(939\) 0 0
\(940\) 0 0
\(941\) 49.7980 1.62337 0.811684 0.584097i \(-0.198551\pi\)
0.811684 + 0.584097i \(0.198551\pi\)
\(942\) 0 0
\(943\) −2.89898 −0.0944038
\(944\) 11.2474 0.366073
\(945\) 0 0
\(946\) −10.7980 −0.351072
\(947\) −21.2474 −0.690449 −0.345225 0.938520i \(-0.612197\pi\)
−0.345225 + 0.938520i \(0.612197\pi\)
\(948\) 0 0
\(949\) 11.7526 0.381504
\(950\) 0 0
\(951\) 0 0
\(952\) 17.3485 0.562267
\(953\) −50.7980 −1.64551 −0.822754 0.568398i \(-0.807563\pi\)
−0.822754 + 0.568398i \(0.807563\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −28.6969 −0.928125
\(957\) 0 0
\(958\) −12.6969 −0.410219
\(959\) −13.3485 −0.431045
\(960\) 0 0
\(961\) 10.5959 0.341804
\(962\) 19.5959 0.631798
\(963\) 0 0
\(964\) 1.00000 0.0322078
\(965\) 0 0
\(966\) 0 0
\(967\) 28.6969 0.922831 0.461416 0.887184i \(-0.347342\pi\)
0.461416 + 0.887184i \(0.347342\pi\)
\(968\) 8.89898 0.286024
\(969\) 0 0
\(970\) 0 0
\(971\) 23.3939 0.750745 0.375373 0.926874i \(-0.377515\pi\)
0.375373 + 0.926874i \(0.377515\pi\)
\(972\) 0 0
\(973\) 50.0454 1.60438
\(974\) −34.8990 −1.11824
\(975\) 0 0
\(976\) −0.449490 −0.0143878
\(977\) 37.8990 1.21250 0.606248 0.795276i \(-0.292674\pi\)
0.606248 + 0.795276i \(0.292674\pi\)
\(978\) 0 0
\(979\) 18.6969 0.597557
\(980\) 0 0
\(981\) 0 0
\(982\) 23.4495 0.748303
\(983\) −37.3939 −1.19268 −0.596340 0.802732i \(-0.703379\pi\)
−0.596340 + 0.802732i \(0.703379\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −23.3939 −0.745013
\(987\) 0 0
\(988\) −1.34847 −0.0429005
\(989\) 21.5959 0.686710
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) −6.44949 −0.204772
\(993\) 0 0
\(994\) −10.8990 −0.345695
\(995\) 0 0
\(996\) 0 0
\(997\) 32.9444 1.04336 0.521680 0.853141i \(-0.325306\pi\)
0.521680 + 0.853141i \(0.325306\pi\)
\(998\) −3.24745 −0.102796
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.a.bm.1.1 2
3.2 odd 2 4050.2.a.bs.1.1 2
5.2 odd 4 810.2.c.e.649.2 4
5.3 odd 4 810.2.c.e.649.4 4
5.4 even 2 4050.2.a.bz.1.2 2
9.2 odd 6 450.2.e.k.301.1 4
9.4 even 3 1350.2.e.m.451.2 4
9.5 odd 6 450.2.e.k.151.1 4
9.7 even 3 1350.2.e.m.901.2 4
15.2 even 4 810.2.c.f.649.3 4
15.8 even 4 810.2.c.f.649.1 4
15.14 odd 2 4050.2.a.bq.1.2 2
45.2 even 12 90.2.i.b.49.4 yes 8
45.4 even 6 1350.2.e.j.451.1 4
45.7 odd 12 270.2.i.b.199.2 8
45.13 odd 12 270.2.i.b.19.2 8
45.14 odd 6 450.2.e.n.151.2 4
45.22 odd 12 270.2.i.b.19.3 8
45.23 even 12 90.2.i.b.79.4 yes 8
45.29 odd 6 450.2.e.n.301.2 4
45.32 even 12 90.2.i.b.79.1 yes 8
45.34 even 6 1350.2.e.j.901.1 4
45.38 even 12 90.2.i.b.49.1 8
45.43 odd 12 270.2.i.b.199.3 8
180.7 even 12 2160.2.by.d.1009.4 8
180.23 odd 12 720.2.by.c.529.1 8
180.43 even 12 2160.2.by.d.1009.1 8
180.47 odd 12 720.2.by.c.49.1 8
180.67 even 12 2160.2.by.d.289.1 8
180.83 odd 12 720.2.by.c.49.4 8
180.103 even 12 2160.2.by.d.289.4 8
180.167 odd 12 720.2.by.c.529.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.b.49.1 8 45.38 even 12
90.2.i.b.49.4 yes 8 45.2 even 12
90.2.i.b.79.1 yes 8 45.32 even 12
90.2.i.b.79.4 yes 8 45.23 even 12
270.2.i.b.19.2 8 45.13 odd 12
270.2.i.b.19.3 8 45.22 odd 12
270.2.i.b.199.2 8 45.7 odd 12
270.2.i.b.199.3 8 45.43 odd 12
450.2.e.k.151.1 4 9.5 odd 6
450.2.e.k.301.1 4 9.2 odd 6
450.2.e.n.151.2 4 45.14 odd 6
450.2.e.n.301.2 4 45.29 odd 6
720.2.by.c.49.1 8 180.47 odd 12
720.2.by.c.49.4 8 180.83 odd 12
720.2.by.c.529.1 8 180.23 odd 12
720.2.by.c.529.4 8 180.167 odd 12
810.2.c.e.649.2 4 5.2 odd 4
810.2.c.e.649.4 4 5.3 odd 4
810.2.c.f.649.1 4 15.8 even 4
810.2.c.f.649.3 4 15.2 even 4
1350.2.e.j.451.1 4 45.4 even 6
1350.2.e.j.901.1 4 45.34 even 6
1350.2.e.m.451.2 4 9.4 even 3
1350.2.e.m.901.2 4 9.7 even 3
2160.2.by.d.289.1 8 180.67 even 12
2160.2.by.d.289.4 8 180.103 even 12
2160.2.by.d.1009.1 8 180.43 even 12
2160.2.by.d.1009.4 8 180.7 even 12
4050.2.a.bm.1.1 2 1.1 even 1 trivial
4050.2.a.bq.1.2 2 15.14 odd 2
4050.2.a.bs.1.1 2 3.2 odd 2
4050.2.a.bz.1.2 2 5.4 even 2