Properties

Label 1350.2.e.j.901.1
Level $1350$
Weight $2$
Character 1350.901
Analytic conductor $10.780$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,2,Mod(451,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.451");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1350.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7798042729\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 901.1
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1350.901
Dual form 1350.2.e.j.451.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-2.22474 - 3.85337i) q^{7} +1.00000 q^{8} +(0.724745 + 1.25529i) q^{11} +(1.22474 - 2.12132i) q^{13} +(-2.22474 + 3.85337i) q^{14} +(-0.500000 - 0.866025i) q^{16} -3.89898 q^{17} -0.550510 q^{19} +(0.724745 - 1.25529i) q^{22} +(-1.44949 + 2.51059i) q^{23} -2.44949 q^{26} +4.44949 q^{28} +(-3.00000 - 5.19615i) q^{29} +(-3.22474 + 5.58542i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(1.94949 + 3.37662i) q^{34} +8.00000 q^{37} +(0.275255 + 0.476756i) q^{38} +(-0.500000 + 0.866025i) q^{41} +(-3.72474 - 6.45145i) q^{43} -1.44949 q^{44} +2.89898 q^{46} +(0.224745 + 0.389270i) q^{47} +(-6.39898 + 11.0834i) q^{49} +(1.22474 + 2.12132i) q^{52} -8.44949 q^{53} +(-2.22474 - 3.85337i) q^{56} +(-3.00000 + 5.19615i) q^{58} +(-5.62372 + 9.74058i) q^{59} +(0.224745 + 0.389270i) q^{61} +6.44949 q^{62} +1.00000 q^{64} +(-4.72474 + 8.18350i) q^{67} +(1.94949 - 3.37662i) q^{68} -2.44949 q^{71} -4.79796 q^{73} +(-4.00000 - 6.92820i) q^{74} +(0.275255 - 0.476756i) q^{76} +(3.22474 - 5.58542i) q^{77} +(3.67423 + 6.36396i) q^{79} +1.00000 q^{82} +(-2.00000 - 3.46410i) q^{83} +(-3.72474 + 6.45145i) q^{86} +(0.724745 + 1.25529i) q^{88} -12.8990 q^{89} -10.8990 q^{91} +(-1.44949 - 2.51059i) q^{92} +(0.224745 - 0.389270i) q^{94} +(-6.50000 - 11.2583i) q^{97} +12.7980 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} - 4 q^{7} + 4 q^{8} - 2 q^{11} - 4 q^{14} - 2 q^{16} + 4 q^{17} - 12 q^{19} - 2 q^{22} + 4 q^{23} + 8 q^{28} - 12 q^{29} - 8 q^{31} - 2 q^{32} - 2 q^{34} + 32 q^{37} + 6 q^{38} - 2 q^{41}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) −2.22474 3.85337i −0.840875 1.45644i −0.889156 0.457604i \(-0.848708\pi\)
0.0482818 0.998834i \(-0.484625\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 0.724745 + 1.25529i 0.218519 + 0.378486i 0.954355 0.298674i \(-0.0965442\pi\)
−0.735837 + 0.677159i \(0.763211\pi\)
\(12\) 0 0
\(13\) 1.22474 2.12132i 0.339683 0.588348i −0.644690 0.764444i \(-0.723014\pi\)
0.984373 + 0.176096i \(0.0563468\pi\)
\(14\) −2.22474 + 3.85337i −0.594588 + 1.02986i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.89898 −0.945641 −0.472821 0.881159i \(-0.656764\pi\)
−0.472821 + 0.881159i \(0.656764\pi\)
\(18\) 0 0
\(19\) −0.550510 −0.126296 −0.0631479 0.998004i \(-0.520114\pi\)
−0.0631479 + 0.998004i \(0.520114\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.724745 1.25529i 0.154516 0.267630i
\(23\) −1.44949 + 2.51059i −0.302240 + 0.523494i −0.976643 0.214869i \(-0.931068\pi\)
0.674403 + 0.738363i \(0.264401\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.44949 −0.480384
\(27\) 0 0
\(28\) 4.44949 0.840875
\(29\) −3.00000 5.19615i −0.557086 0.964901i −0.997738 0.0672232i \(-0.978586\pi\)
0.440652 0.897678i \(-0.354747\pi\)
\(30\) 0 0
\(31\) −3.22474 + 5.58542i −0.579181 + 1.00317i 0.416392 + 0.909185i \(0.363294\pi\)
−0.995573 + 0.0939863i \(0.970039\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 1.94949 + 3.37662i 0.334335 + 0.579085i
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0.275255 + 0.476756i 0.0446523 + 0.0773400i
\(39\) 0 0
\(40\) 0 0
\(41\) −0.500000 + 0.866025i −0.0780869 + 0.135250i −0.902424 0.430848i \(-0.858214\pi\)
0.824338 + 0.566099i \(0.191548\pi\)
\(42\) 0 0
\(43\) −3.72474 6.45145i −0.568018 0.983836i −0.996762 0.0804103i \(-0.974377\pi\)
0.428744 0.903426i \(-0.358956\pi\)
\(44\) −1.44949 −0.218519
\(45\) 0 0
\(46\) 2.89898 0.427431
\(47\) 0.224745 + 0.389270i 0.0327824 + 0.0567808i 0.881951 0.471341i \(-0.156230\pi\)
−0.849169 + 0.528122i \(0.822896\pi\)
\(48\) 0 0
\(49\) −6.39898 + 11.0834i −0.914140 + 1.58334i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.22474 + 2.12132i 0.169842 + 0.294174i
\(53\) −8.44949 −1.16063 −0.580313 0.814393i \(-0.697070\pi\)
−0.580313 + 0.814393i \(0.697070\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.22474 3.85337i −0.297294 0.514928i
\(57\) 0 0
\(58\) −3.00000 + 5.19615i −0.393919 + 0.682288i
\(59\) −5.62372 + 9.74058i −0.732147 + 1.26812i 0.223817 + 0.974631i \(0.428148\pi\)
−0.955964 + 0.293484i \(0.905185\pi\)
\(60\) 0 0
\(61\) 0.224745 + 0.389270i 0.0287756 + 0.0498409i 0.880055 0.474873i \(-0.157506\pi\)
−0.851279 + 0.524713i \(0.824173\pi\)
\(62\) 6.44949 0.819086
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −4.72474 + 8.18350i −0.577219 + 0.999773i 0.418577 + 0.908181i \(0.362529\pi\)
−0.995797 + 0.0915922i \(0.970804\pi\)
\(68\) 1.94949 3.37662i 0.236410 0.409475i
\(69\) 0 0
\(70\) 0 0
\(71\) −2.44949 −0.290701 −0.145350 0.989380i \(-0.546431\pi\)
−0.145350 + 0.989380i \(0.546431\pi\)
\(72\) 0 0
\(73\) −4.79796 −0.561559 −0.280779 0.959772i \(-0.590593\pi\)
−0.280779 + 0.959772i \(0.590593\pi\)
\(74\) −4.00000 6.92820i −0.464991 0.805387i
\(75\) 0 0
\(76\) 0.275255 0.476756i 0.0315739 0.0546876i
\(77\) 3.22474 5.58542i 0.367494 0.636518i
\(78\) 0 0
\(79\) 3.67423 + 6.36396i 0.413384 + 0.716002i 0.995257 0.0972777i \(-0.0310135\pi\)
−0.581874 + 0.813279i \(0.697680\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1.00000 0.110432
\(83\) −2.00000 3.46410i −0.219529 0.380235i 0.735135 0.677920i \(-0.237119\pi\)
−0.954664 + 0.297686i \(0.903785\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −3.72474 + 6.45145i −0.401650 + 0.695677i
\(87\) 0 0
\(88\) 0.724745 + 1.25529i 0.0772581 + 0.133815i
\(89\) −12.8990 −1.36729 −0.683645 0.729815i \(-0.739606\pi\)
−0.683645 + 0.729815i \(0.739606\pi\)
\(90\) 0 0
\(91\) −10.8990 −1.14252
\(92\) −1.44949 2.51059i −0.151120 0.261747i
\(93\) 0 0
\(94\) 0.224745 0.389270i 0.0231807 0.0401501i
\(95\) 0 0
\(96\) 0 0
\(97\) −6.50000 11.2583i −0.659975 1.14311i −0.980622 0.195911i \(-0.937234\pi\)
0.320647 0.947199i \(-0.396100\pi\)
\(98\) 12.7980 1.29279
\(99\) 0 0
\(100\) 0 0
\(101\) −4.00000 6.92820i −0.398015 0.689382i 0.595466 0.803380i \(-0.296967\pi\)
−0.993481 + 0.113998i \(0.963634\pi\)
\(102\) 0 0
\(103\) −5.12372 + 8.87455i −0.504856 + 0.874435i 0.495129 + 0.868820i \(0.335121\pi\)
−0.999984 + 0.00561582i \(0.998212\pi\)
\(104\) 1.22474 2.12132i 0.120096 0.208013i
\(105\) 0 0
\(106\) 4.22474 + 7.31747i 0.410343 + 0.710736i
\(107\) −1.65153 −0.159660 −0.0798298 0.996809i \(-0.525438\pi\)
−0.0798298 + 0.996809i \(0.525438\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.22474 + 3.85337i −0.210219 + 0.364109i
\(113\) 2.44949 4.24264i 0.230429 0.399114i −0.727506 0.686102i \(-0.759321\pi\)
0.957934 + 0.286988i \(0.0926538\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) 11.2474 1.03541
\(119\) 8.67423 + 15.0242i 0.795166 + 1.37727i
\(120\) 0 0
\(121\) 4.44949 7.70674i 0.404499 0.700613i
\(122\) 0.224745 0.389270i 0.0203474 0.0352428i
\(123\) 0 0
\(124\) −3.22474 5.58542i −0.289591 0.501586i
\(125\) 0 0
\(126\) 0 0
\(127\) −2.89898 −0.257243 −0.128621 0.991694i \(-0.541055\pi\)
−0.128621 + 0.991694i \(0.541055\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) −2.44949 + 4.24264i −0.214013 + 0.370681i −0.952967 0.303075i \(-0.901987\pi\)
0.738954 + 0.673756i \(0.235320\pi\)
\(132\) 0 0
\(133\) 1.22474 + 2.12132i 0.106199 + 0.183942i
\(134\) 9.44949 0.816312
\(135\) 0 0
\(136\) −3.89898 −0.334335
\(137\) 1.50000 + 2.59808i 0.128154 + 0.221969i 0.922961 0.384893i \(-0.125762\pi\)
−0.794808 + 0.606861i \(0.792428\pi\)
\(138\) 0 0
\(139\) 5.62372 9.74058i 0.476998 0.826185i −0.522654 0.852545i \(-0.675058\pi\)
0.999653 + 0.0263597i \(0.00839153\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.22474 + 2.12132i 0.102778 + 0.178017i
\(143\) 3.55051 0.296909
\(144\) 0 0
\(145\) 0 0
\(146\) 2.39898 + 4.15515i 0.198541 + 0.343883i
\(147\) 0 0
\(148\) −4.00000 + 6.92820i −0.328798 + 0.569495i
\(149\) 8.12372 14.0707i 0.665521 1.15272i −0.313622 0.949548i \(-0.601543\pi\)
0.979144 0.203169i \(-0.0651241\pi\)
\(150\) 0 0
\(151\) 3.44949 + 5.97469i 0.280715 + 0.486213i 0.971561 0.236789i \(-0.0760949\pi\)
−0.690846 + 0.723002i \(0.742762\pi\)
\(152\) −0.550510 −0.0446523
\(153\) 0 0
\(154\) −6.44949 −0.519715
\(155\) 0 0
\(156\) 0 0
\(157\) −8.00000 + 13.8564i −0.638470 + 1.10586i 0.347299 + 0.937754i \(0.387099\pi\)
−0.985769 + 0.168107i \(0.946235\pi\)
\(158\) 3.67423 6.36396i 0.292306 0.506290i
\(159\) 0 0
\(160\) 0 0
\(161\) 12.8990 1.01658
\(162\) 0 0
\(163\) −0.898979 −0.0704135 −0.0352068 0.999380i \(-0.511209\pi\)
−0.0352068 + 0.999380i \(0.511209\pi\)
\(164\) −0.500000 0.866025i −0.0390434 0.0676252i
\(165\) 0 0
\(166\) −2.00000 + 3.46410i −0.155230 + 0.268866i
\(167\) −12.1237 + 20.9989i −0.938162 + 1.62494i −0.169266 + 0.985570i \(0.554140\pi\)
−0.768896 + 0.639374i \(0.779194\pi\)
\(168\) 0 0
\(169\) 3.50000 + 6.06218i 0.269231 + 0.466321i
\(170\) 0 0
\(171\) 0 0
\(172\) 7.44949 0.568018
\(173\) 3.89898 + 6.75323i 0.296434 + 0.513439i 0.975317 0.220807i \(-0.0708692\pi\)
−0.678884 + 0.734246i \(0.737536\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.724745 1.25529i 0.0546297 0.0946214i
\(177\) 0 0
\(178\) 6.44949 + 11.1708i 0.483410 + 0.837290i
\(179\) −8.89898 −0.665141 −0.332570 0.943078i \(-0.607916\pi\)
−0.332570 + 0.943078i \(0.607916\pi\)
\(180\) 0 0
\(181\) 10.4495 0.776704 0.388352 0.921511i \(-0.373044\pi\)
0.388352 + 0.921511i \(0.373044\pi\)
\(182\) 5.44949 + 9.43879i 0.403943 + 0.699650i
\(183\) 0 0
\(184\) −1.44949 + 2.51059i −0.106858 + 0.185083i
\(185\) 0 0
\(186\) 0 0
\(187\) −2.82577 4.89437i −0.206640 0.357912i
\(188\) −0.449490 −0.0327824
\(189\) 0 0
\(190\) 0 0
\(191\) −3.12372 5.41045i −0.226025 0.391486i 0.730602 0.682804i \(-0.239240\pi\)
−0.956626 + 0.291318i \(0.905906\pi\)
\(192\) 0 0
\(193\) 7.84847 13.5939i 0.564945 0.978514i −0.432110 0.901821i \(-0.642231\pi\)
0.997055 0.0766927i \(-0.0244360\pi\)
\(194\) −6.50000 + 11.2583i −0.466673 + 0.808301i
\(195\) 0 0
\(196\) −6.39898 11.0834i −0.457070 0.791668i
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) 0 0
\(199\) 20.4495 1.44963 0.724813 0.688946i \(-0.241926\pi\)
0.724813 + 0.688946i \(0.241926\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −4.00000 + 6.92820i −0.281439 + 0.487467i
\(203\) −13.3485 + 23.1202i −0.936879 + 1.62272i
\(204\) 0 0
\(205\) 0 0
\(206\) 10.2474 0.713974
\(207\) 0 0
\(208\) −2.44949 −0.169842
\(209\) −0.398979 0.691053i −0.0275980 0.0478011i
\(210\) 0 0
\(211\) 7.89898 13.6814i 0.543788 0.941869i −0.454894 0.890546i \(-0.650323\pi\)
0.998682 0.0513231i \(-0.0163438\pi\)
\(212\) 4.22474 7.31747i 0.290157 0.502566i
\(213\) 0 0
\(214\) 0.825765 + 1.43027i 0.0564482 + 0.0977711i
\(215\) 0 0
\(216\) 0 0
\(217\) 28.6969 1.94808
\(218\) 4.00000 + 6.92820i 0.270914 + 0.469237i
\(219\) 0 0
\(220\) 0 0
\(221\) −4.77526 + 8.27098i −0.321218 + 0.556367i
\(222\) 0 0
\(223\) −9.44949 16.3670i −0.632785 1.09602i −0.986980 0.160844i \(-0.948579\pi\)
0.354195 0.935171i \(-0.384755\pi\)
\(224\) 4.44949 0.297294
\(225\) 0 0
\(226\) −4.89898 −0.325875
\(227\) 0.724745 + 1.25529i 0.0481030 + 0.0833169i 0.889074 0.457763i \(-0.151349\pi\)
−0.840971 + 0.541080i \(0.818016\pi\)
\(228\) 0 0
\(229\) 6.77526 11.7351i 0.447721 0.775476i −0.550516 0.834825i \(-0.685569\pi\)
0.998237 + 0.0593484i \(0.0189023\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.00000 5.19615i −0.196960 0.341144i
\(233\) −15.6969 −1.02834 −0.514170 0.857688i \(-0.671900\pi\)
−0.514170 + 0.857688i \(0.671900\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −5.62372 9.74058i −0.366073 0.634058i
\(237\) 0 0
\(238\) 8.67423 15.0242i 0.562267 0.973875i
\(239\) 14.3485 24.8523i 0.928125 1.60756i 0.141669 0.989914i \(-0.454753\pi\)
0.786456 0.617646i \(-0.211914\pi\)
\(240\) 0 0
\(241\) −0.500000 0.866025i −0.0322078 0.0557856i 0.849472 0.527633i \(-0.176921\pi\)
−0.881680 + 0.471848i \(0.843587\pi\)
\(242\) −8.89898 −0.572048
\(243\) 0 0
\(244\) −0.449490 −0.0287756
\(245\) 0 0
\(246\) 0 0
\(247\) −0.674235 + 1.16781i −0.0429005 + 0.0743059i
\(248\) −3.22474 + 5.58542i −0.204772 + 0.354675i
\(249\) 0 0
\(250\) 0 0
\(251\) −11.4495 −0.722685 −0.361343 0.932433i \(-0.617682\pi\)
−0.361343 + 0.932433i \(0.617682\pi\)
\(252\) 0 0
\(253\) −4.20204 −0.264180
\(254\) 1.44949 + 2.51059i 0.0909491 + 0.157528i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 9.94949 17.2330i 0.620632 1.07497i −0.368736 0.929534i \(-0.620209\pi\)
0.989368 0.145432i \(-0.0464573\pi\)
\(258\) 0 0
\(259\) −17.7980 30.8270i −1.10591 1.91549i
\(260\) 0 0
\(261\) 0 0
\(262\) 4.89898 0.302660
\(263\) −3.77526 6.53893i −0.232792 0.403208i 0.725837 0.687867i \(-0.241453\pi\)
−0.958629 + 0.284659i \(0.908120\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.22474 2.12132i 0.0750939 0.130066i
\(267\) 0 0
\(268\) −4.72474 8.18350i −0.288610 0.499887i
\(269\) 28.0454 1.70996 0.854979 0.518662i \(-0.173570\pi\)
0.854979 + 0.518662i \(0.173570\pi\)
\(270\) 0 0
\(271\) 23.5959 1.43335 0.716675 0.697407i \(-0.245663\pi\)
0.716675 + 0.697407i \(0.245663\pi\)
\(272\) 1.94949 + 3.37662i 0.118205 + 0.204737i
\(273\) 0 0
\(274\) 1.50000 2.59808i 0.0906183 0.156956i
\(275\) 0 0
\(276\) 0 0
\(277\) −4.79796 8.31031i −0.288281 0.499318i 0.685118 0.728432i \(-0.259751\pi\)
−0.973400 + 0.229114i \(0.926417\pi\)
\(278\) −11.2474 −0.674577
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 + 10.3923i 0.357930 + 0.619953i 0.987615 0.156898i \(-0.0501493\pi\)
−0.629685 + 0.776851i \(0.716816\pi\)
\(282\) 0 0
\(283\) −2.00000 + 3.46410i −0.118888 + 0.205919i −0.919327 0.393494i \(-0.871266\pi\)
0.800439 + 0.599414i \(0.204600\pi\)
\(284\) 1.22474 2.12132i 0.0726752 0.125877i
\(285\) 0 0
\(286\) −1.77526 3.07483i −0.104973 0.181819i
\(287\) 4.44949 0.262645
\(288\) 0 0
\(289\) −1.79796 −0.105762
\(290\) 0 0
\(291\) 0 0
\(292\) 2.39898 4.15515i 0.140390 0.243162i
\(293\) 9.00000 15.5885i 0.525786 0.910687i −0.473763 0.880652i \(-0.657105\pi\)
0.999549 0.0300351i \(-0.00956192\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) −16.2474 −0.941189
\(299\) 3.55051 + 6.14966i 0.205331 + 0.355644i
\(300\) 0 0
\(301\) −16.5732 + 28.7056i −0.955264 + 1.65457i
\(302\) 3.44949 5.97469i 0.198496 0.343805i
\(303\) 0 0
\(304\) 0.275255 + 0.476756i 0.0157870 + 0.0273438i
\(305\) 0 0
\(306\) 0 0
\(307\) −23.9444 −1.36658 −0.683289 0.730148i \(-0.739451\pi\)
−0.683289 + 0.730148i \(0.739451\pi\)
\(308\) 3.22474 + 5.58542i 0.183747 + 0.318259i
\(309\) 0 0
\(310\) 0 0
\(311\) 11.4495 19.8311i 0.649241 1.12452i −0.334063 0.942551i \(-0.608420\pi\)
0.983304 0.181968i \(-0.0582467\pi\)
\(312\) 0 0
\(313\) −3.84847 6.66574i −0.217528 0.376770i 0.736523 0.676412i \(-0.236466\pi\)
−0.954052 + 0.299642i \(0.903133\pi\)
\(314\) 16.0000 0.902932
\(315\) 0 0
\(316\) −7.34847 −0.413384
\(317\) −15.4722 26.7986i −0.869005 1.50516i −0.863015 0.505179i \(-0.831427\pi\)
−0.00599020 0.999982i \(-0.501907\pi\)
\(318\) 0 0
\(319\) 4.34847 7.53177i 0.243468 0.421698i
\(320\) 0 0
\(321\) 0 0
\(322\) −6.44949 11.1708i −0.359416 0.622527i
\(323\) 2.14643 0.119430
\(324\) 0 0
\(325\) 0 0
\(326\) 0.449490 + 0.778539i 0.0248949 + 0.0431193i
\(327\) 0 0
\(328\) −0.500000 + 0.866025i −0.0276079 + 0.0478183i
\(329\) 1.00000 1.73205i 0.0551318 0.0954911i
\(330\) 0 0
\(331\) −16.6969 28.9199i −0.917747 1.58958i −0.802829 0.596209i \(-0.796673\pi\)
−0.114917 0.993375i \(-0.536660\pi\)
\(332\) 4.00000 0.219529
\(333\) 0 0
\(334\) 24.2474 1.32676
\(335\) 0 0
\(336\) 0 0
\(337\) 10.2980 17.8366i 0.560966 0.971621i −0.436447 0.899730i \(-0.643763\pi\)
0.997413 0.0718909i \(-0.0229033\pi\)
\(338\) 3.50000 6.06218i 0.190375 0.329739i
\(339\) 0 0
\(340\) 0 0
\(341\) −9.34847 −0.506248
\(342\) 0 0
\(343\) 25.7980 1.39296
\(344\) −3.72474 6.45145i −0.200825 0.347839i
\(345\) 0 0
\(346\) 3.89898 6.75323i 0.209610 0.363056i
\(347\) −7.62372 + 13.2047i −0.409263 + 0.708864i −0.994807 0.101776i \(-0.967547\pi\)
0.585544 + 0.810640i \(0.300881\pi\)
\(348\) 0 0
\(349\) −5.79796 10.0424i −0.310358 0.537555i 0.668082 0.744088i \(-0.267115\pi\)
−0.978440 + 0.206532i \(0.933782\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.44949 −0.0772581
\(353\) −3.29796 5.71223i −0.175533 0.304031i 0.764813 0.644253i \(-0.222831\pi\)
−0.940345 + 0.340221i \(0.889498\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.44949 11.1708i 0.341822 0.592054i
\(357\) 0 0
\(358\) 4.44949 + 7.70674i 0.235163 + 0.407314i
\(359\) −8.44949 −0.445947 −0.222974 0.974825i \(-0.571576\pi\)
−0.222974 + 0.974825i \(0.571576\pi\)
\(360\) 0 0
\(361\) −18.6969 −0.984049
\(362\) −5.22474 9.04952i −0.274606 0.475632i
\(363\) 0 0
\(364\) 5.44949 9.43879i 0.285631 0.494727i
\(365\) 0 0
\(366\) 0 0
\(367\) 5.79796 + 10.0424i 0.302651 + 0.524207i 0.976736 0.214447i \(-0.0687950\pi\)
−0.674085 + 0.738654i \(0.735462\pi\)
\(368\) 2.89898 0.151120
\(369\) 0 0
\(370\) 0 0
\(371\) 18.7980 + 32.5590i 0.975941 + 1.69038i
\(372\) 0 0
\(373\) −12.7980 + 22.1667i −0.662653 + 1.14775i 0.317263 + 0.948338i \(0.397236\pi\)
−0.979916 + 0.199411i \(0.936097\pi\)
\(374\) −2.82577 + 4.89437i −0.146117 + 0.253082i
\(375\) 0 0
\(376\) 0.224745 + 0.389270i 0.0115903 + 0.0200750i
\(377\) −14.6969 −0.756931
\(378\) 0 0
\(379\) −30.1464 −1.54852 −0.774259 0.632869i \(-0.781877\pi\)
−0.774259 + 0.632869i \(0.781877\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3.12372 + 5.41045i −0.159824 + 0.276823i
\(383\) 0.898979 1.55708i 0.0459357 0.0795630i −0.842143 0.539254i \(-0.818706\pi\)
0.888079 + 0.459691i \(0.152040\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −15.6969 −0.798953
\(387\) 0 0
\(388\) 13.0000 0.659975
\(389\) 11.2247 + 19.4418i 0.569117 + 0.985740i 0.996654 + 0.0817417i \(0.0260483\pi\)
−0.427536 + 0.903998i \(0.640618\pi\)
\(390\) 0 0
\(391\) 5.65153 9.78874i 0.285810 0.495038i
\(392\) −6.39898 + 11.0834i −0.323197 + 0.559794i
\(393\) 0 0
\(394\) −4.00000 6.92820i −0.201517 0.349038i
\(395\) 0 0
\(396\) 0 0
\(397\) 17.7980 0.893254 0.446627 0.894720i \(-0.352625\pi\)
0.446627 + 0.894720i \(0.352625\pi\)
\(398\) −10.2247 17.7098i −0.512520 0.887711i
\(399\) 0 0
\(400\) 0 0
\(401\) 14.3990 24.9398i 0.719051 1.24543i −0.242326 0.970195i \(-0.577910\pi\)
0.961376 0.275237i \(-0.0887565\pi\)
\(402\) 0 0
\(403\) 7.89898 + 13.6814i 0.393476 + 0.681521i
\(404\) 8.00000 0.398015
\(405\) 0 0
\(406\) 26.6969 1.32495
\(407\) 5.79796 + 10.0424i 0.287394 + 0.497781i
\(408\) 0 0
\(409\) −3.05051 + 5.28364i −0.150838 + 0.261259i −0.931536 0.363650i \(-0.881531\pi\)
0.780698 + 0.624909i \(0.214864\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −5.12372 8.87455i −0.252428 0.437218i
\(413\) 50.0454 2.46257
\(414\) 0 0
\(415\) 0 0
\(416\) 1.22474 + 2.12132i 0.0600481 + 0.104006i
\(417\) 0 0
\(418\) −0.398979 + 0.691053i −0.0195147 + 0.0338005i
\(419\) 0.449490 0.778539i 0.0219590 0.0380341i −0.854837 0.518896i \(-0.826343\pi\)
0.876796 + 0.480862i \(0.159676\pi\)
\(420\) 0 0
\(421\) 8.22474 + 14.2457i 0.400850 + 0.694292i 0.993829 0.110926i \(-0.0353817\pi\)
−0.592979 + 0.805218i \(0.702048\pi\)
\(422\) −15.7980 −0.769033
\(423\) 0 0
\(424\) −8.44949 −0.410343
\(425\) 0 0
\(426\) 0 0
\(427\) 1.00000 1.73205i 0.0483934 0.0838198i
\(428\) 0.825765 1.43027i 0.0399149 0.0691346i
\(429\) 0 0
\(430\) 0 0
\(431\) −13.7526 −0.662437 −0.331219 0.943554i \(-0.607460\pi\)
−0.331219 + 0.943554i \(0.607460\pi\)
\(432\) 0 0
\(433\) 23.0000 1.10531 0.552655 0.833410i \(-0.313615\pi\)
0.552655 + 0.833410i \(0.313615\pi\)
\(434\) −14.3485 24.8523i −0.688749 1.19295i
\(435\) 0 0
\(436\) 4.00000 6.92820i 0.191565 0.331801i
\(437\) 0.797959 1.38211i 0.0381716 0.0661151i
\(438\) 0 0
\(439\) 11.0227 + 19.0919i 0.526085 + 0.911206i 0.999538 + 0.0303869i \(0.00967395\pi\)
−0.473453 + 0.880819i \(0.656993\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 9.55051 0.454271
\(443\) −1.62372 2.81237i −0.0771455 0.133620i 0.824872 0.565320i \(-0.191247\pi\)
−0.902017 + 0.431700i \(0.857914\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −9.44949 + 16.3670i −0.447446 + 0.775000i
\(447\) 0 0
\(448\) −2.22474 3.85337i −0.105109 0.182055i
\(449\) 0.797959 0.0376580 0.0188290 0.999823i \(-0.494006\pi\)
0.0188290 + 0.999823i \(0.494006\pi\)
\(450\) 0 0
\(451\) −1.44949 −0.0682538
\(452\) 2.44949 + 4.24264i 0.115214 + 0.199557i
\(453\) 0 0
\(454\) 0.724745 1.25529i 0.0340140 0.0589139i
\(455\) 0 0
\(456\) 0 0
\(457\) 4.05051 + 7.01569i 0.189475 + 0.328180i 0.945075 0.326853i \(-0.105988\pi\)
−0.755600 + 0.655033i \(0.772655\pi\)
\(458\) −13.5505 −0.633174
\(459\) 0 0
\(460\) 0 0
\(461\) 1.22474 + 2.12132i 0.0570421 + 0.0987997i 0.893136 0.449786i \(-0.148500\pi\)
−0.836094 + 0.548586i \(0.815166\pi\)
\(462\) 0 0
\(463\) −12.0000 + 20.7846i −0.557687 + 0.965943i 0.440002 + 0.897997i \(0.354978\pi\)
−0.997689 + 0.0679458i \(0.978356\pi\)
\(464\) −3.00000 + 5.19615i −0.139272 + 0.241225i
\(465\) 0 0
\(466\) 7.84847 + 13.5939i 0.363573 + 0.629727i
\(467\) −4.34847 −0.201223 −0.100612 0.994926i \(-0.532080\pi\)
−0.100612 + 0.994926i \(0.532080\pi\)
\(468\) 0 0
\(469\) 42.0454 1.94148
\(470\) 0 0
\(471\) 0 0
\(472\) −5.62372 + 9.74058i −0.258853 + 0.448346i
\(473\) 5.39898 9.35131i 0.248245 0.429974i
\(474\) 0 0
\(475\) 0 0
\(476\) −17.3485 −0.795166
\(477\) 0 0
\(478\) −28.6969 −1.31257
\(479\) −6.34847 10.9959i −0.290069 0.502414i 0.683757 0.729710i \(-0.260345\pi\)
−0.973826 + 0.227296i \(0.927012\pi\)
\(480\) 0 0
\(481\) 9.79796 16.9706i 0.446748 0.773791i
\(482\) −0.500000 + 0.866025i −0.0227744 + 0.0394464i
\(483\) 0 0
\(484\) 4.44949 + 7.70674i 0.202250 + 0.350306i
\(485\) 0 0
\(486\) 0 0
\(487\) −34.8990 −1.58142 −0.790712 0.612188i \(-0.790289\pi\)
−0.790712 + 0.612188i \(0.790289\pi\)
\(488\) 0.224745 + 0.389270i 0.0101737 + 0.0176214i
\(489\) 0 0
\(490\) 0 0
\(491\) 11.7247 20.3079i 0.529130 0.916481i −0.470293 0.882511i \(-0.655852\pi\)
0.999423 0.0339700i \(-0.0108151\pi\)
\(492\) 0 0
\(493\) 11.6969 + 20.2597i 0.526804 + 0.912451i
\(494\) 1.34847 0.0606705
\(495\) 0 0
\(496\) 6.44949 0.289591
\(497\) 5.44949 + 9.43879i 0.244443 + 0.423388i
\(498\) 0 0
\(499\) −1.62372 + 2.81237i −0.0726879 + 0.125899i −0.900078 0.435728i \(-0.856491\pi\)
0.827391 + 0.561627i \(0.189824\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 5.72474 + 9.91555i 0.255508 + 0.442553i
\(503\) −9.55051 −0.425836 −0.212918 0.977070i \(-0.568297\pi\)
−0.212918 + 0.977070i \(0.568297\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2.10102 + 3.63907i 0.0934018 + 0.161777i
\(507\) 0 0
\(508\) 1.44949 2.51059i 0.0643107 0.111389i
\(509\) −3.79796 + 6.57826i −0.168342 + 0.291576i −0.937837 0.347076i \(-0.887174\pi\)
0.769495 + 0.638652i \(0.220508\pi\)
\(510\) 0 0
\(511\) 10.6742 + 18.4883i 0.472200 + 0.817875i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −19.8990 −0.877706
\(515\) 0 0
\(516\) 0 0
\(517\) −0.325765 + 0.564242i −0.0143271 + 0.0248153i
\(518\) −17.7980 + 30.8270i −0.781997 + 1.35446i
\(519\) 0 0
\(520\) 0 0
\(521\) 7.69694 0.337209 0.168604 0.985684i \(-0.446074\pi\)
0.168604 + 0.985684i \(0.446074\pi\)
\(522\) 0 0
\(523\) −29.7980 −1.30297 −0.651487 0.758660i \(-0.725854\pi\)
−0.651487 + 0.758660i \(0.725854\pi\)
\(524\) −2.44949 4.24264i −0.107006 0.185341i
\(525\) 0 0
\(526\) −3.77526 + 6.53893i −0.164609 + 0.285111i
\(527\) 12.5732 21.7774i 0.547698 0.948640i
\(528\) 0 0
\(529\) 7.29796 + 12.6404i 0.317303 + 0.549584i
\(530\) 0 0
\(531\) 0 0
\(532\) −2.44949 −0.106199
\(533\) 1.22474 + 2.12132i 0.0530496 + 0.0918846i
\(534\) 0 0
\(535\) 0 0
\(536\) −4.72474 + 8.18350i −0.204078 + 0.353473i
\(537\) 0 0
\(538\) −14.0227 24.2880i −0.604562 1.04713i
\(539\) −18.5505 −0.799027
\(540\) 0 0
\(541\) −39.5959 −1.70236 −0.851181 0.524873i \(-0.824113\pi\)
−0.851181 + 0.524873i \(0.824113\pi\)
\(542\) −11.7980 20.4347i −0.506766 0.877744i
\(543\) 0 0
\(544\) 1.94949 3.37662i 0.0835837 0.144771i
\(545\) 0 0
\(546\) 0 0
\(547\) 3.62372 + 6.27647i 0.154939 + 0.268363i 0.933037 0.359781i \(-0.117148\pi\)
−0.778098 + 0.628143i \(0.783815\pi\)
\(548\) −3.00000 −0.128154
\(549\) 0 0
\(550\) 0 0
\(551\) 1.65153 + 2.86054i 0.0703576 + 0.121863i
\(552\) 0 0
\(553\) 16.3485 28.3164i 0.695208 1.20413i
\(554\) −4.79796 + 8.31031i −0.203846 + 0.353071i
\(555\) 0 0
\(556\) 5.62372 + 9.74058i 0.238499 + 0.413092i
\(557\) 38.9444 1.65013 0.825063 0.565040i \(-0.191139\pi\)
0.825063 + 0.565040i \(0.191139\pi\)
\(558\) 0 0
\(559\) −18.2474 −0.771785
\(560\) 0 0
\(561\) 0 0
\(562\) 6.00000 10.3923i 0.253095 0.438373i
\(563\) 18.0732 31.3037i 0.761695 1.31929i −0.180281 0.983615i \(-0.557701\pi\)
0.941976 0.335680i \(-0.108966\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) −2.44949 −0.102778
\(569\) 8.74745 + 15.1510i 0.366712 + 0.635164i 0.989049 0.147585i \(-0.0471501\pi\)
−0.622337 + 0.782749i \(0.713817\pi\)
\(570\) 0 0
\(571\) −6.37628 + 11.0440i −0.266839 + 0.462178i −0.968044 0.250781i \(-0.919312\pi\)
0.701205 + 0.712960i \(0.252646\pi\)
\(572\) −1.77526 + 3.07483i −0.0742271 + 0.128565i
\(573\) 0 0
\(574\) −2.22474 3.85337i −0.0928591 0.160837i
\(575\) 0 0
\(576\) 0 0
\(577\) 13.6969 0.570211 0.285106 0.958496i \(-0.407971\pi\)
0.285106 + 0.958496i \(0.407971\pi\)
\(578\) 0.898979 + 1.55708i 0.0373926 + 0.0647659i
\(579\) 0 0
\(580\) 0 0
\(581\) −8.89898 + 15.4135i −0.369192 + 0.639459i
\(582\) 0 0
\(583\) −6.12372 10.6066i −0.253619 0.439281i
\(584\) −4.79796 −0.198541
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 14.9722 + 25.9326i 0.617969 + 1.07035i 0.989856 + 0.142075i \(0.0453774\pi\)
−0.371887 + 0.928278i \(0.621289\pi\)
\(588\) 0 0
\(589\) 1.77526 3.07483i 0.0731481 0.126696i
\(590\) 0 0
\(591\) 0 0
\(592\) −4.00000 6.92820i −0.164399 0.284747i
\(593\) −41.3939 −1.69984 −0.849921 0.526910i \(-0.823351\pi\)
−0.849921 + 0.526910i \(0.823351\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 8.12372 + 14.0707i 0.332761 + 0.576358i
\(597\) 0 0
\(598\) 3.55051 6.14966i 0.145191 0.251478i
\(599\) 7.10102 12.2993i 0.290140 0.502537i −0.683703 0.729761i \(-0.739632\pi\)
0.973843 + 0.227224i \(0.0729648\pi\)
\(600\) 0 0
\(601\) −9.60102 16.6295i −0.391634 0.678330i 0.601031 0.799225i \(-0.294757\pi\)
−0.992665 + 0.120896i \(0.961423\pi\)
\(602\) 33.1464 1.35095
\(603\) 0 0
\(604\) −6.89898 −0.280715
\(605\) 0 0
\(606\) 0 0
\(607\) −5.79796 + 10.0424i −0.235332 + 0.407607i −0.959369 0.282154i \(-0.908951\pi\)
0.724037 + 0.689761i \(0.242284\pi\)
\(608\) 0.275255 0.476756i 0.0111631 0.0193350i
\(609\) 0 0
\(610\) 0 0
\(611\) 1.10102 0.0445425
\(612\) 0 0
\(613\) 16.9444 0.684377 0.342189 0.939631i \(-0.388832\pi\)
0.342189 + 0.939631i \(0.388832\pi\)
\(614\) 11.9722 + 20.7364i 0.483158 + 0.836855i
\(615\) 0 0
\(616\) 3.22474 5.58542i 0.129929 0.225043i
\(617\) 18.8485 32.6465i 0.758811 1.31430i −0.184647 0.982805i \(-0.559114\pi\)
0.943457 0.331494i \(-0.107553\pi\)
\(618\) 0 0
\(619\) 16.7247 + 28.9681i 0.672224 + 1.16433i 0.977272 + 0.211989i \(0.0679943\pi\)
−0.305048 + 0.952337i \(0.598672\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −22.8990 −0.918165
\(623\) 28.6969 + 49.7046i 1.14972 + 1.99137i
\(624\) 0 0
\(625\) 0 0
\(626\) −3.84847 + 6.66574i −0.153816 + 0.266417i
\(627\) 0 0
\(628\) −8.00000 13.8564i −0.319235 0.552931i
\(629\) −31.1918 −1.24370
\(630\) 0 0
\(631\) 3.34847 0.133300 0.0666502 0.997776i \(-0.478769\pi\)
0.0666502 + 0.997776i \(0.478769\pi\)
\(632\) 3.67423 + 6.36396i 0.146153 + 0.253145i
\(633\) 0 0
\(634\) −15.4722 + 26.7986i −0.614479 + 1.06431i
\(635\) 0 0
\(636\) 0 0
\(637\) 15.6742 + 27.1486i 0.621036 + 1.07567i
\(638\) −8.69694 −0.344315
\(639\) 0 0
\(640\) 0 0
\(641\) −18.5000 32.0429i −0.730706 1.26562i −0.956582 0.291464i \(-0.905858\pi\)
0.225876 0.974156i \(-0.427476\pi\)
\(642\) 0 0
\(643\) 4.62372 8.00853i 0.182342 0.315825i −0.760336 0.649530i \(-0.774966\pi\)
0.942678 + 0.333705i \(0.108299\pi\)
\(644\) −6.44949 + 11.1708i −0.254145 + 0.440193i
\(645\) 0 0
\(646\) −1.07321 1.85886i −0.0422250 0.0731359i
\(647\) −25.1010 −0.986823 −0.493411 0.869796i \(-0.664250\pi\)
−0.493411 + 0.869796i \(0.664250\pi\)
\(648\) 0 0
\(649\) −16.3031 −0.639951
\(650\) 0 0
\(651\) 0 0
\(652\) 0.449490 0.778539i 0.0176034 0.0304899i
\(653\) −17.0000 + 29.4449i −0.665261 + 1.15227i 0.313953 + 0.949439i \(0.398347\pi\)
−0.979214 + 0.202828i \(0.934987\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.00000 0.0390434
\(657\) 0 0
\(658\) −2.00000 −0.0779681
\(659\) −8.10102 14.0314i −0.315571 0.546585i 0.663988 0.747743i \(-0.268863\pi\)
−0.979559 + 0.201159i \(0.935529\pi\)
\(660\) 0 0
\(661\) 6.89898 11.9494i 0.268339 0.464777i −0.700094 0.714051i \(-0.746859\pi\)
0.968433 + 0.249274i \(0.0801919\pi\)
\(662\) −16.6969 + 28.9199i −0.648945 + 1.12401i
\(663\) 0 0
\(664\) −2.00000 3.46410i −0.0776151 0.134433i
\(665\) 0 0
\(666\) 0 0
\(667\) 17.3939 0.673494
\(668\) −12.1237 20.9989i −0.469081 0.812472i
\(669\) 0 0
\(670\) 0 0
\(671\) −0.325765 + 0.564242i −0.0125760 + 0.0217823i
\(672\) 0 0
\(673\) 9.55051 + 16.5420i 0.368145 + 0.637646i 0.989276 0.146061i \(-0.0466596\pi\)
−0.621130 + 0.783707i \(0.713326\pi\)
\(674\) −20.5959 −0.793325
\(675\) 0 0
\(676\) −7.00000 −0.269231
\(677\) 0.202041 + 0.349945i 0.00776507 + 0.0134495i 0.869882 0.493260i \(-0.164195\pi\)
−0.862117 + 0.506710i \(0.830862\pi\)
\(678\) 0 0
\(679\) −28.9217 + 50.0938i −1.10991 + 1.92242i
\(680\) 0 0
\(681\) 0 0
\(682\) 4.67423 + 8.09601i 0.178986 + 0.310012i
\(683\) 40.5505 1.55162 0.775811 0.630965i \(-0.217341\pi\)
0.775811 + 0.630965i \(0.217341\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −12.8990 22.3417i −0.492485 0.853010i
\(687\) 0 0
\(688\) −3.72474 + 6.45145i −0.142005 + 0.245959i
\(689\) −10.3485 + 17.9241i −0.394245 + 0.682853i
\(690\) 0 0
\(691\) 10.7980 + 18.7026i 0.410774 + 0.711481i 0.994975 0.100128i \(-0.0319253\pi\)
−0.584201 + 0.811609i \(0.698592\pi\)
\(692\) −7.79796 −0.296434
\(693\) 0 0
\(694\) 15.2474 0.578785
\(695\) 0 0
\(696\) 0 0
\(697\) 1.94949 3.37662i 0.0738422 0.127898i
\(698\) −5.79796 + 10.0424i −0.219456 + 0.380109i
\(699\) 0 0
\(700\) 0 0
\(701\) −19.3939 −0.732497 −0.366248 0.930517i \(-0.619358\pi\)
−0.366248 + 0.930517i \(0.619358\pi\)
\(702\) 0 0
\(703\) −4.40408 −0.166103
\(704\) 0.724745 + 1.25529i 0.0273149 + 0.0473107i
\(705\) 0 0
\(706\) −3.29796 + 5.71223i −0.124120 + 0.214983i
\(707\) −17.7980 + 30.8270i −0.669361 + 1.15937i
\(708\) 0 0
\(709\) −11.3258 19.6168i −0.425348 0.736724i 0.571105 0.820877i \(-0.306515\pi\)
−0.996453 + 0.0841527i \(0.973182\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −12.8990 −0.483410
\(713\) −9.34847 16.1920i −0.350103 0.606396i
\(714\) 0 0
\(715\) 0 0
\(716\) 4.44949 7.70674i 0.166285 0.288014i
\(717\) 0 0
\(718\) 4.22474 + 7.31747i 0.157666 + 0.273086i
\(719\) −22.2020 −0.827996 −0.413998 0.910278i \(-0.635868\pi\)
−0.413998 + 0.910278i \(0.635868\pi\)
\(720\) 0 0
\(721\) 45.5959 1.69808
\(722\) 9.34847 + 16.1920i 0.347914 + 0.602605i
\(723\) 0 0
\(724\) −5.22474 + 9.04952i −0.194176 + 0.336323i
\(725\) 0 0
\(726\) 0 0
\(727\) 5.32577 + 9.22450i 0.197522 + 0.342118i 0.947724 0.319090i \(-0.103377\pi\)
−0.750203 + 0.661208i \(0.770044\pi\)
\(728\) −10.8990 −0.403943
\(729\) 0 0
\(730\) 0 0
\(731\) 14.5227 + 25.1541i 0.537142 + 0.930357i
\(732\) 0 0
\(733\) 6.57321 11.3851i 0.242787 0.420520i −0.718720 0.695300i \(-0.755272\pi\)
0.961507 + 0.274780i \(0.0886050\pi\)
\(734\) 5.79796 10.0424i 0.214007 0.370670i
\(735\) 0 0
\(736\) −1.44949 2.51059i −0.0534289 0.0925416i
\(737\) −13.6969 −0.504533
\(738\) 0 0
\(739\) 7.24745 0.266602 0.133301 0.991076i \(-0.457442\pi\)
0.133301 + 0.991076i \(0.457442\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 18.7980 32.5590i 0.690095 1.19528i
\(743\) −6.55051 + 11.3458i −0.240315 + 0.416238i −0.960804 0.277229i \(-0.910584\pi\)
0.720489 + 0.693466i \(0.243917\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 25.5959 0.937133
\(747\) 0 0
\(748\) 5.65153 0.206640
\(749\) 3.67423 + 6.36396i 0.134254 + 0.232534i
\(750\) 0 0
\(751\) −22.4949 + 38.9623i −0.820850 + 1.42175i 0.0841993 + 0.996449i \(0.473167\pi\)
−0.905050 + 0.425306i \(0.860167\pi\)
\(752\) 0.224745 0.389270i 0.00819560 0.0141952i
\(753\) 0 0
\(754\) 7.34847 + 12.7279i 0.267615 + 0.463524i
\(755\) 0 0
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 15.0732 + 26.1076i 0.547484 + 0.948270i
\(759\) 0 0
\(760\) 0 0
\(761\) −24.2474 + 41.9978i −0.878969 + 1.52242i −0.0264959 + 0.999649i \(0.508435\pi\)
−0.852473 + 0.522771i \(0.824898\pi\)
\(762\) 0 0
\(763\) 17.7980 + 30.8270i 0.644329 + 1.11601i
\(764\) 6.24745 0.226025
\(765\) 0 0
\(766\) −1.79796 −0.0649629
\(767\) 13.7753 + 23.8594i 0.497396 + 0.861515i
\(768\) 0 0
\(769\) 12.2474 21.2132i 0.441654 0.764968i −0.556158 0.831076i \(-0.687725\pi\)
0.997812 + 0.0661088i \(0.0210584\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 7.84847 + 13.5939i 0.282473 + 0.489257i
\(773\) 23.3939 0.841419 0.420710 0.907195i \(-0.361781\pi\)
0.420710 + 0.907195i \(0.361781\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −6.50000 11.2583i −0.233336 0.404151i
\(777\) 0 0
\(778\) 11.2247 19.4418i 0.402427 0.697023i
\(779\) 0.275255 0.476756i 0.00986204 0.0170816i
\(780\) 0 0
\(781\) −1.77526 3.07483i −0.0635236 0.110026i
\(782\) −11.3031 −0.404197
\(783\) 0 0
\(784\) 12.7980 0.457070
\(785\) 0 0
\(786\) 0 0
\(787\) −3.69694 + 6.40329i −0.131782 + 0.228252i −0.924363 0.381513i \(-0.875403\pi\)
0.792582 + 0.609766i \(0.208736\pi\)
\(788\) −4.00000 + 6.92820i −0.142494 + 0.246807i
\(789\) 0 0
\(790\) 0 0
\(791\) −21.7980 −0.775046
\(792\) 0 0
\(793\) 1.10102 0.0390984
\(794\) −8.89898 15.4135i −0.315813 0.547004i
\(795\) 0 0
\(796\) −10.2247 + 17.7098i −0.362406 + 0.627706i
\(797\) −17.7980 + 30.8270i −0.630436 + 1.09195i 0.357027 + 0.934094i \(0.383791\pi\)
−0.987463 + 0.157853i \(0.949543\pi\)
\(798\) 0 0
\(799\) −0.876276 1.51775i −0.0310004 0.0536943i
\(800\) 0 0
\(801\) 0 0
\(802\) −28.7980 −1.01689
\(803\) −3.47730 6.02285i −0.122711 0.212542i
\(804\) 0 0
\(805\) 0 0
\(806\) 7.89898 13.6814i 0.278230 0.481908i
\(807\) 0 0
\(808\) −4.00000 6.92820i −0.140720 0.243733i
\(809\) −47.0908 −1.65562 −0.827812 0.561005i \(-0.810415\pi\)
−0.827812 + 0.561005i \(0.810415\pi\)
\(810\) 0 0
\(811\) −17.2474 −0.605640 −0.302820 0.953048i \(-0.597928\pi\)
−0.302820 + 0.953048i \(0.597928\pi\)
\(812\) −13.3485 23.1202i −0.468439 0.811361i
\(813\) 0 0
\(814\) 5.79796 10.0424i 0.203218 0.351985i
\(815\) 0 0
\(816\) 0 0
\(817\) 2.05051 + 3.55159i 0.0717383 + 0.124254i
\(818\) 6.10102 0.213317
\(819\) 0 0
\(820\) 0 0
\(821\) −21.0227 36.4124i −0.733697 1.27080i −0.955292 0.295662i \(-0.904460\pi\)
0.221595 0.975139i \(-0.428874\pi\)
\(822\) 0 0
\(823\) −3.79796 + 6.57826i −0.132389 + 0.229304i −0.924597 0.380947i \(-0.875598\pi\)
0.792208 + 0.610251i \(0.208931\pi\)
\(824\) −5.12372 + 8.87455i −0.178493 + 0.309160i
\(825\) 0 0
\(826\) −25.0227 43.3406i −0.870651 1.50801i
\(827\) 13.7980 0.479802 0.239901 0.970797i \(-0.422885\pi\)
0.239901 + 0.970797i \(0.422885\pi\)
\(828\) 0 0
\(829\) −21.5505 −0.748480 −0.374240 0.927332i \(-0.622096\pi\)
−0.374240 + 0.927332i \(0.622096\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.22474 2.12132i 0.0424604 0.0735436i
\(833\) 24.9495 43.2138i 0.864449 1.49727i
\(834\) 0 0
\(835\) 0 0
\(836\) 0.797959 0.0275980
\(837\) 0 0
\(838\) −0.898979 −0.0310547
\(839\) 7.87628 + 13.6421i 0.271919 + 0.470978i 0.969353 0.245671i \(-0.0790083\pi\)
−0.697434 + 0.716649i \(0.745675\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 8.22474 14.2457i 0.283443 0.490938i
\(843\) 0 0
\(844\) 7.89898 + 13.6814i 0.271894 + 0.470934i
\(845\) 0 0
\(846\) 0 0
\(847\) −39.5959 −1.36053
\(848\) 4.22474 + 7.31747i 0.145078 + 0.251283i
\(849\) 0 0
\(850\) 0 0
\(851\) −11.5959 + 20.0847i −0.397503 + 0.688495i
\(852\) 0 0
\(853\) 12.5732 + 21.7774i 0.430499 + 0.745646i 0.996916 0.0784728i \(-0.0250044\pi\)
−0.566418 + 0.824118i \(0.691671\pi\)
\(854\) −2.00000 −0.0684386
\(855\) 0 0
\(856\) −1.65153 −0.0564482
\(857\) −26.6969 46.2405i −0.911950 1.57954i −0.811306 0.584621i \(-0.801243\pi\)
−0.100644 0.994923i \(-0.532090\pi\)
\(858\) 0 0
\(859\) −17.8712 + 30.9538i −0.609757 + 1.05613i 0.381524 + 0.924359i \(0.375399\pi\)
−0.991280 + 0.131770i \(0.957934\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 6.87628 + 11.9101i 0.234207 + 0.405658i
\(863\) −21.5505 −0.733588 −0.366794 0.930302i \(-0.619545\pi\)
−0.366794 + 0.930302i \(0.619545\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −11.5000 19.9186i −0.390786 0.676861i
\(867\) 0 0
\(868\) −14.3485 + 24.8523i −0.487019 + 0.843541i
\(869\) −5.32577 + 9.22450i −0.180664 + 0.312920i
\(870\) 0 0
\(871\) 11.5732 + 20.0454i 0.392143 + 0.679212i
\(872\) −8.00000 −0.270914
\(873\) 0 0
\(874\) −1.59592 −0.0539827
\(875\) 0 0
\(876\) 0 0
\(877\) 27.5732 47.7582i 0.931081 1.61268i 0.149604 0.988746i \(-0.452200\pi\)
0.781477 0.623934i \(-0.214467\pi\)
\(878\) 11.0227 19.0919i 0.371998 0.644320i
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) −11.4495 −0.385306 −0.192653 0.981267i \(-0.561709\pi\)
−0.192653 + 0.981267i \(0.561709\pi\)
\(884\) −4.77526 8.27098i −0.160609 0.278183i
\(885\) 0 0
\(886\) −1.62372 + 2.81237i −0.0545501 + 0.0944835i
\(887\) 2.32577 4.02834i 0.0780916 0.135259i −0.824335 0.566102i \(-0.808451\pi\)
0.902427 + 0.430844i \(0.141784\pi\)
\(888\) 0 0
\(889\) 6.44949 + 11.1708i 0.216309 + 0.374658i
\(890\) 0 0
\(891\) 0 0
\(892\) 18.8990 0.632785
\(893\) −0.123724 0.214297i −0.00414028 0.00717117i
\(894\) 0 0
\(895\) 0 0
\(896\) −2.22474 + 3.85337i −0.0743235 + 0.128732i
\(897\) 0 0
\(898\) −0.398979 0.691053i −0.0133141 0.0230607i
\(899\) 38.6969 1.29062
\(900\) 0 0
\(901\) 32.9444 1.09754
\(902\) 0.724745 + 1.25529i 0.0241314 + 0.0417967i
\(903\) 0 0
\(904\) 2.44949 4.24264i 0.0814688 0.141108i
\(905\) 0 0
\(906\) 0 0
\(907\) −16.8712 29.2217i −0.560198 0.970292i −0.997479 0.0709665i \(-0.977392\pi\)
0.437281 0.899325i \(-0.355942\pi\)
\(908\) −1.44949 −0.0481030
\(909\) 0 0
\(910\) 0 0
\(911\) −0.123724 0.214297i −0.00409917 0.00709997i 0.863969 0.503546i \(-0.167971\pi\)
−0.868068 + 0.496446i \(0.834638\pi\)
\(912\) 0 0
\(913\) 2.89898 5.02118i 0.0959422 0.166177i
\(914\) 4.05051 7.01569i 0.133979 0.232058i
\(915\) 0 0
\(916\) 6.77526 + 11.7351i 0.223861 + 0.387738i
\(917\) 21.7980 0.719832
\(918\) 0 0
\(919\) 10.8990 0.359524 0.179762 0.983710i \(-0.442467\pi\)
0.179762 + 0.983710i \(0.442467\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.22474 2.12132i 0.0403348 0.0698620i
\(923\) −3.00000 + 5.19615i −0.0987462 + 0.171033i
\(924\) 0 0
\(925\) 0 0
\(926\) 24.0000 0.788689
\(927\) 0 0
\(928\) 6.00000 0.196960
\(929\) −27.7980 48.1475i −0.912021 1.57967i −0.811205 0.584762i \(-0.801188\pi\)
−0.100817 0.994905i \(-0.532146\pi\)
\(930\) 0 0
\(931\) 3.52270 6.10150i 0.115452 0.199969i
\(932\) 7.84847 13.5939i 0.257085 0.445285i
\(933\) 0 0
\(934\) 2.17423 + 3.76588i 0.0711431 + 0.123224i
\(935\) 0 0
\(936\) 0 0
\(937\) −39.5959 −1.29354 −0.646771 0.762684i \(-0.723881\pi\)
−0.646771 + 0.762684i \(0.723881\pi\)
\(938\) −21.0227 36.4124i −0.686416 1.18891i
\(939\) 0 0
\(940\) 0 0
\(941\) −24.8990 + 43.1263i −0.811684 + 1.40588i 0.100001 + 0.994987i \(0.468115\pi\)
−0.911685 + 0.410890i \(0.865218\pi\)
\(942\) 0 0
\(943\) −1.44949 2.51059i −0.0472019 0.0817561i
\(944\) 11.2474 0.366073
\(945\) 0 0
\(946\) −10.7980 −0.351072
\(947\) −10.6237 18.4008i −0.345225 0.597947i 0.640170 0.768233i \(-0.278864\pi\)
−0.985395 + 0.170287i \(0.945531\pi\)
\(948\) 0 0
\(949\) −5.87628 + 10.1780i −0.190752 + 0.330392i
\(950\) 0 0
\(951\) 0 0
\(952\) 8.67423 + 15.0242i 0.281134 + 0.486938i
\(953\) 50.7980 1.64551 0.822754 0.568398i \(-0.192437\pi\)
0.822754 + 0.568398i \(0.192437\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 14.3485 + 24.8523i 0.464063 + 0.803780i
\(957\) 0 0
\(958\) −6.34847 + 10.9959i −0.205110 + 0.355260i
\(959\) 6.67423 11.5601i 0.215522 0.373296i
\(960\) 0 0
\(961\) −5.29796 9.17633i −0.170902 0.296011i
\(962\) −19.5959 −0.631798
\(963\) 0 0
\(964\) 1.00000 0.0322078
\(965\) 0 0
\(966\) 0 0
\(967\) 14.3485 24.8523i 0.461416 0.799195i −0.537616 0.843190i \(-0.680675\pi\)
0.999032 + 0.0439944i \(0.0140084\pi\)
\(968\) 4.44949 7.70674i 0.143012 0.247704i
\(969\) 0 0
\(970\) 0 0
\(971\) 23.3939 0.750745 0.375373 0.926874i \(-0.377515\pi\)
0.375373 + 0.926874i \(0.377515\pi\)
\(972\) 0 0
\(973\) −50.0454 −1.60438
\(974\) 17.4495 + 30.2234i 0.559118 + 0.968420i
\(975\) 0 0
\(976\) 0.224745 0.389270i 0.00719391 0.0124602i
\(977\) 18.9495 32.8215i 0.606248 1.05005i −0.385605 0.922664i \(-0.626007\pi\)
0.991853 0.127388i \(-0.0406594\pi\)
\(978\) 0 0
\(979\) −9.34847 16.1920i −0.298778 0.517499i
\(980\) 0 0
\(981\) 0 0
\(982\) −23.4495 −0.748303
\(983\) −18.6969 32.3840i −0.596340 1.03289i −0.993356 0.115079i \(-0.963288\pi\)
0.397017 0.917811i \(-0.370046\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 11.6969 20.2597i 0.372506 0.645200i
\(987\) 0 0
\(988\) −0.674235 1.16781i −0.0214503 0.0371529i
\(989\) 21.5959 0.686710
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) −3.22474 5.58542i −0.102386 0.177337i
\(993\) 0 0
\(994\) 5.44949 9.43879i 0.172847 0.299380i
\(995\) 0 0
\(996\) 0 0
\(997\) 16.4722 + 28.5307i 0.521680 + 0.903576i 0.999682 + 0.0252170i \(0.00802769\pi\)
−0.478002 + 0.878359i \(0.658639\pi\)
\(998\) 3.24745 0.102796
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.2.e.j.901.1 4
3.2 odd 2 450.2.e.n.301.2 4
5.2 odd 4 270.2.i.b.199.3 8
5.3 odd 4 270.2.i.b.199.2 8
5.4 even 2 1350.2.e.m.901.2 4
9.2 odd 6 450.2.e.n.151.2 4
9.4 even 3 4050.2.a.bz.1.2 2
9.5 odd 6 4050.2.a.bq.1.2 2
9.7 even 3 inner 1350.2.e.j.451.1 4
15.2 even 4 90.2.i.b.49.1 8
15.8 even 4 90.2.i.b.49.4 yes 8
15.14 odd 2 450.2.e.k.301.1 4
20.3 even 4 2160.2.by.d.1009.4 8
20.7 even 4 2160.2.by.d.1009.1 8
45.2 even 12 90.2.i.b.79.4 yes 8
45.4 even 6 4050.2.a.bm.1.1 2
45.7 odd 12 270.2.i.b.19.2 8
45.13 odd 12 810.2.c.e.649.2 4
45.14 odd 6 4050.2.a.bs.1.1 2
45.22 odd 12 810.2.c.e.649.4 4
45.23 even 12 810.2.c.f.649.3 4
45.29 odd 6 450.2.e.k.151.1 4
45.32 even 12 810.2.c.f.649.1 4
45.34 even 6 1350.2.e.m.451.2 4
45.38 even 12 90.2.i.b.79.1 yes 8
45.43 odd 12 270.2.i.b.19.3 8
60.23 odd 4 720.2.by.c.49.1 8
60.47 odd 4 720.2.by.c.49.4 8
180.7 even 12 2160.2.by.d.289.4 8
180.43 even 12 2160.2.by.d.289.1 8
180.47 odd 12 720.2.by.c.529.1 8
180.83 odd 12 720.2.by.c.529.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.b.49.1 8 15.2 even 4
90.2.i.b.49.4 yes 8 15.8 even 4
90.2.i.b.79.1 yes 8 45.38 even 12
90.2.i.b.79.4 yes 8 45.2 even 12
270.2.i.b.19.2 8 45.7 odd 12
270.2.i.b.19.3 8 45.43 odd 12
270.2.i.b.199.2 8 5.3 odd 4
270.2.i.b.199.3 8 5.2 odd 4
450.2.e.k.151.1 4 45.29 odd 6
450.2.e.k.301.1 4 15.14 odd 2
450.2.e.n.151.2 4 9.2 odd 6
450.2.e.n.301.2 4 3.2 odd 2
720.2.by.c.49.1 8 60.23 odd 4
720.2.by.c.49.4 8 60.47 odd 4
720.2.by.c.529.1 8 180.47 odd 12
720.2.by.c.529.4 8 180.83 odd 12
810.2.c.e.649.2 4 45.13 odd 12
810.2.c.e.649.4 4 45.22 odd 12
810.2.c.f.649.1 4 45.32 even 12
810.2.c.f.649.3 4 45.23 even 12
1350.2.e.j.451.1 4 9.7 even 3 inner
1350.2.e.j.901.1 4 1.1 even 1 trivial
1350.2.e.m.451.2 4 45.34 even 6
1350.2.e.m.901.2 4 5.4 even 2
2160.2.by.d.289.1 8 180.43 even 12
2160.2.by.d.289.4 8 180.7 even 12
2160.2.by.d.1009.1 8 20.7 even 4
2160.2.by.d.1009.4 8 20.3 even 4
4050.2.a.bm.1.1 2 45.4 even 6
4050.2.a.bq.1.2 2 9.5 odd 6
4050.2.a.bs.1.1 2 45.14 odd 6
4050.2.a.bz.1.2 2 9.4 even 3