Properties

Label 2160.2.by.d.1009.1
Level $2160$
Weight $2$
Character 2160.1009
Analytic conductor $17.248$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(289,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.by (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1009.1
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1009
Dual form 2160.2.by.d.289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.03906 - 0.917738i) q^{5} +(-3.85337 + 2.22474i) q^{7} +(-0.724745 - 1.25529i) q^{11} +(-2.12132 - 1.22474i) q^{13} -3.89898i q^{17} -0.550510 q^{19} +(-2.51059 - 1.44949i) q^{23} +(3.31552 + 3.74264i) q^{25} +(3.00000 + 5.19615i) q^{29} +(3.22474 - 5.58542i) q^{31} +(9.89898 - 1.00000i) q^{35} +8.00000i q^{37} +(-0.500000 + 0.866025i) q^{41} +(6.45145 - 3.72474i) q^{43} +(0.389270 - 0.224745i) q^{47} +(6.39898 - 11.0834i) q^{49} +8.44949i q^{53} +(0.325765 + 3.22474i) q^{55} +(-5.62372 + 9.74058i) q^{59} +(0.224745 + 0.389270i) q^{61} +(3.20150 + 4.44414i) q^{65} +(8.18350 + 4.72474i) q^{67} +2.44949 q^{71} +4.79796i q^{73} +(5.58542 + 3.22474i) q^{77} +(3.67423 + 6.36396i) q^{79} +(3.46410 - 2.00000i) q^{83} +(-3.57824 + 7.95025i) q^{85} +12.8990 q^{89} +10.8990 q^{91} +(1.12252 + 0.505224i) q^{95} +(11.2583 - 6.50000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} + 4 q^{11} - 24 q^{19} + 24 q^{29} + 16 q^{31} + 40 q^{35} - 4 q^{41} + 12 q^{49} + 32 q^{55} + 4 q^{59} - 8 q^{61} + 12 q^{65} - 20 q^{85} + 64 q^{89} + 48 q^{91} - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.03906 0.917738i −0.911894 0.410425i
\(6\) 0 0
\(7\) −3.85337 + 2.22474i −1.45644 + 0.840875i −0.998834 0.0482818i \(-0.984625\pi\)
−0.457604 + 0.889156i \(0.651292\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.724745 1.25529i −0.218519 0.378486i 0.735837 0.677159i \(-0.236789\pi\)
−0.954355 + 0.298674i \(0.903456\pi\)
\(12\) 0 0
\(13\) −2.12132 1.22474i −0.588348 0.339683i 0.176096 0.984373i \(-0.443653\pi\)
−0.764444 + 0.644690i \(0.776986\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.89898i 0.945641i −0.881159 0.472821i \(-0.843236\pi\)
0.881159 0.472821i \(-0.156764\pi\)
\(18\) 0 0
\(19\) −0.550510 −0.126296 −0.0631479 0.998004i \(-0.520114\pi\)
−0.0631479 + 0.998004i \(0.520114\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.51059 1.44949i −0.523494 0.302240i 0.214869 0.976643i \(-0.431068\pi\)
−0.738363 + 0.674403i \(0.764401\pi\)
\(24\) 0 0
\(25\) 3.31552 + 3.74264i 0.663103 + 0.748528i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.00000 + 5.19615i 0.557086 + 0.964901i 0.997738 + 0.0672232i \(0.0214140\pi\)
−0.440652 + 0.897678i \(0.645253\pi\)
\(30\) 0 0
\(31\) 3.22474 5.58542i 0.579181 1.00317i −0.416392 0.909185i \(-0.636706\pi\)
0.995573 0.0939863i \(-0.0299610\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.89898 1.00000i 1.67323 0.169031i
\(36\) 0 0
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.500000 + 0.866025i −0.0780869 + 0.135250i −0.902424 0.430848i \(-0.858214\pi\)
0.824338 + 0.566099i \(0.191548\pi\)
\(42\) 0 0
\(43\) 6.45145 3.72474i 0.983836 0.568018i 0.0804103 0.996762i \(-0.474377\pi\)
0.903426 + 0.428744i \(0.141044\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.389270 0.224745i 0.0567808 0.0327824i −0.471341 0.881951i \(-0.656230\pi\)
0.528122 + 0.849169i \(0.322896\pi\)
\(48\) 0 0
\(49\) 6.39898 11.0834i 0.914140 1.58334i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.44949i 1.16063i 0.814393 + 0.580313i \(0.197070\pi\)
−0.814393 + 0.580313i \(0.802930\pi\)
\(54\) 0 0
\(55\) 0.325765 + 3.22474i 0.0439262 + 0.434825i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.62372 + 9.74058i −0.732147 + 1.26812i 0.223817 + 0.974631i \(0.428148\pi\)
−0.955964 + 0.293484i \(0.905185\pi\)
\(60\) 0 0
\(61\) 0.224745 + 0.389270i 0.0287756 + 0.0498409i 0.880055 0.474873i \(-0.157506\pi\)
−0.851279 + 0.524713i \(0.824173\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.20150 + 4.44414i 0.397097 + 0.551228i
\(66\) 0 0
\(67\) 8.18350 + 4.72474i 0.999773 + 0.577219i 0.908181 0.418577i \(-0.137471\pi\)
0.0915922 + 0.995797i \(0.470804\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.44949 0.290701 0.145350 0.989380i \(-0.453569\pi\)
0.145350 + 0.989380i \(0.453569\pi\)
\(72\) 0 0
\(73\) 4.79796i 0.561559i 0.959772 + 0.280779i \(0.0905929\pi\)
−0.959772 + 0.280779i \(0.909407\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.58542 + 3.22474i 0.636518 + 0.367494i
\(78\) 0 0
\(79\) 3.67423 + 6.36396i 0.413384 + 0.716002i 0.995257 0.0972777i \(-0.0310135\pi\)
−0.581874 + 0.813279i \(0.697680\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.46410 2.00000i 0.380235 0.219529i −0.297686 0.954664i \(-0.596215\pi\)
0.677920 + 0.735135i \(0.262881\pi\)
\(84\) 0 0
\(85\) −3.57824 + 7.95025i −0.388115 + 0.862325i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.8990 1.36729 0.683645 0.729815i \(-0.260394\pi\)
0.683645 + 0.729815i \(0.260394\pi\)
\(90\) 0 0
\(91\) 10.8990 1.14252
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.12252 + 0.505224i 0.115168 + 0.0518349i
\(96\) 0 0
\(97\) 11.2583 6.50000i 1.14311 0.659975i 0.195911 0.980622i \(-0.437234\pi\)
0.947199 + 0.320647i \(0.103900\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.00000 6.92820i −0.398015 0.689382i 0.595466 0.803380i \(-0.296967\pi\)
−0.993481 + 0.113998i \(0.963634\pi\)
\(102\) 0 0
\(103\) −8.87455 5.12372i −0.874435 0.504856i −0.00561582 0.999984i \(-0.501788\pi\)
−0.868820 + 0.495129i \(0.835121\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.65153i 0.159660i 0.996809 + 0.0798298i \(0.0254377\pi\)
−0.996809 + 0.0798298i \(0.974562\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.24264 2.44949i −0.399114 0.230429i 0.286988 0.957934i \(-0.407346\pi\)
−0.686102 + 0.727506i \(0.740679\pi\)
\(114\) 0 0
\(115\) 3.78899 + 5.25966i 0.353325 + 0.490466i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.67423 + 15.0242i 0.795166 + 1.37727i
\(120\) 0 0
\(121\) 4.44949 7.70674i 0.404499 0.700613i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.32577 10.6742i −0.297465 0.954733i
\(126\) 0 0
\(127\) 2.89898i 0.257243i 0.991694 + 0.128621i \(0.0410552\pi\)
−0.991694 + 0.128621i \(0.958945\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.44949 4.24264i 0.214013 0.370681i −0.738954 0.673756i \(-0.764680\pi\)
0.952967 + 0.303075i \(0.0980132\pi\)
\(132\) 0 0
\(133\) 2.12132 1.22474i 0.183942 0.106199i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.59808 + 1.50000i −0.221969 + 0.128154i −0.606861 0.794808i \(-0.707572\pi\)
0.384893 + 0.922961i \(0.374238\pi\)
\(138\) 0 0
\(139\) 5.62372 9.74058i 0.476998 0.826185i −0.522654 0.852545i \(-0.675058\pi\)
0.999653 + 0.0263597i \(0.00839153\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.55051i 0.296909i
\(144\) 0 0
\(145\) −1.34847 13.3485i −0.111984 1.10853i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.12372 + 14.0707i −0.665521 + 1.15272i 0.313622 + 0.949548i \(0.398457\pi\)
−0.979144 + 0.203169i \(0.934876\pi\)
\(150\) 0 0
\(151\) −3.44949 5.97469i −0.280715 0.486213i 0.690846 0.723002i \(-0.257238\pi\)
−0.971561 + 0.236789i \(0.923905\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −11.7014 + 8.42953i −0.939879 + 0.677076i
\(156\) 0 0
\(157\) −13.8564 8.00000i −1.10586 0.638470i −0.168107 0.985769i \(-0.553765\pi\)
−0.937754 + 0.347299i \(0.887099\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.8990 1.01658
\(162\) 0 0
\(163\) 0.898979i 0.0704135i −0.999380 0.0352068i \(-0.988791\pi\)
0.999380 0.0352068i \(-0.0112090\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 20.9989 + 12.1237i 1.62494 + 0.938162i 0.985570 + 0.169266i \(0.0541397\pi\)
0.639374 + 0.768896i \(0.279194\pi\)
\(168\) 0 0
\(169\) −3.50000 6.06218i −0.269231 0.466321i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.75323 3.89898i 0.513439 0.296434i −0.220807 0.975317i \(-0.570869\pi\)
0.734246 + 0.678884i \(0.237536\pi\)
\(174\) 0 0
\(175\) −21.1023 7.04561i −1.59519 0.532598i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.89898 −0.665141 −0.332570 0.943078i \(-0.607916\pi\)
−0.332570 + 0.943078i \(0.607916\pi\)
\(180\) 0 0
\(181\) 10.4495 0.776704 0.388352 0.921511i \(-0.373044\pi\)
0.388352 + 0.921511i \(0.373044\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.34190 16.3125i 0.539787 1.19932i
\(186\) 0 0
\(187\) −4.89437 + 2.82577i −0.357912 + 0.206640i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.12372 + 5.41045i 0.226025 + 0.391486i 0.956626 0.291318i \(-0.0940936\pi\)
−0.730602 + 0.682804i \(0.760760\pi\)
\(192\) 0 0
\(193\) −13.5939 7.84847i −0.978514 0.564945i −0.0766927 0.997055i \(-0.524436\pi\)
−0.901821 + 0.432110i \(0.857769\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 0 0
\(199\) 20.4495 1.44963 0.724813 0.688946i \(-0.241926\pi\)
0.724813 + 0.688946i \(0.241926\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −23.1202 13.3485i −1.62272 0.936879i
\(204\) 0 0
\(205\) 1.81431 1.30701i 0.126717 0.0912853i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.398979 + 0.691053i 0.0275980 + 0.0478011i
\(210\) 0 0
\(211\) −7.89898 + 13.6814i −0.543788 + 0.941869i 0.454894 + 0.890546i \(0.349677\pi\)
−0.998682 + 0.0513231i \(0.983656\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −16.5732 + 1.67423i −1.13028 + 0.114182i
\(216\) 0 0
\(217\) 28.6969i 1.94808i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.77526 + 8.27098i −0.321218 + 0.556367i
\(222\) 0 0
\(223\) 16.3670 9.44949i 1.09602 0.632785i 0.160844 0.986980i \(-0.448579\pi\)
0.935171 + 0.354195i \(0.115245\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.25529 0.724745i 0.0833169 0.0481030i −0.457763 0.889074i \(-0.651349\pi\)
0.541080 + 0.840971i \(0.318016\pi\)
\(228\) 0 0
\(229\) −6.77526 + 11.7351i −0.447721 + 0.775476i −0.998237 0.0593484i \(-0.981098\pi\)
0.550516 + 0.834825i \(0.314431\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.6969i 1.02834i 0.857688 + 0.514170i \(0.171900\pi\)
−0.857688 + 0.514170i \(0.828100\pi\)
\(234\) 0 0
\(235\) −1.00000 + 0.101021i −0.0652328 + 0.00658985i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.3485 24.8523i 0.928125 1.60756i 0.141669 0.989914i \(-0.454753\pi\)
0.786456 0.617646i \(-0.211914\pi\)
\(240\) 0 0
\(241\) −0.500000 0.866025i −0.0322078 0.0557856i 0.849472 0.527633i \(-0.176921\pi\)
−0.881680 + 0.471848i \(0.843587\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −23.2195 + 16.7270i −1.48344 + 1.06865i
\(246\) 0 0
\(247\) 1.16781 + 0.674235i 0.0743059 + 0.0429005i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11.4495 0.722685 0.361343 0.932433i \(-0.382318\pi\)
0.361343 + 0.932433i \(0.382318\pi\)
\(252\) 0 0
\(253\) 4.20204i 0.264180i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 17.2330 + 9.94949i 1.07497 + 0.620632i 0.929534 0.368736i \(-0.120209\pi\)
0.145432 + 0.989368i \(0.453543\pi\)
\(258\) 0 0
\(259\) −17.7980 30.8270i −1.10591 1.91549i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.53893 3.77526i 0.403208 0.232792i −0.284659 0.958629i \(-0.591880\pi\)
0.687867 + 0.725837i \(0.258547\pi\)
\(264\) 0 0
\(265\) 7.75442 17.2290i 0.476350 1.05837i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −28.0454 −1.70996 −0.854979 0.518662i \(-0.826430\pi\)
−0.854979 + 0.518662i \(0.826430\pi\)
\(270\) 0 0
\(271\) −23.5959 −1.43335 −0.716675 0.697407i \(-0.754337\pi\)
−0.716675 + 0.697407i \(0.754337\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.29522 6.87441i 0.138407 0.414542i
\(276\) 0 0
\(277\) 8.31031 4.79796i 0.499318 0.288281i −0.229114 0.973400i \(-0.573583\pi\)
0.728432 + 0.685118i \(0.240249\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 + 10.3923i 0.357930 + 0.619953i 0.987615 0.156898i \(-0.0501493\pi\)
−0.629685 + 0.776851i \(0.716816\pi\)
\(282\) 0 0
\(283\) −3.46410 2.00000i −0.205919 0.118888i 0.393494 0.919327i \(-0.371266\pi\)
−0.599414 + 0.800439i \(0.704600\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.44949i 0.262645i
\(288\) 0 0
\(289\) 1.79796 0.105762
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −15.5885 9.00000i −0.910687 0.525786i −0.0300351 0.999549i \(-0.509562\pi\)
−0.880652 + 0.473763i \(0.842895\pi\)
\(294\) 0 0
\(295\) 20.4064 14.7005i 1.18811 0.855896i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.55051 + 6.14966i 0.205331 + 0.355644i
\(300\) 0 0
\(301\) −16.5732 + 28.7056i −0.955264 + 1.65457i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.101021 1.00000i −0.00578442 0.0572598i
\(306\) 0 0
\(307\) 23.9444i 1.36658i 0.730148 + 0.683289i \(0.239451\pi\)
−0.730148 + 0.683289i \(0.760549\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.4495 + 19.8311i −0.649241 + 1.12452i 0.334063 + 0.942551i \(0.391580\pi\)
−0.983304 + 0.181968i \(0.941753\pi\)
\(312\) 0 0
\(313\) −6.66574 + 3.84847i −0.376770 + 0.217528i −0.676412 0.736523i \(-0.736466\pi\)
0.299642 + 0.954052i \(0.403133\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 26.7986 15.4722i 1.50516 0.869005i 0.505179 0.863015i \(-0.331427\pi\)
0.999982 0.00599020i \(-0.00190675\pi\)
\(318\) 0 0
\(319\) 4.34847 7.53177i 0.243468 0.421698i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.14643i 0.119430i
\(324\) 0 0
\(325\) −2.44949 12.0000i −0.135873 0.665640i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.00000 + 1.73205i −0.0551318 + 0.0954911i
\(330\) 0 0
\(331\) 16.6969 + 28.9199i 0.917747 + 1.58958i 0.802829 + 0.596209i \(0.203327\pi\)
0.114917 + 0.993375i \(0.463340\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −12.3506 17.1443i −0.674783 0.936695i
\(336\) 0 0
\(337\) 17.8366 + 10.2980i 0.971621 + 0.560966i 0.899730 0.436447i \(-0.143763\pi\)
0.0718909 + 0.997413i \(0.477097\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −9.34847 −0.506248
\(342\) 0 0
\(343\) 25.7980i 1.39296i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.2047 + 7.62372i 0.708864 + 0.409263i 0.810640 0.585544i \(-0.199119\pi\)
−0.101776 + 0.994807i \(0.532453\pi\)
\(348\) 0 0
\(349\) 5.79796 + 10.0424i 0.310358 + 0.537555i 0.978440 0.206532i \(-0.0662179\pi\)
−0.668082 + 0.744088i \(0.732885\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.71223 + 3.29796i −0.304031 + 0.175533i −0.644253 0.764813i \(-0.722831\pi\)
0.340221 + 0.940345i \(0.389498\pi\)
\(354\) 0 0
\(355\) −4.99465 2.24799i −0.265089 0.119311i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.44949 −0.445947 −0.222974 0.974825i \(-0.571576\pi\)
−0.222974 + 0.974825i \(0.571576\pi\)
\(360\) 0 0
\(361\) −18.6969 −0.984049
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.40327 9.78332i 0.230478 0.512082i
\(366\) 0 0
\(367\) 10.0424 5.79796i 0.524207 0.302651i −0.214447 0.976736i \(-0.568795\pi\)
0.738654 + 0.674085i \(0.235462\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −18.7980 32.5590i −0.975941 1.69038i
\(372\) 0 0
\(373\) 22.1667 + 12.7980i 1.14775 + 0.662653i 0.948338 0.317263i \(-0.102764\pi\)
0.199411 + 0.979916i \(0.436097\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.6969i 0.756931i
\(378\) 0 0
\(379\) −30.1464 −1.54852 −0.774259 0.632869i \(-0.781877\pi\)
−0.774259 + 0.632869i \(0.781877\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.55708 + 0.898979i 0.0795630 + 0.0459357i 0.539254 0.842143i \(-0.318706\pi\)
−0.459691 + 0.888079i \(0.652040\pi\)
\(384\) 0 0
\(385\) −8.42953 11.7014i −0.429609 0.596358i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −11.2247 19.4418i −0.569117 0.985740i −0.996654 0.0817417i \(-0.973952\pi\)
0.427536 0.903998i \(-0.359382\pi\)
\(390\) 0 0
\(391\) −5.65153 + 9.78874i −0.285810 + 0.495038i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.65153 16.3485i −0.0830975 0.822581i
\(396\) 0 0
\(397\) 17.7980i 0.893254i 0.894720 + 0.446627i \(0.147375\pi\)
−0.894720 + 0.446627i \(0.852625\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.3990 24.9398i 0.719051 1.24543i −0.242326 0.970195i \(-0.577910\pi\)
0.961376 0.275237i \(-0.0887565\pi\)
\(402\) 0 0
\(403\) −13.6814 + 7.89898i −0.681521 + 0.393476i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.0424 5.79796i 0.497781 0.287394i
\(408\) 0 0
\(409\) 3.05051 5.28364i 0.150838 0.261259i −0.780698 0.624909i \(-0.785136\pi\)
0.931536 + 0.363650i \(0.118469\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 50.0454i 2.46257i
\(414\) 0 0
\(415\) −8.89898 + 0.898979i −0.436834 + 0.0441292i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.449490 0.778539i 0.0219590 0.0380341i −0.854837 0.518896i \(-0.826343\pi\)
0.876796 + 0.480862i \(0.159676\pi\)
\(420\) 0 0
\(421\) 8.22474 + 14.2457i 0.400850 + 0.694292i 0.993829 0.110926i \(-0.0353817\pi\)
−0.592979 + 0.805218i \(0.702048\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 14.5925 12.9271i 0.707839 0.627058i
\(426\) 0 0
\(427\) −1.73205 1.00000i −0.0838198 0.0483934i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.7526 0.662437 0.331219 0.943554i \(-0.392540\pi\)
0.331219 + 0.943554i \(0.392540\pi\)
\(432\) 0 0
\(433\) 23.0000i 1.10531i −0.833410 0.552655i \(-0.813615\pi\)
0.833410 0.552655i \(-0.186385\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.38211 + 0.797959i 0.0661151 + 0.0381716i
\(438\) 0 0
\(439\) 11.0227 + 19.0919i 0.526085 + 0.911206i 0.999538 + 0.0303869i \(0.00967395\pi\)
−0.473453 + 0.880819i \(0.656993\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.81237 1.62372i 0.133620 0.0771455i −0.431700 0.902017i \(-0.642086\pi\)
0.565320 + 0.824872i \(0.308753\pi\)
\(444\) 0 0
\(445\) −26.3018 11.8379i −1.24682 0.561169i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.797959 −0.0376580 −0.0188290 0.999823i \(-0.505994\pi\)
−0.0188290 + 0.999823i \(0.505994\pi\)
\(450\) 0 0
\(451\) 1.44949 0.0682538
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −22.2237 10.0024i −1.04186 0.468920i
\(456\) 0 0
\(457\) −7.01569 + 4.05051i −0.328180 + 0.189475i −0.655033 0.755600i \(-0.727345\pi\)
0.326853 + 0.945075i \(0.394012\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.22474 + 2.12132i 0.0570421 + 0.0987997i 0.893136 0.449786i \(-0.148500\pi\)
−0.836094 + 0.548586i \(0.815166\pi\)
\(462\) 0 0
\(463\) −20.7846 12.0000i −0.965943 0.557687i −0.0679458 0.997689i \(-0.521644\pi\)
−0.897997 + 0.440002i \(0.854978\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.34847i 0.201223i 0.994926 + 0.100612i \(0.0320799\pi\)
−0.994926 + 0.100612i \(0.967920\pi\)
\(468\) 0 0
\(469\) −42.0454 −1.94148
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −9.35131 5.39898i −0.429974 0.248245i
\(474\) 0 0
\(475\) −1.82523 2.06036i −0.0837471 0.0945359i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.34847 10.9959i −0.290069 0.502414i 0.683757 0.729710i \(-0.260345\pi\)
−0.973826 + 0.227296i \(0.927012\pi\)
\(480\) 0 0
\(481\) 9.79796 16.9706i 0.446748 0.773791i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −28.9217 + 2.92168i −1.31327 + 0.132667i
\(486\) 0 0
\(487\) 34.8990i 1.58142i 0.612188 + 0.790712i \(0.290289\pi\)
−0.612188 + 0.790712i \(0.709711\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11.7247 + 20.3079i −0.529130 + 0.916481i 0.470293 + 0.882511i \(0.344148\pi\)
−0.999423 + 0.0339700i \(0.989185\pi\)
\(492\) 0 0
\(493\) 20.2597 11.6969i 0.912451 0.526804i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.43879 + 5.44949i −0.423388 + 0.244443i
\(498\) 0 0
\(499\) −1.62372 + 2.81237i −0.0726879 + 0.125899i −0.900078 0.435728i \(-0.856491\pi\)
0.827391 + 0.561627i \(0.189824\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.55051i 0.425836i −0.977070 0.212918i \(-0.931703\pi\)
0.977070 0.212918i \(-0.0682968\pi\)
\(504\) 0 0
\(505\) 1.79796 + 17.7980i 0.0800081 + 0.791999i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.79796 6.57826i 0.168342 0.291576i −0.769495 0.638652i \(-0.779492\pi\)
0.937837 + 0.347076i \(0.112826\pi\)
\(510\) 0 0
\(511\) −10.6742 18.4883i −0.472200 0.817875i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.3935 + 18.5921i 0.590188 + 0.819265i
\(516\) 0 0
\(517\) −0.564242 0.325765i −0.0248153 0.0143271i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.69694 0.337209 0.168604 0.985684i \(-0.446074\pi\)
0.168604 + 0.985684i \(0.446074\pi\)
\(522\) 0 0
\(523\) 29.7980i 1.30297i −0.758660 0.651487i \(-0.774146\pi\)
0.758660 0.651487i \(-0.225854\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −21.7774 12.5732i −0.948640 0.547698i
\(528\) 0 0
\(529\) −7.29796 12.6404i −0.317303 0.549584i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.12132 1.22474i 0.0918846 0.0530496i
\(534\) 0 0
\(535\) 1.51567 3.36757i 0.0655282 0.145593i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −18.5505 −0.799027
\(540\) 0 0
\(541\) −39.5959 −1.70236 −0.851181 0.524873i \(-0.824113\pi\)
−0.851181 + 0.524873i \(0.824113\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −16.3125 7.34190i −0.698749 0.314493i
\(546\) 0 0
\(547\) 6.27647 3.62372i 0.268363 0.154939i −0.359781 0.933037i \(-0.617148\pi\)
0.628143 + 0.778098i \(0.283815\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.65153 2.86054i −0.0703576 0.121863i
\(552\) 0 0
\(553\) −28.3164 16.3485i −1.20413 0.695208i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.9444i 1.65013i 0.565040 + 0.825063i \(0.308861\pi\)
−0.565040 + 0.825063i \(0.691139\pi\)
\(558\) 0 0
\(559\) −18.2474 −0.771785
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 31.3037 + 18.0732i 1.31929 + 0.761695i 0.983615 0.180281i \(-0.0577007\pi\)
0.335680 + 0.941976i \(0.391034\pi\)
\(564\) 0 0
\(565\) 6.40300 + 8.88828i 0.269376 + 0.373933i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.74745 15.1510i −0.366712 0.635164i 0.622337 0.782749i \(-0.286183\pi\)
−0.989049 + 0.147585i \(0.952850\pi\)
\(570\) 0 0
\(571\) 6.37628 11.0440i 0.266839 0.462178i −0.701205 0.712960i \(-0.747354\pi\)
0.968044 + 0.250781i \(0.0806875\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.89898 14.2020i −0.120896 0.592266i
\(576\) 0 0
\(577\) 13.6969i 0.570211i 0.958496 + 0.285106i \(0.0920286\pi\)
−0.958496 + 0.285106i \(0.907971\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −8.89898 + 15.4135i −0.369192 + 0.639459i
\(582\) 0 0
\(583\) 10.6066 6.12372i 0.439281 0.253619i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25.9326 14.9722i 1.07035 0.617969i 0.142075 0.989856i \(-0.454623\pi\)
0.928278 + 0.371887i \(0.121289\pi\)
\(588\) 0 0
\(589\) −1.77526 + 3.07483i −0.0731481 + 0.126696i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 41.3939i 1.69984i 0.526910 + 0.849921i \(0.323351\pi\)
−0.526910 + 0.849921i \(0.676649\pi\)
\(594\) 0 0
\(595\) −3.89898 38.5959i −0.159843 1.58228i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.10102 12.2993i 0.290140 0.502537i −0.683703 0.729761i \(-0.739632\pi\)
0.973843 + 0.227224i \(0.0729648\pi\)
\(600\) 0 0
\(601\) −9.60102 16.6295i −0.391634 0.678330i 0.601031 0.799225i \(-0.294757\pi\)
−0.992665 + 0.120896i \(0.961423\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −16.1455 + 11.6310i −0.656409 + 0.472869i
\(606\) 0 0
\(607\) 10.0424 + 5.79796i 0.407607 + 0.235332i 0.689761 0.724037i \(-0.257716\pi\)
−0.282154 + 0.959369i \(0.591049\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.10102 −0.0445425
\(612\) 0 0
\(613\) 16.9444i 0.684377i −0.939631 0.342189i \(-0.888832\pi\)
0.939631 0.342189i \(-0.111168\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.6465 + 18.8485i 1.31430 + 0.758811i 0.982805 0.184647i \(-0.0591140\pi\)
0.331494 + 0.943457i \(0.392447\pi\)
\(618\) 0 0
\(619\) 16.7247 + 28.9681i 0.672224 + 1.16433i 0.977272 + 0.211989i \(0.0679943\pi\)
−0.305048 + 0.952337i \(0.598672\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −49.7046 + 28.6969i −1.99137 + 1.14972i
\(624\) 0 0
\(625\) −3.01472 + 24.8176i −0.120589 + 0.992703i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 31.1918 1.24370
\(630\) 0 0
\(631\) −3.34847 −0.133300 −0.0666502 0.997776i \(-0.521231\pi\)
−0.0666502 + 0.997776i \(0.521231\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.66050 5.91119i 0.105579 0.234578i
\(636\) 0 0
\(637\) −27.1486 + 15.6742i −1.07567 + 0.621036i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.5000 32.0429i −0.730706 1.26562i −0.956582 0.291464i \(-0.905858\pi\)
0.225876 0.974156i \(-0.427476\pi\)
\(642\) 0 0
\(643\) 8.00853 + 4.62372i 0.315825 + 0.182342i 0.649530 0.760336i \(-0.274966\pi\)
−0.333705 + 0.942678i \(0.608299\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 25.1010i 0.986823i 0.869796 + 0.493411i \(0.164250\pi\)
−0.869796 + 0.493411i \(0.835750\pi\)
\(648\) 0 0
\(649\) 16.3031 0.639951
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 29.4449 + 17.0000i 1.15227 + 0.665261i 0.949439 0.313953i \(-0.101653\pi\)
0.202828 + 0.979214i \(0.434987\pi\)
\(654\) 0 0
\(655\) −8.88828 + 6.40300i −0.347294 + 0.250186i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8.10102 14.0314i −0.315571 0.546585i 0.663988 0.747743i \(-0.268863\pi\)
−0.979559 + 0.201159i \(0.935529\pi\)
\(660\) 0 0
\(661\) 6.89898 11.9494i 0.268339 0.464777i −0.700094 0.714051i \(-0.746859\pi\)
0.968433 + 0.249274i \(0.0801919\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.44949 + 0.550510i −0.211322 + 0.0213479i
\(666\) 0 0
\(667\) 17.3939i 0.673494i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.325765 0.564242i 0.0125760 0.0217823i
\(672\) 0 0
\(673\) 16.5420 9.55051i 0.637646 0.368145i −0.146061 0.989276i \(-0.546660\pi\)
0.783707 + 0.621130i \(0.213326\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.349945 + 0.202041i −0.0134495 + 0.00776507i −0.506710 0.862117i \(-0.669138\pi\)
0.493260 + 0.869882i \(0.335805\pi\)
\(678\) 0 0
\(679\) −28.9217 + 50.0938i −1.10991 + 1.92242i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 40.5505i 1.55162i 0.630965 + 0.775811i \(0.282659\pi\)
−0.630965 + 0.775811i \(0.717341\pi\)
\(684\) 0 0
\(685\) 6.67423 0.674235i 0.255009 0.0257612i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 10.3485 17.9241i 0.394245 0.682853i
\(690\) 0 0
\(691\) −10.7980 18.7026i −0.410774 0.711481i 0.584201 0.811609i \(-0.301408\pi\)
−0.994975 + 0.100128i \(0.968075\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.4064 + 14.7005i −0.774059 + 0.557622i
\(696\) 0 0
\(697\) 3.37662 + 1.94949i 0.127898 + 0.0738422i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −19.3939 −0.732497 −0.366248 0.930517i \(-0.619358\pi\)
−0.366248 + 0.930517i \(0.619358\pi\)
\(702\) 0 0
\(703\) 4.40408i 0.166103i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 30.8270 + 17.7980i 1.15937 + 0.669361i
\(708\) 0 0
\(709\) 11.3258 + 19.6168i 0.425348 + 0.736724i 0.996453 0.0841527i \(-0.0268184\pi\)
−0.571105 + 0.820877i \(0.693485\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.1920 + 9.34847i −0.606396 + 0.350103i
\(714\) 0 0
\(715\) 3.25844 7.23970i 0.121859 0.270749i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −22.2020 −0.827996 −0.413998 0.910278i \(-0.635868\pi\)
−0.413998 + 0.910278i \(0.635868\pi\)
\(720\) 0 0
\(721\) 45.5959 1.69808
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.50079 + 28.4558i −0.352850 + 1.05682i
\(726\) 0 0
\(727\) 9.22450 5.32577i 0.342118 0.197522i −0.319090 0.947724i \(-0.603377\pi\)
0.661208 + 0.750203i \(0.270044\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −14.5227 25.1541i −0.537142 0.930357i
\(732\) 0 0
\(733\) −11.3851 6.57321i −0.420520 0.242787i 0.274780 0.961507i \(-0.411395\pi\)
−0.695300 + 0.718720i \(0.744728\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.6969i 0.504533i
\(738\) 0 0
\(739\) 7.24745 0.266602 0.133301 0.991076i \(-0.457442\pi\)
0.133301 + 0.991076i \(0.457442\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.3458 6.55051i −0.416238 0.240315i 0.277229 0.960804i \(-0.410584\pi\)
−0.693466 + 0.720489i \(0.743917\pi\)
\(744\) 0 0
\(745\) 29.4780 21.2355i 1.07999 0.778010i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.67423 6.36396i −0.134254 0.232534i
\(750\) 0 0
\(751\) 22.4949 38.9623i 0.820850 1.42175i −0.0841993 0.996449i \(-0.526833\pi\)
0.905050 0.425306i \(-0.139833\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.55051 + 15.3485i 0.0564288 + 0.558588i
\(756\) 0 0
\(757\) 10.0000i 0.363456i −0.983349 0.181728i \(-0.941831\pi\)
0.983349 0.181728i \(-0.0581691\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −24.2474 + 41.9978i −0.878969 + 1.52242i −0.0264959 + 0.999649i \(0.508435\pi\)
−0.852473 + 0.522771i \(0.824898\pi\)
\(762\) 0 0
\(763\) −30.8270 + 17.7980i −1.11601 + 0.644329i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.8594 13.7753i 0.861515 0.497396i
\(768\) 0 0
\(769\) −12.2474 + 21.2132i −0.441654 + 0.764968i −0.997812 0.0661088i \(-0.978942\pi\)
0.556158 + 0.831076i \(0.312275\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 23.3939i 0.841419i −0.907195 0.420710i \(-0.861781\pi\)
0.907195 0.420710i \(-0.138219\pi\)
\(774\) 0 0
\(775\) 31.5959 6.44949i 1.13496 0.231673i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.275255 0.476756i 0.00986204 0.0170816i
\(780\) 0 0
\(781\) −1.77526 3.07483i −0.0635236 0.110026i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 20.9121 + 29.0290i 0.746385 + 1.03609i
\(786\) 0 0
\(787\) 6.40329 + 3.69694i 0.228252 + 0.131782i 0.609766 0.792582i \(-0.291264\pi\)
−0.381513 + 0.924363i \(0.624597\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 21.7980 0.775046
\(792\) 0 0
\(793\) 1.10102i 0.0390984i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −30.8270 17.7980i −1.09195 0.630436i −0.157853 0.987463i \(-0.550457\pi\)
−0.934094 + 0.357027i \(0.883791\pi\)
\(798\) 0 0
\(799\) −0.876276 1.51775i −0.0310004 0.0536943i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.02285 3.47730i 0.212542 0.122711i
\(804\) 0 0
\(805\) −26.3018 11.8379i −0.927015 0.417230i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 47.0908 1.65562 0.827812 0.561005i \(-0.189585\pi\)
0.827812 + 0.561005i \(0.189585\pi\)
\(810\) 0 0
\(811\) 17.2474 0.605640 0.302820 0.953048i \(-0.402072\pi\)
0.302820 + 0.953048i \(0.402072\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.825027 + 1.83307i −0.0288994 + 0.0642097i
\(816\) 0 0
\(817\) −3.55159 + 2.05051i −0.124254 + 0.0717383i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.0227 36.4124i −0.733697 1.27080i −0.955292 0.295662i \(-0.904460\pi\)
0.221595 0.975139i \(-0.428874\pi\)
\(822\) 0 0
\(823\) −6.57826 3.79796i −0.229304 0.132389i 0.380947 0.924597i \(-0.375598\pi\)
−0.610251 + 0.792208i \(0.708931\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.7980i 0.479802i −0.970797 0.239901i \(-0.922885\pi\)
0.970797 0.239901i \(-0.0771150\pi\)
\(828\) 0 0
\(829\) 21.5505 0.748480 0.374240 0.927332i \(-0.377904\pi\)
0.374240 + 0.927332i \(0.377904\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −43.2138 24.9495i −1.49727 0.864449i
\(834\) 0 0
\(835\) −31.6916 43.9925i −1.09673 1.52242i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 7.87628 + 13.6421i 0.271919 + 0.470978i 0.969353 0.245671i \(-0.0790083\pi\)
−0.697434 + 0.716649i \(0.745675\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.57321 + 15.5732i 0.0541202 + 0.535735i
\(846\) 0 0
\(847\) 39.5959i 1.36053i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.5959 20.0847i 0.397503 0.688495i
\(852\) 0 0
\(853\) 21.7774 12.5732i 0.745646 0.430499i −0.0784728 0.996916i \(-0.525004\pi\)
0.824118 + 0.566418i \(0.191671\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.2405 26.6969i 1.57954 0.911950i 0.584621 0.811306i \(-0.301243\pi\)
0.994923 0.100644i \(-0.0320902\pi\)
\(858\) 0 0
\(859\) −17.8712 + 30.9538i −0.609757 + 1.05613i 0.381524 + 0.924359i \(0.375399\pi\)
−0.991280 + 0.131770i \(0.957934\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21.5505i 0.733588i −0.930302 0.366794i \(-0.880455\pi\)
0.930302 0.366794i \(-0.119545\pi\)
\(864\) 0 0
\(865\) −17.3485 + 1.75255i −0.589866 + 0.0595885i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.32577 9.22450i 0.180664 0.312920i
\(870\) 0 0
\(871\) −11.5732 20.0454i −0.392143 0.679212i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 36.5629 + 33.7328i 1.23605 + 1.14038i
\(876\) 0 0
\(877\) 47.7582 + 27.5732i 1.61268 + 0.931081i 0.988746 + 0.149604i \(0.0478000\pi\)
0.623934 + 0.781477i \(0.285533\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 11.4495i 0.385306i −0.981267 0.192653i \(-0.938291\pi\)
0.981267 0.192653i \(-0.0617092\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.02834 2.32577i −0.135259 0.0780916i 0.430844 0.902427i \(-0.358216\pi\)
−0.566102 + 0.824335i \(0.691549\pi\)
\(888\) 0 0
\(889\) −6.44949 11.1708i −0.216309 0.374658i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.214297 + 0.123724i −0.00717117 + 0.00414028i
\(894\) 0 0
\(895\) 18.1455 + 8.16693i 0.606538 + 0.272990i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 38.6969 1.29062
\(900\) 0 0
\(901\) 32.9444 1.09754
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −21.3071 9.58989i −0.708272 0.318779i
\(906\) 0 0
\(907\) −29.2217 + 16.8712i −0.970292 + 0.560198i −0.899325 0.437281i \(-0.855942\pi\)
−0.0709665 + 0.997479i \(0.522608\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0.123724 + 0.214297i 0.00409917 + 0.00709997i 0.868068 0.496446i \(-0.165362\pi\)
−0.863969 + 0.503546i \(0.832029\pi\)
\(912\) 0 0
\(913\) −5.02118 2.89898i −0.166177 0.0959422i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 21.7980i 0.719832i
\(918\) 0 0
\(919\) 10.8990 0.359524 0.179762 0.983710i \(-0.442467\pi\)
0.179762 + 0.983710i \(0.442467\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.19615 3.00000i −0.171033 0.0987462i
\(924\) 0 0
\(925\) −29.9411 + 26.5241i −0.984458 + 0.872108i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 27.7980 + 48.1475i 0.912021 + 1.57967i 0.811205 + 0.584762i \(0.198812\pi\)
0.100817 + 0.994905i \(0.467854\pi\)
\(930\) 0 0
\(931\) −3.52270 + 6.10150i −0.115452 + 0.199969i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12.5732 1.27015i 0.411188 0.0415384i
\(936\) 0 0
\(937\) 39.5959i 1.29354i −0.762684 0.646771i \(-0.776119\pi\)
0.762684 0.646771i \(-0.223881\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −24.8990 + 43.1263i −0.811684 + 1.40588i 0.100001 + 0.994987i \(0.468115\pi\)
−0.911685 + 0.410890i \(0.865218\pi\)
\(942\) 0 0
\(943\) 2.51059 1.44949i 0.0817561 0.0472019i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18.4008 + 10.6237i −0.597947 + 0.345225i −0.768233 0.640170i \(-0.778864\pi\)
0.170287 + 0.985395i \(0.445531\pi\)
\(948\) 0 0
\(949\) 5.87628 10.1780i 0.190752 0.330392i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 50.7980i 1.64551i −0.568398 0.822754i \(-0.692437\pi\)
0.568398 0.822754i \(-0.307563\pi\)
\(954\) 0 0
\(955\) −1.40408 13.8990i −0.0454350 0.449760i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.67423 11.5601i 0.215522 0.373296i
\(960\) 0 0
\(961\) −5.29796 9.17633i −0.170902 0.296011i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 20.5160 + 28.4792i 0.660434 + 0.916777i
\(966\) 0 0
\(967\) −24.8523 14.3485i −0.799195 0.461416i 0.0439944 0.999032i \(-0.485992\pi\)
−0.843190 + 0.537616i \(0.819325\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −23.3939 −0.750745 −0.375373 0.926874i \(-0.622485\pi\)
−0.375373 + 0.926874i \(0.622485\pi\)
\(972\) 0 0
\(973\) 50.0454i 1.60438i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 32.8215 + 18.9495i 1.05005 + 0.606248i 0.922664 0.385605i \(-0.126007\pi\)
0.127388 + 0.991853i \(0.459341\pi\)
\(978\) 0 0
\(979\) −9.34847 16.1920i −0.298778 0.517499i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32.3840 18.6969i 1.03289 0.596340i 0.115079 0.993356i \(-0.463288\pi\)
0.917811 + 0.397017i \(0.129954\pi\)
\(984\) 0 0
\(985\) 7.34190 16.3125i 0.233932 0.519758i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −21.5959 −0.686710
\(990\) 0 0
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −41.6977 18.7673i −1.32191 0.594962i
\(996\) 0 0
\(997\) −28.5307 + 16.4722i −0.903576 + 0.521680i −0.878359 0.478002i \(-0.841361\pi\)
−0.0252170 + 0.999682i \(0.508028\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.by.d.1009.1 8
3.2 odd 2 720.2.by.c.49.4 8
4.3 odd 2 270.2.i.b.199.3 8
5.4 even 2 inner 2160.2.by.d.1009.4 8
9.2 odd 6 720.2.by.c.529.1 8
9.7 even 3 inner 2160.2.by.d.289.4 8
12.11 even 2 90.2.i.b.49.1 8
15.14 odd 2 720.2.by.c.49.1 8
20.3 even 4 1350.2.e.j.901.1 4
20.7 even 4 1350.2.e.m.901.2 4
20.19 odd 2 270.2.i.b.199.2 8
36.7 odd 6 270.2.i.b.19.2 8
36.11 even 6 90.2.i.b.79.4 yes 8
36.23 even 6 810.2.c.f.649.1 4
36.31 odd 6 810.2.c.e.649.4 4
45.29 odd 6 720.2.by.c.529.4 8
45.34 even 6 inner 2160.2.by.d.289.1 8
60.23 odd 4 450.2.e.n.301.2 4
60.47 odd 4 450.2.e.k.301.1 4
60.59 even 2 90.2.i.b.49.4 yes 8
180.7 even 12 1350.2.e.m.451.2 4
180.23 odd 12 4050.2.a.bq.1.2 2
180.43 even 12 1350.2.e.j.451.1 4
180.47 odd 12 450.2.e.k.151.1 4
180.59 even 6 810.2.c.f.649.3 4
180.67 even 12 4050.2.a.bm.1.1 2
180.79 odd 6 270.2.i.b.19.3 8
180.83 odd 12 450.2.e.n.151.2 4
180.103 even 12 4050.2.a.bz.1.2 2
180.119 even 6 90.2.i.b.79.1 yes 8
180.139 odd 6 810.2.c.e.649.2 4
180.167 odd 12 4050.2.a.bs.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.b.49.1 8 12.11 even 2
90.2.i.b.49.4 yes 8 60.59 even 2
90.2.i.b.79.1 yes 8 180.119 even 6
90.2.i.b.79.4 yes 8 36.11 even 6
270.2.i.b.19.2 8 36.7 odd 6
270.2.i.b.19.3 8 180.79 odd 6
270.2.i.b.199.2 8 20.19 odd 2
270.2.i.b.199.3 8 4.3 odd 2
450.2.e.k.151.1 4 180.47 odd 12
450.2.e.k.301.1 4 60.47 odd 4
450.2.e.n.151.2 4 180.83 odd 12
450.2.e.n.301.2 4 60.23 odd 4
720.2.by.c.49.1 8 15.14 odd 2
720.2.by.c.49.4 8 3.2 odd 2
720.2.by.c.529.1 8 9.2 odd 6
720.2.by.c.529.4 8 45.29 odd 6
810.2.c.e.649.2 4 180.139 odd 6
810.2.c.e.649.4 4 36.31 odd 6
810.2.c.f.649.1 4 36.23 even 6
810.2.c.f.649.3 4 180.59 even 6
1350.2.e.j.451.1 4 180.43 even 12
1350.2.e.j.901.1 4 20.3 even 4
1350.2.e.m.451.2 4 180.7 even 12
1350.2.e.m.901.2 4 20.7 even 4
2160.2.by.d.289.1 8 45.34 even 6 inner
2160.2.by.d.289.4 8 9.7 even 3 inner
2160.2.by.d.1009.1 8 1.1 even 1 trivial
2160.2.by.d.1009.4 8 5.4 even 2 inner
4050.2.a.bm.1.1 2 180.67 even 12
4050.2.a.bq.1.2 2 180.23 odd 12
4050.2.a.bs.1.1 2 180.167 odd 12
4050.2.a.bz.1.2 2 180.103 even 12