Properties

Label 2160.2.by.d.1009.1
Level 21602160
Weight 22
Character 2160.1009
Analytic conductor 17.24817.248
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(289,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2160=24335 2160 = 2^{4} \cdot 3^{3} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2160.by (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 17.247686836617.2476868366
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 32 3^{2}
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Embedding invariants

Embedding label 1009.1
Root 0.965926+0.258819i0.965926 + 0.258819i of defining polynomial
Character χ\chi == 2160.1009
Dual form 2160.2.by.d.289.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(2.039060.917738i)q5+(3.85337+2.22474i)q7+(0.7247451.25529i)q11+(2.121321.22474i)q133.89898iq170.550510q19+(2.510591.44949i)q23+(3.31552+3.74264i)q25+(3.00000+5.19615i)q29+(3.224745.58542i)q31+(9.898981.00000i)q35+8.00000iq37+(0.500000+0.866025i)q41+(6.451453.72474i)q43+(0.3892700.224745i)q47+(6.3989811.0834i)q49+8.44949iq53+(0.325765+3.22474i)q55+(5.62372+9.74058i)q59+(0.224745+0.389270i)q61+(3.20150+4.44414i)q65+(8.18350+4.72474i)q67+2.44949q71+4.79796iq73+(5.58542+3.22474i)q77+(3.67423+6.36396i)q79+(3.464102.00000i)q83+(3.57824+7.95025i)q85+12.8990q89+10.8990q91+(1.12252+0.505224i)q95+(11.25836.50000i)q97+O(q100)q+(-2.03906 - 0.917738i) q^{5} +(-3.85337 + 2.22474i) q^{7} +(-0.724745 - 1.25529i) q^{11} +(-2.12132 - 1.22474i) q^{13} -3.89898i q^{17} -0.550510 q^{19} +(-2.51059 - 1.44949i) q^{23} +(3.31552 + 3.74264i) q^{25} +(3.00000 + 5.19615i) q^{29} +(3.22474 - 5.58542i) q^{31} +(9.89898 - 1.00000i) q^{35} +8.00000i q^{37} +(-0.500000 + 0.866025i) q^{41} +(6.45145 - 3.72474i) q^{43} +(0.389270 - 0.224745i) q^{47} +(6.39898 - 11.0834i) q^{49} +8.44949i q^{53} +(0.325765 + 3.22474i) q^{55} +(-5.62372 + 9.74058i) q^{59} +(0.224745 + 0.389270i) q^{61} +(3.20150 + 4.44414i) q^{65} +(8.18350 + 4.72474i) q^{67} +2.44949 q^{71} +4.79796i q^{73} +(5.58542 + 3.22474i) q^{77} +(3.67423 + 6.36396i) q^{79} +(3.46410 - 2.00000i) q^{83} +(-3.57824 + 7.95025i) q^{85} +12.8990 q^{89} +10.8990 q^{91} +(1.12252 + 0.505224i) q^{95} +(11.2583 - 6.50000i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q5+4q1124q19+24q29+16q31+40q354q41+12q49+32q55+4q598q61+12q6520q85+64q89+48q9124q95+O(q100) 8 q + 4 q^{5} + 4 q^{11} - 24 q^{19} + 24 q^{29} + 16 q^{31} + 40 q^{35} - 4 q^{41} + 12 q^{49} + 32 q^{55} + 4 q^{59} - 8 q^{61} + 12 q^{65} - 20 q^{85} + 64 q^{89} + 48 q^{91} - 24 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2160Z)×\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times.

nn 271271 12971297 16211621 20812081
χ(n)\chi(n) 11 1-1 11 e(13)e\left(\frac{1}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 −2.03906 0.917738i −0.911894 0.410425i
66 0 0
77 −3.85337 + 2.22474i −1.45644 + 0.840875i −0.998834 0.0482818i 0.984625π-0.984625\pi
−0.457604 + 0.889156i 0.651292π0.651292\pi
88 0 0
99 0 0
1010 0 0
1111 −0.724745 1.25529i −0.218519 0.378486i 0.735837 0.677159i 0.236789π-0.236789\pi
−0.954355 + 0.298674i 0.903456π0.903456\pi
1212 0 0
1313 −2.12132 1.22474i −0.588348 0.339683i 0.176096 0.984373i 0.443653π-0.443653\pi
−0.764444 + 0.644690i 0.776986π0.776986\pi
1414 0 0
1515 0 0
1616 0 0
1717 3.89898i 0.945641i −0.881159 0.472821i 0.843236π-0.843236\pi
0.881159 0.472821i 0.156764π-0.156764\pi
1818 0 0
1919 −0.550510 −0.126296 −0.0631479 0.998004i 0.520114π-0.520114\pi
−0.0631479 + 0.998004i 0.520114π0.520114\pi
2020 0 0
2121 0 0
2222 0 0
2323 −2.51059 1.44949i −0.523494 0.302240i 0.214869 0.976643i 0.431068π-0.431068\pi
−0.738363 + 0.674403i 0.764401π0.764401\pi
2424 0 0
2525 3.31552 + 3.74264i 0.663103 + 0.748528i
2626 0 0
2727 0 0
2828 0 0
2929 3.00000 + 5.19615i 0.557086 + 0.964901i 0.997738 + 0.0672232i 0.0214140π0.0214140\pi
−0.440652 + 0.897678i 0.645253π0.645253\pi
3030 0 0
3131 3.22474 5.58542i 0.579181 1.00317i −0.416392 0.909185i 0.636706π-0.636706\pi
0.995573 0.0939863i 0.0299610π-0.0299610\pi
3232 0 0
3333 0 0
3434 0 0
3535 9.89898 1.00000i 1.67323 0.169031i
3636 0 0
3737 8.00000i 1.31519i 0.753371 + 0.657596i 0.228427π0.228427\pi
−0.753371 + 0.657596i 0.771573π0.771573\pi
3838 0 0
3939 0 0
4040 0 0
4141 −0.500000 + 0.866025i −0.0780869 + 0.135250i −0.902424 0.430848i 0.858214π-0.858214\pi
0.824338 + 0.566099i 0.191548π0.191548\pi
4242 0 0
4343 6.45145 3.72474i 0.983836 0.568018i 0.0804103 0.996762i 0.474377π-0.474377\pi
0.903426 + 0.428744i 0.141044π0.141044\pi
4444 0 0
4545 0 0
4646 0 0
4747 0.389270 0.224745i 0.0567808 0.0327824i −0.471341 0.881951i 0.656230π-0.656230\pi
0.528122 + 0.849169i 0.322896π0.322896\pi
4848 0 0
4949 6.39898 11.0834i 0.914140 1.58334i
5050 0 0
5151 0 0
5252 0 0
5353 8.44949i 1.16063i 0.814393 + 0.580313i 0.197070π0.197070\pi
−0.814393 + 0.580313i 0.802930π0.802930\pi
5454 0 0
5555 0.325765 + 3.22474i 0.0439262 + 0.434825i
5656 0 0
5757 0 0
5858 0 0
5959 −5.62372 + 9.74058i −0.732147 + 1.26812i 0.223817 + 0.974631i 0.428148π0.428148\pi
−0.955964 + 0.293484i 0.905185π0.905185\pi
6060 0 0
6161 0.224745 + 0.389270i 0.0287756 + 0.0498409i 0.880055 0.474873i 0.157506π-0.157506\pi
−0.851279 + 0.524713i 0.824173π0.824173\pi
6262 0 0
6363 0 0
6464 0 0
6565 3.20150 + 4.44414i 0.397097 + 0.551228i
6666 0 0
6767 8.18350 + 4.72474i 0.999773 + 0.577219i 0.908181 0.418577i 0.137471π-0.137471\pi
0.0915922 + 0.995797i 0.470804π0.470804\pi
6868 0 0
6969 0 0
7070 0 0
7171 2.44949 0.290701 0.145350 0.989380i 0.453569π-0.453569\pi
0.145350 + 0.989380i 0.453569π0.453569\pi
7272 0 0
7373 4.79796i 0.561559i 0.959772 + 0.280779i 0.0905929π0.0905929\pi
−0.959772 + 0.280779i 0.909407π0.909407\pi
7474 0 0
7575 0 0
7676 0 0
7777 5.58542 + 3.22474i 0.636518 + 0.367494i
7878 0 0
7979 3.67423 + 6.36396i 0.413384 + 0.716002i 0.995257 0.0972777i 0.0310135π-0.0310135\pi
−0.581874 + 0.813279i 0.697680π0.697680\pi
8080 0 0
8181 0 0
8282 0 0
8383 3.46410 2.00000i 0.380235 0.219529i −0.297686 0.954664i 0.596215π-0.596215\pi
0.677920 + 0.735135i 0.262881π0.262881\pi
8484 0 0
8585 −3.57824 + 7.95025i −0.388115 + 0.862325i
8686 0 0
8787 0 0
8888 0 0
8989 12.8990 1.36729 0.683645 0.729815i 0.260394π-0.260394\pi
0.683645 + 0.729815i 0.260394π0.260394\pi
9090 0 0
9191 10.8990 1.14252
9292 0 0
9393 0 0
9494 0 0
9595 1.12252 + 0.505224i 0.115168 + 0.0518349i
9696 0 0
9797 11.2583 6.50000i 1.14311 0.659975i 0.195911 0.980622i 0.437234π-0.437234\pi
0.947199 + 0.320647i 0.103900π0.103900\pi
9898 0 0
9999 0 0
100100 0 0
101101 −4.00000 6.92820i −0.398015 0.689382i 0.595466 0.803380i 0.296967π-0.296967\pi
−0.993481 + 0.113998i 0.963634π0.963634\pi
102102 0 0
103103 −8.87455 5.12372i −0.874435 0.504856i −0.00561582 0.999984i 0.501788π-0.501788\pi
−0.868820 + 0.495129i 0.835121π0.835121\pi
104104 0 0
105105 0 0
106106 0 0
107107 1.65153i 0.159660i 0.996809 + 0.0798298i 0.0254377π0.0254377\pi
−0.996809 + 0.0798298i 0.974562π0.974562\pi
108108 0 0
109109 8.00000 0.766261 0.383131 0.923694i 0.374846π-0.374846\pi
0.383131 + 0.923694i 0.374846π0.374846\pi
110110 0 0
111111 0 0
112112 0 0
113113 −4.24264 2.44949i −0.399114 0.230429i 0.286988 0.957934i 0.407346π-0.407346\pi
−0.686102 + 0.727506i 0.740679π0.740679\pi
114114 0 0
115115 3.78899 + 5.25966i 0.353325 + 0.490466i
116116 0 0
117117 0 0
118118 0 0
119119 8.67423 + 15.0242i 0.795166 + 1.37727i
120120 0 0
121121 4.44949 7.70674i 0.404499 0.700613i
122122 0 0
123123 0 0
124124 0 0
125125 −3.32577 10.6742i −0.297465 0.954733i
126126 0 0
127127 2.89898i 0.257243i 0.991694 + 0.128621i 0.0410552π0.0410552\pi
−0.991694 + 0.128621i 0.958945π0.958945\pi
128128 0 0
129129 0 0
130130 0 0
131131 2.44949 4.24264i 0.214013 0.370681i −0.738954 0.673756i 0.764680π-0.764680\pi
0.952967 + 0.303075i 0.0980132π0.0980132\pi
132132 0 0
133133 2.12132 1.22474i 0.183942 0.106199i
134134 0 0
135135 0 0
136136 0 0
137137 −2.59808 + 1.50000i −0.221969 + 0.128154i −0.606861 0.794808i 0.707572π-0.707572\pi
0.384893 + 0.922961i 0.374238π0.374238\pi
138138 0 0
139139 5.62372 9.74058i 0.476998 0.826185i −0.522654 0.852545i 0.675058π-0.675058\pi
0.999653 + 0.0263597i 0.00839153π0.00839153\pi
140140 0 0
141141 0 0
142142 0 0
143143 3.55051i 0.296909i
144144 0 0
145145 −1.34847 13.3485i −0.111984 1.10853i
146146 0 0
147147 0 0
148148 0 0
149149 −8.12372 + 14.0707i −0.665521 + 1.15272i 0.313622 + 0.949548i 0.398457π0.398457\pi
−0.979144 + 0.203169i 0.934876π0.934876\pi
150150 0 0
151151 −3.44949 5.97469i −0.280715 0.486213i 0.690846 0.723002i 0.257238π-0.257238\pi
−0.971561 + 0.236789i 0.923905π0.923905\pi
152152 0 0
153153 0 0
154154 0 0
155155 −11.7014 + 8.42953i −0.939879 + 0.677076i
156156 0 0
157157 −13.8564 8.00000i −1.10586 0.638470i −0.168107 0.985769i 0.553765π-0.553765\pi
−0.937754 + 0.347299i 0.887099π0.887099\pi
158158 0 0
159159 0 0
160160 0 0
161161 12.8990 1.01658
162162 0 0
163163 0.898979i 0.0704135i −0.999380 0.0352068i 0.988791π-0.988791\pi
0.999380 0.0352068i 0.0112090π-0.0112090\pi
164164 0 0
165165 0 0
166166 0 0
167167 20.9989 + 12.1237i 1.62494 + 0.938162i 0.985570 + 0.169266i 0.0541397π0.0541397\pi
0.639374 + 0.768896i 0.279194π0.279194\pi
168168 0 0
169169 −3.50000 6.06218i −0.269231 0.466321i
170170 0 0
171171 0 0
172172 0 0
173173 6.75323 3.89898i 0.513439 0.296434i −0.220807 0.975317i 0.570869π-0.570869\pi
0.734246 + 0.678884i 0.237536π0.237536\pi
174174 0 0
175175 −21.1023 7.04561i −1.59519 0.532598i
176176 0 0
177177 0 0
178178 0 0
179179 −8.89898 −0.665141 −0.332570 0.943078i 0.607916π-0.607916\pi
−0.332570 + 0.943078i 0.607916π0.607916\pi
180180 0 0
181181 10.4495 0.776704 0.388352 0.921511i 0.373044π-0.373044\pi
0.388352 + 0.921511i 0.373044π0.373044\pi
182182 0 0
183183 0 0
184184 0 0
185185 7.34190 16.3125i 0.539787 1.19932i
186186 0 0
187187 −4.89437 + 2.82577i −0.357912 + 0.206640i
188188 0 0
189189 0 0
190190 0 0
191191 3.12372 + 5.41045i 0.226025 + 0.391486i 0.956626 0.291318i 0.0940936π-0.0940936\pi
−0.730602 + 0.682804i 0.760760π0.760760\pi
192192 0 0
193193 −13.5939 7.84847i −0.978514 0.564945i −0.0766927 0.997055i 0.524436π-0.524436\pi
−0.901821 + 0.432110i 0.857769π0.857769\pi
194194 0 0
195195 0 0
196196 0 0
197197 8.00000i 0.569976i 0.958531 + 0.284988i 0.0919897π0.0919897\pi
−0.958531 + 0.284988i 0.908010π0.908010\pi
198198 0 0
199199 20.4495 1.44963 0.724813 0.688946i 0.241926π-0.241926\pi
0.724813 + 0.688946i 0.241926π0.241926\pi
200200 0 0
201201 0 0
202202 0 0
203203 −23.1202 13.3485i −1.62272 0.936879i
204204 0 0
205205 1.81431 1.30701i 0.126717 0.0912853i
206206 0 0
207207 0 0
208208 0 0
209209 0.398979 + 0.691053i 0.0275980 + 0.0478011i
210210 0 0
211211 −7.89898 + 13.6814i −0.543788 + 0.941869i 0.454894 + 0.890546i 0.349677π0.349677\pi
−0.998682 + 0.0513231i 0.983656π0.983656\pi
212212 0 0
213213 0 0
214214 0 0
215215 −16.5732 + 1.67423i −1.13028 + 0.114182i
216216 0 0
217217 28.6969i 1.94808i
218218 0 0
219219 0 0
220220 0 0
221221 −4.77526 + 8.27098i −0.321218 + 0.556367i
222222 0 0
223223 16.3670 9.44949i 1.09602 0.632785i 0.160844 0.986980i 0.448579π-0.448579\pi
0.935171 + 0.354195i 0.115245π0.115245\pi
224224 0 0
225225 0 0
226226 0 0
227227 1.25529 0.724745i 0.0833169 0.0481030i −0.457763 0.889074i 0.651349π-0.651349\pi
0.541080 + 0.840971i 0.318016π0.318016\pi
228228 0 0
229229 −6.77526 + 11.7351i −0.447721 + 0.775476i −0.998237 0.0593484i 0.981098π-0.981098\pi
0.550516 + 0.834825i 0.314431π0.314431\pi
230230 0 0
231231 0 0
232232 0 0
233233 15.6969i 1.02834i 0.857688 + 0.514170i 0.171900π0.171900\pi
−0.857688 + 0.514170i 0.828100π0.828100\pi
234234 0 0
235235 −1.00000 + 0.101021i −0.0652328 + 0.00658985i
236236 0 0
237237 0 0
238238 0 0
239239 14.3485 24.8523i 0.928125 1.60756i 0.141669 0.989914i 0.454753π-0.454753\pi
0.786456 0.617646i 0.211914π-0.211914\pi
240240 0 0
241241 −0.500000 0.866025i −0.0322078 0.0557856i 0.849472 0.527633i 0.176921π-0.176921\pi
−0.881680 + 0.471848i 0.843587π0.843587\pi
242242 0 0
243243 0 0
244244 0 0
245245 −23.2195 + 16.7270i −1.48344 + 1.06865i
246246 0 0
247247 1.16781 + 0.674235i 0.0743059 + 0.0429005i
248248 0 0
249249 0 0
250250 0 0
251251 11.4495 0.722685 0.361343 0.932433i 0.382318π-0.382318\pi
0.361343 + 0.932433i 0.382318π0.382318\pi
252252 0 0
253253 4.20204i 0.264180i
254254 0 0
255255 0 0
256256 0 0
257257 17.2330 + 9.94949i 1.07497 + 0.620632i 0.929534 0.368736i 0.120209π-0.120209\pi
0.145432 + 0.989368i 0.453543π0.453543\pi
258258 0 0
259259 −17.7980 30.8270i −1.10591 1.91549i
260260 0 0
261261 0 0
262262 0 0
263263 6.53893 3.77526i 0.403208 0.232792i −0.284659 0.958629i 0.591880π-0.591880\pi
0.687867 + 0.725837i 0.258547π0.258547\pi
264264 0 0
265265 7.75442 17.2290i 0.476350 1.05837i
266266 0 0
267267 0 0
268268 0 0
269269 −28.0454 −1.70996 −0.854979 0.518662i 0.826430π-0.826430\pi
−0.854979 + 0.518662i 0.826430π0.826430\pi
270270 0 0
271271 −23.5959 −1.43335 −0.716675 0.697407i 0.754337π-0.754337\pi
−0.716675 + 0.697407i 0.754337π0.754337\pi
272272 0 0
273273 0 0
274274 0 0
275275 2.29522 6.87441i 0.138407 0.414542i
276276 0 0
277277 8.31031 4.79796i 0.499318 0.288281i −0.229114 0.973400i 0.573583π-0.573583\pi
0.728432 + 0.685118i 0.240249π0.240249\pi
278278 0 0
279279 0 0
280280 0 0
281281 6.00000 + 10.3923i 0.357930 + 0.619953i 0.987615 0.156898i 0.0501493π-0.0501493\pi
−0.629685 + 0.776851i 0.716816π0.716816\pi
282282 0 0
283283 −3.46410 2.00000i −0.205919 0.118888i 0.393494 0.919327i 0.371266π-0.371266\pi
−0.599414 + 0.800439i 0.704600π0.704600\pi
284284 0 0
285285 0 0
286286 0 0
287287 4.44949i 0.262645i
288288 0 0
289289 1.79796 0.105762
290290 0 0
291291 0 0
292292 0 0
293293 −15.5885 9.00000i −0.910687 0.525786i −0.0300351 0.999549i 0.509562π-0.509562\pi
−0.880652 + 0.473763i 0.842895π0.842895\pi
294294 0 0
295295 20.4064 14.7005i 1.18811 0.855896i
296296 0 0
297297 0 0
298298 0 0
299299 3.55051 + 6.14966i 0.205331 + 0.355644i
300300 0 0
301301 −16.5732 + 28.7056i −0.955264 + 1.65457i
302302 0 0
303303 0 0
304304 0 0
305305 −0.101021 1.00000i −0.00578442 0.0572598i
306306 0 0
307307 23.9444i 1.36658i 0.730148 + 0.683289i 0.239451π0.239451\pi
−0.730148 + 0.683289i 0.760549π0.760549\pi
308308 0 0
309309 0 0
310310 0 0
311311 −11.4495 + 19.8311i −0.649241 + 1.12452i 0.334063 + 0.942551i 0.391580π0.391580\pi
−0.983304 + 0.181968i 0.941753π0.941753\pi
312312 0 0
313313 −6.66574 + 3.84847i −0.376770 + 0.217528i −0.676412 0.736523i 0.736466π-0.736466\pi
0.299642 + 0.954052i 0.403133π0.403133\pi
314314 0 0
315315 0 0
316316 0 0
317317 26.7986 15.4722i 1.50516 0.869005i 0.505179 0.863015i 0.331427π-0.331427\pi
0.999982 0.00599020i 0.00190675π-0.00190675\pi
318318 0 0
319319 4.34847 7.53177i 0.243468 0.421698i
320320 0 0
321321 0 0
322322 0 0
323323 2.14643i 0.119430i
324324 0 0
325325 −2.44949 12.0000i −0.135873 0.665640i
326326 0 0
327327 0 0
328328 0 0
329329 −1.00000 + 1.73205i −0.0551318 + 0.0954911i
330330 0 0
331331 16.6969 + 28.9199i 0.917747 + 1.58958i 0.802829 + 0.596209i 0.203327π0.203327\pi
0.114917 + 0.993375i 0.463340π0.463340\pi
332332 0 0
333333 0 0
334334 0 0
335335 −12.3506 17.1443i −0.674783 0.936695i
336336 0 0
337337 17.8366 + 10.2980i 0.971621 + 0.560966i 0.899730 0.436447i 0.143763π-0.143763\pi
0.0718909 + 0.997413i 0.477097π0.477097\pi
338338 0 0
339339 0 0
340340 0 0
341341 −9.34847 −0.506248
342342 0 0
343343 25.7980i 1.39296i
344344 0 0
345345 0 0
346346 0 0
347347 13.2047 + 7.62372i 0.708864 + 0.409263i 0.810640 0.585544i 0.199119π-0.199119\pi
−0.101776 + 0.994807i 0.532453π0.532453\pi
348348 0 0
349349 5.79796 + 10.0424i 0.310358 + 0.537555i 0.978440 0.206532i 0.0662179π-0.0662179\pi
−0.668082 + 0.744088i 0.732885π0.732885\pi
350350 0 0
351351 0 0
352352 0 0
353353 −5.71223 + 3.29796i −0.304031 + 0.175533i −0.644253 0.764813i 0.722831π-0.722831\pi
0.340221 + 0.940345i 0.389498π0.389498\pi
354354 0 0
355355 −4.99465 2.24799i −0.265089 0.119311i
356356 0 0
357357 0 0
358358 0 0
359359 −8.44949 −0.445947 −0.222974 0.974825i 0.571576π-0.571576\pi
−0.222974 + 0.974825i 0.571576π0.571576\pi
360360 0 0
361361 −18.6969 −0.984049
362362 0 0
363363 0 0
364364 0 0
365365 4.40327 9.78332i 0.230478 0.512082i
366366 0 0
367367 10.0424 5.79796i 0.524207 0.302651i −0.214447 0.976736i 0.568795π-0.568795\pi
0.738654 + 0.674085i 0.235462π0.235462\pi
368368 0 0
369369 0 0
370370 0 0
371371 −18.7980 32.5590i −0.975941 1.69038i
372372 0 0
373373 22.1667 + 12.7980i 1.14775 + 0.662653i 0.948338 0.317263i 0.102764π-0.102764\pi
0.199411 + 0.979916i 0.436097π0.436097\pi
374374 0 0
375375 0 0
376376 0 0
377377 14.6969i 0.756931i
378378 0 0
379379 −30.1464 −1.54852 −0.774259 0.632869i 0.781877π-0.781877\pi
−0.774259 + 0.632869i 0.781877π0.781877\pi
380380 0 0
381381 0 0
382382 0 0
383383 1.55708 + 0.898979i 0.0795630 + 0.0459357i 0.539254 0.842143i 0.318706π-0.318706\pi
−0.459691 + 0.888079i 0.652040π0.652040\pi
384384 0 0
385385 −8.42953 11.7014i −0.429609 0.596358i
386386 0 0
387387 0 0
388388 0 0
389389 −11.2247 19.4418i −0.569117 0.985740i −0.996654 0.0817417i 0.973952π-0.973952\pi
0.427536 0.903998i 0.359382π-0.359382\pi
390390 0 0
391391 −5.65153 + 9.78874i −0.285810 + 0.495038i
392392 0 0
393393 0 0
394394 0 0
395395 −1.65153 16.3485i −0.0830975 0.822581i
396396 0 0
397397 17.7980i 0.893254i 0.894720 + 0.446627i 0.147375π0.147375\pi
−0.894720 + 0.446627i 0.852625π0.852625\pi
398398 0 0
399399 0 0
400400 0 0
401401 14.3990 24.9398i 0.719051 1.24543i −0.242326 0.970195i 0.577910π-0.577910\pi
0.961376 0.275237i 0.0887565π-0.0887565\pi
402402 0 0
403403 −13.6814 + 7.89898i −0.681521 + 0.393476i
404404 0 0
405405 0 0
406406 0 0
407407 10.0424 5.79796i 0.497781 0.287394i
408408 0 0
409409 3.05051 5.28364i 0.150838 0.261259i −0.780698 0.624909i 0.785136π-0.785136\pi
0.931536 + 0.363650i 0.118469π0.118469\pi
410410 0 0
411411 0 0
412412 0 0
413413 50.0454i 2.46257i
414414 0 0
415415 −8.89898 + 0.898979i −0.436834 + 0.0441292i
416416 0 0
417417 0 0
418418 0 0
419419 0.449490 0.778539i 0.0219590 0.0380341i −0.854837 0.518896i 0.826343π-0.826343\pi
0.876796 + 0.480862i 0.159676π0.159676\pi
420420 0 0
421421 8.22474 + 14.2457i 0.400850 + 0.694292i 0.993829 0.110926i 0.0353817π-0.0353817\pi
−0.592979 + 0.805218i 0.702048π0.702048\pi
422422 0 0
423423 0 0
424424 0 0
425425 14.5925 12.9271i 0.707839 0.627058i
426426 0 0
427427 −1.73205 1.00000i −0.0838198 0.0483934i
428428 0 0
429429 0 0
430430 0 0
431431 13.7526 0.662437 0.331219 0.943554i 0.392540π-0.392540\pi
0.331219 + 0.943554i 0.392540π0.392540\pi
432432 0 0
433433 23.0000i 1.10531i −0.833410 0.552655i 0.813615π-0.813615\pi
0.833410 0.552655i 0.186385π-0.186385\pi
434434 0 0
435435 0 0
436436 0 0
437437 1.38211 + 0.797959i 0.0661151 + 0.0381716i
438438 0 0
439439 11.0227 + 19.0919i 0.526085 + 0.911206i 0.999538 + 0.0303869i 0.00967395π0.00967395\pi
−0.473453 + 0.880819i 0.656993π0.656993\pi
440440 0 0
441441 0 0
442442 0 0
443443 2.81237 1.62372i 0.133620 0.0771455i −0.431700 0.902017i 0.642086π-0.642086\pi
0.565320 + 0.824872i 0.308753π0.308753\pi
444444 0 0
445445 −26.3018 11.8379i −1.24682 0.561169i
446446 0 0
447447 0 0
448448 0 0
449449 −0.797959 −0.0376580 −0.0188290 0.999823i 0.505994π-0.505994\pi
−0.0188290 + 0.999823i 0.505994π0.505994\pi
450450 0 0
451451 1.44949 0.0682538
452452 0 0
453453 0 0
454454 0 0
455455 −22.2237 10.0024i −1.04186 0.468920i
456456 0 0
457457 −7.01569 + 4.05051i −0.328180 + 0.189475i −0.655033 0.755600i 0.727345π-0.727345\pi
0.326853 + 0.945075i 0.394012π0.394012\pi
458458 0 0
459459 0 0
460460 0 0
461461 1.22474 + 2.12132i 0.0570421 + 0.0987997i 0.893136 0.449786i 0.148500π-0.148500\pi
−0.836094 + 0.548586i 0.815166π0.815166\pi
462462 0 0
463463 −20.7846 12.0000i −0.965943 0.557687i −0.0679458 0.997689i 0.521644π-0.521644\pi
−0.897997 + 0.440002i 0.854978π0.854978\pi
464464 0 0
465465 0 0
466466 0 0
467467 4.34847i 0.201223i 0.994926 + 0.100612i 0.0320799π0.0320799\pi
−0.994926 + 0.100612i 0.967920π0.967920\pi
468468 0 0
469469 −42.0454 −1.94148
470470 0 0
471471 0 0
472472 0 0
473473 −9.35131 5.39898i −0.429974 0.248245i
474474 0 0
475475 −1.82523 2.06036i −0.0837471 0.0945359i
476476 0 0
477477 0 0
478478 0 0
479479 −6.34847 10.9959i −0.290069 0.502414i 0.683757 0.729710i 0.260345π-0.260345\pi
−0.973826 + 0.227296i 0.927012π0.927012\pi
480480 0 0
481481 9.79796 16.9706i 0.446748 0.773791i
482482 0 0
483483 0 0
484484 0 0
485485 −28.9217 + 2.92168i −1.31327 + 0.132667i
486486 0 0
487487 34.8990i 1.58142i 0.612188 + 0.790712i 0.290289π0.290289\pi
−0.612188 + 0.790712i 0.709711π0.709711\pi
488488 0 0
489489 0 0
490490 0 0
491491 −11.7247 + 20.3079i −0.529130 + 0.916481i 0.470293 + 0.882511i 0.344148π0.344148\pi
−0.999423 + 0.0339700i 0.989185π0.989185\pi
492492 0 0
493493 20.2597 11.6969i 0.912451 0.526804i
494494 0 0
495495 0 0
496496 0 0
497497 −9.43879 + 5.44949i −0.423388 + 0.244443i
498498 0 0
499499 −1.62372 + 2.81237i −0.0726879 + 0.125899i −0.900078 0.435728i 0.856491π-0.856491\pi
0.827391 + 0.561627i 0.189824π0.189824\pi
500500 0 0
501501 0 0
502502 0 0
503503 9.55051i 0.425836i −0.977070 0.212918i 0.931703π-0.931703\pi
0.977070 0.212918i 0.0682968π-0.0682968\pi
504504 0 0
505505 1.79796 + 17.7980i 0.0800081 + 0.791999i
506506 0 0
507507 0 0
508508 0 0
509509 3.79796 6.57826i 0.168342 0.291576i −0.769495 0.638652i 0.779492π-0.779492\pi
0.937837 + 0.347076i 0.112826π0.112826\pi
510510 0 0
511511 −10.6742 18.4883i −0.472200 0.817875i
512512 0 0
513513 0 0
514514 0 0
515515 13.3935 + 18.5921i 0.590188 + 0.819265i
516516 0 0
517517 −0.564242 0.325765i −0.0248153 0.0143271i
518518 0 0
519519 0 0
520520 0 0
521521 7.69694 0.337209 0.168604 0.985684i 0.446074π-0.446074\pi
0.168604 + 0.985684i 0.446074π0.446074\pi
522522 0 0
523523 29.7980i 1.30297i −0.758660 0.651487i 0.774146π-0.774146\pi
0.758660 0.651487i 0.225854π-0.225854\pi
524524 0 0
525525 0 0
526526 0 0
527527 −21.7774 12.5732i −0.948640 0.547698i
528528 0 0
529529 −7.29796 12.6404i −0.317303 0.549584i
530530 0 0
531531 0 0
532532 0 0
533533 2.12132 1.22474i 0.0918846 0.0530496i
534534 0 0
535535 1.51567 3.36757i 0.0655282 0.145593i
536536 0 0
537537 0 0
538538 0 0
539539 −18.5505 −0.799027
540540 0 0
541541 −39.5959 −1.70236 −0.851181 0.524873i 0.824113π-0.824113\pi
−0.851181 + 0.524873i 0.824113π0.824113\pi
542542 0 0
543543 0 0
544544 0 0
545545 −16.3125 7.34190i −0.698749 0.314493i
546546 0 0
547547 6.27647 3.62372i 0.268363 0.154939i −0.359781 0.933037i 0.617148π-0.617148\pi
0.628143 + 0.778098i 0.283815π0.283815\pi
548548 0 0
549549 0 0
550550 0 0
551551 −1.65153 2.86054i −0.0703576 0.121863i
552552 0 0
553553 −28.3164 16.3485i −1.20413 0.695208i
554554 0 0
555555 0 0
556556 0 0
557557 38.9444i 1.65013i 0.565040 + 0.825063i 0.308861π0.308861\pi
−0.565040 + 0.825063i 0.691139π0.691139\pi
558558 0 0
559559 −18.2474 −0.771785
560560 0 0
561561 0 0
562562 0 0
563563 31.3037 + 18.0732i 1.31929 + 0.761695i 0.983615 0.180281i 0.0577007π-0.0577007\pi
0.335680 + 0.941976i 0.391034π0.391034\pi
564564 0 0
565565 6.40300 + 8.88828i 0.269376 + 0.373933i
566566 0 0
567567 0 0
568568 0 0
569569 −8.74745 15.1510i −0.366712 0.635164i 0.622337 0.782749i 0.286183π-0.286183\pi
−0.989049 + 0.147585i 0.952850π0.952850\pi
570570 0 0
571571 6.37628 11.0440i 0.266839 0.462178i −0.701205 0.712960i 0.747354π-0.747354\pi
0.968044 + 0.250781i 0.0806875π0.0806875\pi
572572 0 0
573573 0 0
574574 0 0
575575 −2.89898 14.2020i −0.120896 0.592266i
576576 0 0
577577 13.6969i 0.570211i 0.958496 + 0.285106i 0.0920286π0.0920286\pi
−0.958496 + 0.285106i 0.907971π0.907971\pi
578578 0 0
579579 0 0
580580 0 0
581581 −8.89898 + 15.4135i −0.369192 + 0.639459i
582582 0 0
583583 10.6066 6.12372i 0.439281 0.253619i
584584 0 0
585585 0 0
586586 0 0
587587 25.9326 14.9722i 1.07035 0.617969i 0.142075 0.989856i 0.454623π-0.454623\pi
0.928278 + 0.371887i 0.121289π0.121289\pi
588588 0 0
589589 −1.77526 + 3.07483i −0.0731481 + 0.126696i
590590 0 0
591591 0 0
592592 0 0
593593 41.3939i 1.69984i 0.526910 + 0.849921i 0.323351π0.323351\pi
−0.526910 + 0.849921i 0.676649π0.676649\pi
594594 0 0
595595 −3.89898 38.5959i −0.159843 1.58228i
596596 0 0
597597 0 0
598598 0 0
599599 7.10102 12.2993i 0.290140 0.502537i −0.683703 0.729761i 0.739632π-0.739632\pi
0.973843 + 0.227224i 0.0729648π0.0729648\pi
600600 0 0
601601 −9.60102 16.6295i −0.391634 0.678330i 0.601031 0.799225i 0.294757π-0.294757\pi
−0.992665 + 0.120896i 0.961423π0.961423\pi
602602 0 0
603603 0 0
604604 0 0
605605 −16.1455 + 11.6310i −0.656409 + 0.472869i
606606 0 0
607607 10.0424 + 5.79796i 0.407607 + 0.235332i 0.689761 0.724037i 0.257716π-0.257716\pi
−0.282154 + 0.959369i 0.591049π0.591049\pi
608608 0 0
609609 0 0
610610 0 0
611611 −1.10102 −0.0445425
612612 0 0
613613 16.9444i 0.684377i −0.939631 0.342189i 0.888832π-0.888832\pi
0.939631 0.342189i 0.111168π-0.111168\pi
614614 0 0
615615 0 0
616616 0 0
617617 32.6465 + 18.8485i 1.31430 + 0.758811i 0.982805 0.184647i 0.0591140π-0.0591140\pi
0.331494 + 0.943457i 0.392447π0.392447\pi
618618 0 0
619619 16.7247 + 28.9681i 0.672224 + 1.16433i 0.977272 + 0.211989i 0.0679943π0.0679943\pi
−0.305048 + 0.952337i 0.598672π0.598672\pi
620620 0 0
621621 0 0
622622 0 0
623623 −49.7046 + 28.6969i −1.99137 + 1.14972i
624624 0 0
625625 −3.01472 + 24.8176i −0.120589 + 0.992703i
626626 0 0
627627 0 0
628628 0 0
629629 31.1918 1.24370
630630 0 0
631631 −3.34847 −0.133300 −0.0666502 0.997776i 0.521231π-0.521231\pi
−0.0666502 + 0.997776i 0.521231π0.521231\pi
632632 0 0
633633 0 0
634634 0 0
635635 2.66050 5.91119i 0.105579 0.234578i
636636 0 0
637637 −27.1486 + 15.6742i −1.07567 + 0.621036i
638638 0 0
639639 0 0
640640 0 0
641641 −18.5000 32.0429i −0.730706 1.26562i −0.956582 0.291464i 0.905858π-0.905858\pi
0.225876 0.974156i 0.427476π-0.427476\pi
642642 0 0
643643 8.00853 + 4.62372i 0.315825 + 0.182342i 0.649530 0.760336i 0.274966π-0.274966\pi
−0.333705 + 0.942678i 0.608299π0.608299\pi
644644 0 0
645645 0 0
646646 0 0
647647 25.1010i 0.986823i 0.869796 + 0.493411i 0.164250π0.164250\pi
−0.869796 + 0.493411i 0.835750π0.835750\pi
648648 0 0
649649 16.3031 0.639951
650650 0 0
651651 0 0
652652 0 0
653653 29.4449 + 17.0000i 1.15227 + 0.665261i 0.949439 0.313953i 0.101653π-0.101653\pi
0.202828 + 0.979214i 0.434987π0.434987\pi
654654 0 0
655655 −8.88828 + 6.40300i −0.347294 + 0.250186i
656656 0 0
657657 0 0
658658 0 0
659659 −8.10102 14.0314i −0.315571 0.546585i 0.663988 0.747743i 0.268863π-0.268863\pi
−0.979559 + 0.201159i 0.935529π0.935529\pi
660660 0 0
661661 6.89898 11.9494i 0.268339 0.464777i −0.700094 0.714051i 0.746859π-0.746859\pi
0.968433 + 0.249274i 0.0801919π0.0801919\pi
662662 0 0
663663 0 0
664664 0 0
665665 −5.44949 + 0.550510i −0.211322 + 0.0213479i
666666 0 0
667667 17.3939i 0.673494i
668668 0 0
669669 0 0
670670 0 0
671671 0.325765 0.564242i 0.0125760 0.0217823i
672672 0 0
673673 16.5420 9.55051i 0.637646 0.368145i −0.146061 0.989276i 0.546660π-0.546660\pi
0.783707 + 0.621130i 0.213326π0.213326\pi
674674 0 0
675675 0 0
676676 0 0
677677 −0.349945 + 0.202041i −0.0134495 + 0.00776507i −0.506710 0.862117i 0.669138π-0.669138\pi
0.493260 + 0.869882i 0.335805π0.335805\pi
678678 0 0
679679 −28.9217 + 50.0938i −1.10991 + 1.92242i
680680 0 0
681681 0 0
682682 0 0
683683 40.5505i 1.55162i 0.630965 + 0.775811i 0.282659π0.282659\pi
−0.630965 + 0.775811i 0.717341π0.717341\pi
684684 0 0
685685 6.67423 0.674235i 0.255009 0.0257612i
686686 0 0
687687 0 0
688688 0 0
689689 10.3485 17.9241i 0.394245 0.682853i
690690 0 0
691691 −10.7980 18.7026i −0.410774 0.711481i 0.584201 0.811609i 0.301408π-0.301408\pi
−0.994975 + 0.100128i 0.968075π0.968075\pi
692692 0 0
693693 0 0
694694 0 0
695695 −20.4064 + 14.7005i −0.774059 + 0.557622i
696696 0 0
697697 3.37662 + 1.94949i 0.127898 + 0.0738422i
698698 0 0
699699 0 0
700700 0 0
701701 −19.3939 −0.732497 −0.366248 0.930517i 0.619358π-0.619358\pi
−0.366248 + 0.930517i 0.619358π0.619358\pi
702702 0 0
703703 4.40408i 0.166103i
704704 0 0
705705 0 0
706706 0 0
707707 30.8270 + 17.7980i 1.15937 + 0.669361i
708708 0 0
709709 11.3258 + 19.6168i 0.425348 + 0.736724i 0.996453 0.0841527i 0.0268184π-0.0268184\pi
−0.571105 + 0.820877i 0.693485π0.693485\pi
710710 0 0
711711 0 0
712712 0 0
713713 −16.1920 + 9.34847i −0.606396 + 0.350103i
714714 0 0
715715 3.25844 7.23970i 0.121859 0.270749i
716716 0 0
717717 0 0
718718 0 0
719719 −22.2020 −0.827996 −0.413998 0.910278i 0.635868π-0.635868\pi
−0.413998 + 0.910278i 0.635868π0.635868\pi
720720 0 0
721721 45.5959 1.69808
722722 0 0
723723 0 0
724724 0 0
725725 −9.50079 + 28.4558i −0.352850 + 1.05682i
726726 0 0
727727 9.22450 5.32577i 0.342118 0.197522i −0.319090 0.947724i 0.603377π-0.603377\pi
0.661208 + 0.750203i 0.270044π0.270044\pi
728728 0 0
729729 0 0
730730 0 0
731731 −14.5227 25.1541i −0.537142 0.930357i
732732 0 0
733733 −11.3851 6.57321i −0.420520 0.242787i 0.274780 0.961507i 0.411395π-0.411395\pi
−0.695300 + 0.718720i 0.744728π0.744728\pi
734734 0 0
735735 0 0
736736 0 0
737737 13.6969i 0.504533i
738738 0 0
739739 7.24745 0.266602 0.133301 0.991076i 0.457442π-0.457442\pi
0.133301 + 0.991076i 0.457442π0.457442\pi
740740 0 0
741741 0 0
742742 0 0
743743 −11.3458 6.55051i −0.416238 0.240315i 0.277229 0.960804i 0.410584π-0.410584\pi
−0.693466 + 0.720489i 0.743917π0.743917\pi
744744 0 0
745745 29.4780 21.2355i 1.07999 0.778010i
746746 0 0
747747 0 0
748748 0 0
749749 −3.67423 6.36396i −0.134254 0.232534i
750750 0 0
751751 22.4949 38.9623i 0.820850 1.42175i −0.0841993 0.996449i 0.526833π-0.526833\pi
0.905050 0.425306i 0.139833π-0.139833\pi
752752 0 0
753753 0 0
754754 0 0
755755 1.55051 + 15.3485i 0.0564288 + 0.558588i
756756 0 0
757757 10.0000i 0.363456i −0.983349 0.181728i 0.941831π-0.941831\pi
0.983349 0.181728i 0.0581691π-0.0581691\pi
758758 0 0
759759 0 0
760760 0 0
761761 −24.2474 + 41.9978i −0.878969 + 1.52242i −0.0264959 + 0.999649i 0.508435π0.508435\pi
−0.852473 + 0.522771i 0.824898π0.824898\pi
762762 0 0
763763 −30.8270 + 17.7980i −1.11601 + 0.644329i
764764 0 0
765765 0 0
766766 0 0
767767 23.8594 13.7753i 0.861515 0.497396i
768768 0 0
769769 −12.2474 + 21.2132i −0.441654 + 0.764968i −0.997812 0.0661088i 0.978942π-0.978942\pi
0.556158 + 0.831076i 0.312275π0.312275\pi
770770 0 0
771771 0 0
772772 0 0
773773 23.3939i 0.841419i −0.907195 0.420710i 0.861781π-0.861781\pi
0.907195 0.420710i 0.138219π-0.138219\pi
774774 0 0
775775 31.5959 6.44949i 1.13496 0.231673i
776776 0 0
777777 0 0
778778 0 0
779779 0.275255 0.476756i 0.00986204 0.0170816i
780780 0 0
781781 −1.77526 3.07483i −0.0635236 0.110026i
782782 0 0
783783 0 0
784784 0 0
785785 20.9121 + 29.0290i 0.746385 + 1.03609i
786786 0 0
787787 6.40329 + 3.69694i 0.228252 + 0.131782i 0.609766 0.792582i 0.291264π-0.291264\pi
−0.381513 + 0.924363i 0.624597π0.624597\pi
788788 0 0
789789 0 0
790790 0 0
791791 21.7980 0.775046
792792 0 0
793793 1.10102i 0.0390984i
794794 0 0
795795 0 0
796796 0 0
797797 −30.8270 17.7980i −1.09195 0.630436i −0.157853 0.987463i 0.550457π-0.550457\pi
−0.934094 + 0.357027i 0.883791π0.883791\pi
798798 0 0
799799 −0.876276 1.51775i −0.0310004 0.0536943i
800800 0 0
801801 0 0
802802 0 0
803803 6.02285 3.47730i 0.212542 0.122711i
804804 0 0
805805 −26.3018 11.8379i −0.927015 0.417230i
806806 0 0
807807 0 0
808808 0 0
809809 47.0908 1.65562 0.827812 0.561005i 0.189585π-0.189585\pi
0.827812 + 0.561005i 0.189585π0.189585\pi
810810 0 0
811811 17.2474 0.605640 0.302820 0.953048i 0.402072π-0.402072\pi
0.302820 + 0.953048i 0.402072π0.402072\pi
812812 0 0
813813 0 0
814814 0 0
815815 −0.825027 + 1.83307i −0.0288994 + 0.0642097i
816816 0 0
817817 −3.55159 + 2.05051i −0.124254 + 0.0717383i
818818 0 0
819819 0 0
820820 0 0
821821 −21.0227 36.4124i −0.733697 1.27080i −0.955292 0.295662i 0.904460π-0.904460\pi
0.221595 0.975139i 0.428874π-0.428874\pi
822822 0 0
823823 −6.57826 3.79796i −0.229304 0.132389i 0.380947 0.924597i 0.375598π-0.375598\pi
−0.610251 + 0.792208i 0.708931π0.708931\pi
824824 0 0
825825 0 0
826826 0 0
827827 13.7980i 0.479802i −0.970797 0.239901i 0.922885π-0.922885\pi
0.970797 0.239901i 0.0771150π-0.0771150\pi
828828 0 0
829829 21.5505 0.748480 0.374240 0.927332i 0.377904π-0.377904\pi
0.374240 + 0.927332i 0.377904π0.377904\pi
830830 0 0
831831 0 0
832832 0 0
833833 −43.2138 24.9495i −1.49727 0.864449i
834834 0 0
835835 −31.6916 43.9925i −1.09673 1.52242i
836836 0 0
837837 0 0
838838 0 0
839839 7.87628 + 13.6421i 0.271919 + 0.470978i 0.969353 0.245671i 0.0790083π-0.0790083\pi
−0.697434 + 0.716649i 0.745675π0.745675\pi
840840 0 0
841841 −3.50000 + 6.06218i −0.120690 + 0.209041i
842842 0 0
843843 0 0
844844 0 0
845845 1.57321 + 15.5732i 0.0541202 + 0.535735i
846846 0 0
847847 39.5959i 1.36053i
848848 0 0
849849 0 0
850850 0 0
851851 11.5959 20.0847i 0.397503 0.688495i
852852 0 0
853853 21.7774 12.5732i 0.745646 0.430499i −0.0784728 0.996916i 0.525004π-0.525004\pi
0.824118 + 0.566418i 0.191671π0.191671\pi
854854 0 0
855855 0 0
856856 0 0
857857 46.2405 26.6969i 1.57954 0.911950i 0.584621 0.811306i 0.301243π-0.301243\pi
0.994923 0.100644i 0.0320902π-0.0320902\pi
858858 0 0
859859 −17.8712 + 30.9538i −0.609757 + 1.05613i 0.381524 + 0.924359i 0.375399π0.375399\pi
−0.991280 + 0.131770i 0.957934π0.957934\pi
860860 0 0
861861 0 0
862862 0 0
863863 21.5505i 0.733588i −0.930302 0.366794i 0.880455π-0.880455\pi
0.930302 0.366794i 0.119545π-0.119545\pi
864864 0 0
865865 −17.3485 + 1.75255i −0.589866 + 0.0595885i
866866 0 0
867867 0 0
868868 0 0
869869 5.32577 9.22450i 0.180664 0.312920i
870870 0 0
871871 −11.5732 20.0454i −0.392143 0.679212i
872872 0 0
873873 0 0
874874 0 0
875875 36.5629 + 33.7328i 1.23605 + 1.14038i
876876 0 0
877877 47.7582 + 27.5732i 1.61268 + 0.931081i 0.988746 + 0.149604i 0.0478000π0.0478000\pi
0.623934 + 0.781477i 0.285533π0.285533\pi
878878 0 0
879879 0 0
880880 0 0
881881 30.0000 1.01073 0.505363 0.862907i 0.331359π-0.331359\pi
0.505363 + 0.862907i 0.331359π0.331359\pi
882882 0 0
883883 11.4495i 0.385306i −0.981267 0.192653i 0.938291π-0.938291\pi
0.981267 0.192653i 0.0617092π-0.0617092\pi
884884 0 0
885885 0 0
886886 0 0
887887 −4.02834 2.32577i −0.135259 0.0780916i 0.430844 0.902427i 0.358216π-0.358216\pi
−0.566102 + 0.824335i 0.691549π0.691549\pi
888888 0 0
889889 −6.44949 11.1708i −0.216309 0.374658i
890890 0 0
891891 0 0
892892 0 0
893893 −0.214297 + 0.123724i −0.00717117 + 0.00414028i
894894 0 0
895895 18.1455 + 8.16693i 0.606538 + 0.272990i
896896 0 0
897897 0 0
898898 0 0
899899 38.6969 1.29062
900900 0 0
901901 32.9444 1.09754
902902 0 0
903903 0 0
904904 0 0
905905 −21.3071 9.58989i −0.708272 0.318779i
906906 0 0
907907 −29.2217 + 16.8712i −0.970292 + 0.560198i −0.899325 0.437281i 0.855942π-0.855942\pi
−0.0709665 + 0.997479i 0.522608π0.522608\pi
908908 0 0
909909 0 0
910910 0 0
911911 0.123724 + 0.214297i 0.00409917 + 0.00709997i 0.868068 0.496446i 0.165362π-0.165362\pi
−0.863969 + 0.503546i 0.832029π0.832029\pi
912912 0 0
913913 −5.02118 2.89898i −0.166177 0.0959422i
914914 0 0
915915 0 0
916916 0 0
917917 21.7980i 0.719832i
918918 0 0
919919 10.8990 0.359524 0.179762 0.983710i 0.442467π-0.442467\pi
0.179762 + 0.983710i 0.442467π0.442467\pi
920920 0 0
921921 0 0
922922 0 0
923923 −5.19615 3.00000i −0.171033 0.0987462i
924924 0 0
925925 −29.9411 + 26.5241i −0.984458 + 0.872108i
926926 0 0
927927 0 0
928928 0 0
929929 27.7980 + 48.1475i 0.912021 + 1.57967i 0.811205 + 0.584762i 0.198812π0.198812\pi
0.100817 + 0.994905i 0.467854π0.467854\pi
930930 0 0
931931 −3.52270 + 6.10150i −0.115452 + 0.199969i
932932 0 0
933933 0 0
934934 0 0
935935 12.5732 1.27015i 0.411188 0.0415384i
936936 0 0
937937 39.5959i 1.29354i −0.762684 0.646771i 0.776119π-0.776119\pi
0.762684 0.646771i 0.223881π-0.223881\pi
938938 0 0
939939 0 0
940940 0 0
941941 −24.8990 + 43.1263i −0.811684 + 1.40588i 0.100001 + 0.994987i 0.468115π0.468115\pi
−0.911685 + 0.410890i 0.865218π0.865218\pi
942942 0 0
943943 2.51059 1.44949i 0.0817561 0.0472019i
944944 0 0
945945 0 0
946946 0 0
947947 −18.4008 + 10.6237i −0.597947 + 0.345225i −0.768233 0.640170i 0.778864π-0.778864\pi
0.170287 + 0.985395i 0.445531π0.445531\pi
948948 0 0
949949 5.87628 10.1780i 0.190752 0.330392i
950950 0 0
951951 0 0
952952 0 0
953953 50.7980i 1.64551i −0.568398 0.822754i 0.692437π-0.692437\pi
0.568398 0.822754i 0.307563π-0.307563\pi
954954 0 0
955955 −1.40408 13.8990i −0.0454350 0.449760i
956956 0 0
957957 0 0
958958 0 0
959959 6.67423 11.5601i 0.215522 0.373296i
960960 0 0
961961 −5.29796 9.17633i −0.170902 0.296011i
962962 0 0
963963 0 0
964964 0 0
965965 20.5160 + 28.4792i 0.660434 + 0.916777i
966966 0 0
967967 −24.8523 14.3485i −0.799195 0.461416i 0.0439944 0.999032i 0.485992π-0.485992\pi
−0.843190 + 0.537616i 0.819325π0.819325\pi
968968 0 0
969969 0 0
970970 0 0
971971 −23.3939 −0.750745 −0.375373 0.926874i 0.622485π-0.622485\pi
−0.375373 + 0.926874i 0.622485π0.622485\pi
972972 0 0
973973 50.0454i 1.60438i
974974 0 0
975975 0 0
976976 0 0
977977 32.8215 + 18.9495i 1.05005 + 0.606248i 0.922664 0.385605i 0.126007π-0.126007\pi
0.127388 + 0.991853i 0.459341π0.459341\pi
978978 0 0
979979 −9.34847 16.1920i −0.298778 0.517499i
980980 0 0
981981 0 0
982982 0 0
983983 32.3840 18.6969i 1.03289 0.596340i 0.115079 0.993356i 0.463288π-0.463288\pi
0.917811 + 0.397017i 0.129954π0.129954\pi
984984 0 0
985985 7.34190 16.3125i 0.233932 0.519758i
986986 0 0
987987 0 0
988988 0 0
989989 −21.5959 −0.686710
990990 0 0
991991 −4.00000 −0.127064 −0.0635321 0.997980i 0.520237π-0.520237\pi
−0.0635321 + 0.997980i 0.520237π0.520237\pi
992992 0 0
993993 0 0
994994 0 0
995995 −41.6977 18.7673i −1.32191 0.594962i
996996 0 0
997997 −28.5307 + 16.4722i −0.903576 + 0.521680i −0.878359 0.478002i 0.841361π-0.841361\pi
−0.0252170 + 0.999682i 0.508028π0.508028\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.by.d.1009.1 8
3.2 odd 2 720.2.by.c.49.4 8
4.3 odd 2 270.2.i.b.199.3 8
5.4 even 2 inner 2160.2.by.d.1009.4 8
9.2 odd 6 720.2.by.c.529.1 8
9.7 even 3 inner 2160.2.by.d.289.4 8
12.11 even 2 90.2.i.b.49.1 8
15.14 odd 2 720.2.by.c.49.1 8
20.3 even 4 1350.2.e.j.901.1 4
20.7 even 4 1350.2.e.m.901.2 4
20.19 odd 2 270.2.i.b.199.2 8
36.7 odd 6 270.2.i.b.19.2 8
36.11 even 6 90.2.i.b.79.4 yes 8
36.23 even 6 810.2.c.f.649.1 4
36.31 odd 6 810.2.c.e.649.4 4
45.29 odd 6 720.2.by.c.529.4 8
45.34 even 6 inner 2160.2.by.d.289.1 8
60.23 odd 4 450.2.e.n.301.2 4
60.47 odd 4 450.2.e.k.301.1 4
60.59 even 2 90.2.i.b.49.4 yes 8
180.7 even 12 1350.2.e.m.451.2 4
180.23 odd 12 4050.2.a.bq.1.2 2
180.43 even 12 1350.2.e.j.451.1 4
180.47 odd 12 450.2.e.k.151.1 4
180.59 even 6 810.2.c.f.649.3 4
180.67 even 12 4050.2.a.bm.1.1 2
180.79 odd 6 270.2.i.b.19.3 8
180.83 odd 12 450.2.e.n.151.2 4
180.103 even 12 4050.2.a.bz.1.2 2
180.119 even 6 90.2.i.b.79.1 yes 8
180.139 odd 6 810.2.c.e.649.2 4
180.167 odd 12 4050.2.a.bs.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.b.49.1 8 12.11 even 2
90.2.i.b.49.4 yes 8 60.59 even 2
90.2.i.b.79.1 yes 8 180.119 even 6
90.2.i.b.79.4 yes 8 36.11 even 6
270.2.i.b.19.2 8 36.7 odd 6
270.2.i.b.19.3 8 180.79 odd 6
270.2.i.b.199.2 8 20.19 odd 2
270.2.i.b.199.3 8 4.3 odd 2
450.2.e.k.151.1 4 180.47 odd 12
450.2.e.k.301.1 4 60.47 odd 4
450.2.e.n.151.2 4 180.83 odd 12
450.2.e.n.301.2 4 60.23 odd 4
720.2.by.c.49.1 8 15.14 odd 2
720.2.by.c.49.4 8 3.2 odd 2
720.2.by.c.529.1 8 9.2 odd 6
720.2.by.c.529.4 8 45.29 odd 6
810.2.c.e.649.2 4 180.139 odd 6
810.2.c.e.649.4 4 36.31 odd 6
810.2.c.f.649.1 4 36.23 even 6
810.2.c.f.649.3 4 180.59 even 6
1350.2.e.j.451.1 4 180.43 even 12
1350.2.e.j.901.1 4 20.3 even 4
1350.2.e.m.451.2 4 180.7 even 12
1350.2.e.m.901.2 4 20.7 even 4
2160.2.by.d.289.1 8 45.34 even 6 inner
2160.2.by.d.289.4 8 9.7 even 3 inner
2160.2.by.d.1009.1 8 1.1 even 1 trivial
2160.2.by.d.1009.4 8 5.4 even 2 inner
4050.2.a.bm.1.1 2 180.67 even 12
4050.2.a.bq.1.2 2 180.23 odd 12
4050.2.a.bs.1.1 2 180.167 odd 12
4050.2.a.bz.1.2 2 180.103 even 12