Properties

Label 450.2.e.k.151.1
Level $450$
Weight $2$
Character 450.151
Analytic conductor $3.593$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,2,Mod(151,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.1
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 450.151
Dual form 450.2.e.k.301.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.724745 - 1.57313i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.72474 + 0.158919i) q^{6} +(2.22474 - 3.85337i) q^{7} +1.00000 q^{8} +(-1.94949 + 2.28024i) q^{9} +(-0.724745 + 1.25529i) q^{11} +(-1.00000 + 1.41421i) q^{12} +(-1.22474 - 2.12132i) q^{13} +(2.22474 + 3.85337i) q^{14} +(-0.500000 + 0.866025i) q^{16} -3.89898 q^{17} +(-1.00000 - 2.82843i) q^{18} -0.550510 q^{19} +(-7.67423 - 0.707107i) q^{21} +(-0.724745 - 1.25529i) q^{22} +(-1.44949 - 2.51059i) q^{23} +(-0.724745 - 1.57313i) q^{24} +2.44949 q^{26} +(5.00000 + 1.41421i) q^{27} -4.44949 q^{28} +(3.00000 - 5.19615i) q^{29} +(-3.22474 - 5.58542i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(2.50000 + 0.230351i) q^{33} +(1.94949 - 3.37662i) q^{34} +(2.94949 + 0.548188i) q^{36} -8.00000 q^{37} +(0.275255 - 0.476756i) q^{38} +(-2.44949 + 3.46410i) q^{39} +(0.500000 + 0.866025i) q^{41} +(4.44949 - 6.29253i) q^{42} +(3.72474 - 6.45145i) q^{43} +1.44949 q^{44} +2.89898 q^{46} +(0.224745 - 0.389270i) q^{47} +(1.72474 + 0.158919i) q^{48} +(-6.39898 - 11.0834i) q^{49} +(2.82577 + 6.13361i) q^{51} +(-1.22474 + 2.12132i) q^{52} -8.44949 q^{53} +(-3.72474 + 3.62302i) q^{54} +(2.22474 - 3.85337i) q^{56} +(0.398979 + 0.866025i) q^{57} +(3.00000 + 5.19615i) q^{58} +(5.62372 + 9.74058i) q^{59} +(0.224745 - 0.389270i) q^{61} +6.44949 q^{62} +(4.44949 + 12.5851i) q^{63} +1.00000 q^{64} +(-1.44949 + 2.04989i) q^{66} +(4.72474 + 8.18350i) q^{67} +(1.94949 + 3.37662i) q^{68} +(-2.89898 + 4.09978i) q^{69} +2.44949 q^{71} +(-1.94949 + 2.28024i) q^{72} +4.79796 q^{73} +(4.00000 - 6.92820i) q^{74} +(0.275255 + 0.476756i) q^{76} +(3.22474 + 5.58542i) q^{77} +(-1.77526 - 3.85337i) q^{78} +(3.67423 - 6.36396i) q^{79} +(-1.39898 - 8.89060i) q^{81} -1.00000 q^{82} +(-2.00000 + 3.46410i) q^{83} +(3.22474 + 6.99964i) q^{84} +(3.72474 + 6.45145i) q^{86} +(-10.3485 - 0.953512i) q^{87} +(-0.724745 + 1.25529i) q^{88} +12.8990 q^{89} -10.8990 q^{91} +(-1.44949 + 2.51059i) q^{92} +(-6.44949 + 9.12096i) q^{93} +(0.224745 + 0.389270i) q^{94} +(-1.00000 + 1.41421i) q^{96} +(6.50000 - 11.2583i) q^{97} +12.7980 q^{98} +(-1.44949 - 4.09978i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 2 q^{3} - 2 q^{4} + 2 q^{6} + 4 q^{7} + 4 q^{8} + 2 q^{9} + 2 q^{11} - 4 q^{12} + 4 q^{14} - 2 q^{16} + 4 q^{17} - 4 q^{18} - 12 q^{19} - 16 q^{21} + 2 q^{22} + 4 q^{23} + 2 q^{24} + 20 q^{27}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −0.724745 1.57313i −0.418432 0.908248i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 1.72474 + 0.158919i 0.704124 + 0.0648783i
\(7\) 2.22474 3.85337i 0.840875 1.45644i −0.0482818 0.998834i \(-0.515375\pi\)
0.889156 0.457604i \(-0.151292\pi\)
\(8\) 1.00000 0.353553
\(9\) −1.94949 + 2.28024i −0.649830 + 0.760080i
\(10\) 0 0
\(11\) −0.724745 + 1.25529i −0.218519 + 0.378486i −0.954355 0.298674i \(-0.903456\pi\)
0.735837 + 0.677159i \(0.236789\pi\)
\(12\) −1.00000 + 1.41421i −0.288675 + 0.408248i
\(13\) −1.22474 2.12132i −0.339683 0.588348i 0.644690 0.764444i \(-0.276986\pi\)
−0.984373 + 0.176096i \(0.943653\pi\)
\(14\) 2.22474 + 3.85337i 0.594588 + 1.02986i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.89898 −0.945641 −0.472821 0.881159i \(-0.656764\pi\)
−0.472821 + 0.881159i \(0.656764\pi\)
\(18\) −1.00000 2.82843i −0.235702 0.666667i
\(19\) −0.550510 −0.126296 −0.0631479 0.998004i \(-0.520114\pi\)
−0.0631479 + 0.998004i \(0.520114\pi\)
\(20\) 0 0
\(21\) −7.67423 0.707107i −1.67466 0.154303i
\(22\) −0.724745 1.25529i −0.154516 0.267630i
\(23\) −1.44949 2.51059i −0.302240 0.523494i 0.674403 0.738363i \(-0.264401\pi\)
−0.976643 + 0.214869i \(0.931068\pi\)
\(24\) −0.724745 1.57313i −0.147938 0.321114i
\(25\) 0 0
\(26\) 2.44949 0.480384
\(27\) 5.00000 + 1.41421i 0.962250 + 0.272166i
\(28\) −4.44949 −0.840875
\(29\) 3.00000 5.19615i 0.557086 0.964901i −0.440652 0.897678i \(-0.645253\pi\)
0.997738 0.0672232i \(-0.0214140\pi\)
\(30\) 0 0
\(31\) −3.22474 5.58542i −0.579181 1.00317i −0.995573 0.0939863i \(-0.970039\pi\)
0.416392 0.909185i \(-0.363294\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 2.50000 + 0.230351i 0.435194 + 0.0400989i
\(34\) 1.94949 3.37662i 0.334335 0.579085i
\(35\) 0 0
\(36\) 2.94949 + 0.548188i 0.491582 + 0.0913647i
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0.275255 0.476756i 0.0446523 0.0773400i
\(39\) −2.44949 + 3.46410i −0.392232 + 0.554700i
\(40\) 0 0
\(41\) 0.500000 + 0.866025i 0.0780869 + 0.135250i 0.902424 0.430848i \(-0.141786\pi\)
−0.824338 + 0.566099i \(0.808452\pi\)
\(42\) 4.44949 6.29253i 0.686571 0.970958i
\(43\) 3.72474 6.45145i 0.568018 0.983836i −0.428744 0.903426i \(-0.641044\pi\)
0.996762 0.0804103i \(-0.0256230\pi\)
\(44\) 1.44949 0.218519
\(45\) 0 0
\(46\) 2.89898 0.427431
\(47\) 0.224745 0.389270i 0.0327824 0.0567808i −0.849169 0.528122i \(-0.822896\pi\)
0.881951 + 0.471341i \(0.156230\pi\)
\(48\) 1.72474 + 0.158919i 0.248945 + 0.0229379i
\(49\) −6.39898 11.0834i −0.914140 1.58334i
\(50\) 0 0
\(51\) 2.82577 + 6.13361i 0.395686 + 0.858877i
\(52\) −1.22474 + 2.12132i −0.169842 + 0.294174i
\(53\) −8.44949 −1.16063 −0.580313 0.814393i \(-0.697070\pi\)
−0.580313 + 0.814393i \(0.697070\pi\)
\(54\) −3.72474 + 3.62302i −0.506874 + 0.493031i
\(55\) 0 0
\(56\) 2.22474 3.85337i 0.297294 0.514928i
\(57\) 0.398979 + 0.866025i 0.0528461 + 0.114708i
\(58\) 3.00000 + 5.19615i 0.393919 + 0.682288i
\(59\) 5.62372 + 9.74058i 0.732147 + 1.26812i 0.955964 + 0.293484i \(0.0948147\pi\)
−0.223817 + 0.974631i \(0.571852\pi\)
\(60\) 0 0
\(61\) 0.224745 0.389270i 0.0287756 0.0498409i −0.851279 0.524713i \(-0.824173\pi\)
0.880055 + 0.474873i \(0.157506\pi\)
\(62\) 6.44949 0.819086
\(63\) 4.44949 + 12.5851i 0.560583 + 1.58557i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −1.44949 + 2.04989i −0.178420 + 0.252324i
\(67\) 4.72474 + 8.18350i 0.577219 + 0.999773i 0.995797 + 0.0915922i \(0.0291956\pi\)
−0.418577 + 0.908181i \(0.637471\pi\)
\(68\) 1.94949 + 3.37662i 0.236410 + 0.409475i
\(69\) −2.89898 + 4.09978i −0.348996 + 0.493555i
\(70\) 0 0
\(71\) 2.44949 0.290701 0.145350 0.989380i \(-0.453569\pi\)
0.145350 + 0.989380i \(0.453569\pi\)
\(72\) −1.94949 + 2.28024i −0.229750 + 0.268729i
\(73\) 4.79796 0.561559 0.280779 0.959772i \(-0.409407\pi\)
0.280779 + 0.959772i \(0.409407\pi\)
\(74\) 4.00000 6.92820i 0.464991 0.805387i
\(75\) 0 0
\(76\) 0.275255 + 0.476756i 0.0315739 + 0.0546876i
\(77\) 3.22474 + 5.58542i 0.367494 + 0.636518i
\(78\) −1.77526 3.85337i −0.201008 0.436308i
\(79\) 3.67423 6.36396i 0.413384 0.716002i −0.581874 0.813279i \(-0.697680\pi\)
0.995257 + 0.0972777i \(0.0310135\pi\)
\(80\) 0 0
\(81\) −1.39898 8.89060i −0.155442 0.987845i
\(82\) −1.00000 −0.110432
\(83\) −2.00000 + 3.46410i −0.219529 + 0.380235i −0.954664 0.297686i \(-0.903785\pi\)
0.735135 + 0.677920i \(0.237119\pi\)
\(84\) 3.22474 + 6.99964i 0.351849 + 0.763723i
\(85\) 0 0
\(86\) 3.72474 + 6.45145i 0.401650 + 0.695677i
\(87\) −10.3485 0.953512i −1.10947 0.102227i
\(88\) −0.724745 + 1.25529i −0.0772581 + 0.133815i
\(89\) 12.8990 1.36729 0.683645 0.729815i \(-0.260394\pi\)
0.683645 + 0.729815i \(0.260394\pi\)
\(90\) 0 0
\(91\) −10.8990 −1.14252
\(92\) −1.44949 + 2.51059i −0.151120 + 0.261747i
\(93\) −6.44949 + 9.12096i −0.668781 + 0.945799i
\(94\) 0.224745 + 0.389270i 0.0231807 + 0.0401501i
\(95\) 0 0
\(96\) −1.00000 + 1.41421i −0.102062 + 0.144338i
\(97\) 6.50000 11.2583i 0.659975 1.14311i −0.320647 0.947199i \(-0.603900\pi\)
0.980622 0.195911i \(-0.0627665\pi\)
\(98\) 12.7980 1.29279
\(99\) −1.44949 4.09978i −0.145679 0.412043i
\(100\) 0 0
\(101\) 4.00000 6.92820i 0.398015 0.689382i −0.595466 0.803380i \(-0.703033\pi\)
0.993481 + 0.113998i \(0.0363659\pi\)
\(102\) −6.72474 0.619620i −0.665849 0.0613516i
\(103\) 5.12372 + 8.87455i 0.504856 + 0.874435i 0.999984 + 0.00561582i \(0.00178758\pi\)
−0.495129 + 0.868820i \(0.664879\pi\)
\(104\) −1.22474 2.12132i −0.120096 0.208013i
\(105\) 0 0
\(106\) 4.22474 7.31747i 0.410343 0.710736i
\(107\) −1.65153 −0.159660 −0.0798298 0.996809i \(-0.525438\pi\)
−0.0798298 + 0.996809i \(0.525438\pi\)
\(108\) −1.27526 5.03723i −0.122711 0.484708i
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) 5.79796 + 12.5851i 0.550318 + 1.19452i
\(112\) 2.22474 + 3.85337i 0.210219 + 0.364109i
\(113\) 2.44949 + 4.24264i 0.230429 + 0.399114i 0.957934 0.286988i \(-0.0926538\pi\)
−0.727506 + 0.686102i \(0.759321\pi\)
\(114\) −0.949490 0.0874863i −0.0889279 0.00819385i
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 7.22474 + 1.34278i 0.667928 + 0.124140i
\(118\) −11.2474 −1.03541
\(119\) −8.67423 + 15.0242i −0.795166 + 1.37727i
\(120\) 0 0
\(121\) 4.44949 + 7.70674i 0.404499 + 0.700613i
\(122\) 0.224745 + 0.389270i 0.0203474 + 0.0352428i
\(123\) 1.00000 1.41421i 0.0901670 0.127515i
\(124\) −3.22474 + 5.58542i −0.289591 + 0.501586i
\(125\) 0 0
\(126\) −13.1237 2.43916i −1.16915 0.217297i
\(127\) 2.89898 0.257243 0.128621 0.991694i \(-0.458945\pi\)
0.128621 + 0.991694i \(0.458945\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −12.8485 1.18386i −1.13124 0.104233i
\(130\) 0 0
\(131\) 2.44949 + 4.24264i 0.214013 + 0.370681i 0.952967 0.303075i \(-0.0980132\pi\)
−0.738954 + 0.673756i \(0.764680\pi\)
\(132\) −1.05051 2.28024i −0.0914352 0.198469i
\(133\) −1.22474 + 2.12132i −0.106199 + 0.183942i
\(134\) −9.44949 −0.816312
\(135\) 0 0
\(136\) −3.89898 −0.334335
\(137\) 1.50000 2.59808i 0.128154 0.221969i −0.794808 0.606861i \(-0.792428\pi\)
0.922961 + 0.384893i \(0.125762\pi\)
\(138\) −2.10102 4.56048i −0.178851 0.388214i
\(139\) 5.62372 + 9.74058i 0.476998 + 0.826185i 0.999653 0.0263597i \(-0.00839153\pi\)
−0.522654 + 0.852545i \(0.675058\pi\)
\(140\) 0 0
\(141\) −0.775255 0.0714323i −0.0652883 0.00601568i
\(142\) −1.22474 + 2.12132i −0.102778 + 0.178017i
\(143\) 3.55051 0.296909
\(144\) −1.00000 2.82843i −0.0833333 0.235702i
\(145\) 0 0
\(146\) −2.39898 + 4.15515i −0.198541 + 0.343883i
\(147\) −12.7980 + 18.0990i −1.05556 + 1.49278i
\(148\) 4.00000 + 6.92820i 0.328798 + 0.569495i
\(149\) −8.12372 14.0707i −0.665521 1.15272i −0.979144 0.203169i \(-0.934876\pi\)
0.313622 0.949548i \(-0.398457\pi\)
\(150\) 0 0
\(151\) 3.44949 5.97469i 0.280715 0.486213i −0.690846 0.723002i \(-0.742762\pi\)
0.971561 + 0.236789i \(0.0760949\pi\)
\(152\) −0.550510 −0.0446523
\(153\) 7.60102 8.89060i 0.614506 0.718763i
\(154\) −6.44949 −0.519715
\(155\) 0 0
\(156\) 4.22474 + 0.389270i 0.338250 + 0.0311665i
\(157\) 8.00000 + 13.8564i 0.638470 + 1.10586i 0.985769 + 0.168107i \(0.0537655\pi\)
−0.347299 + 0.937754i \(0.612901\pi\)
\(158\) 3.67423 + 6.36396i 0.292306 + 0.506290i
\(159\) 6.12372 + 13.2922i 0.485643 + 1.05414i
\(160\) 0 0
\(161\) −12.8990 −1.01658
\(162\) 8.39898 + 3.23375i 0.659886 + 0.254067i
\(163\) 0.898979 0.0704135 0.0352068 0.999380i \(-0.488791\pi\)
0.0352068 + 0.999380i \(0.488791\pi\)
\(164\) 0.500000 0.866025i 0.0390434 0.0676252i
\(165\) 0 0
\(166\) −2.00000 3.46410i −0.155230 0.268866i
\(167\) −12.1237 20.9989i −0.938162 1.62494i −0.768896 0.639374i \(-0.779194\pi\)
−0.169266 0.985570i \(-0.554140\pi\)
\(168\) −7.67423 0.707107i −0.592080 0.0545545i
\(169\) 3.50000 6.06218i 0.269231 0.466321i
\(170\) 0 0
\(171\) 1.07321 1.25529i 0.0820707 0.0959948i
\(172\) −7.44949 −0.568018
\(173\) 3.89898 6.75323i 0.296434 0.513439i −0.678884 0.734246i \(-0.737536\pi\)
0.975317 + 0.220807i \(0.0708692\pi\)
\(174\) 6.00000 8.48528i 0.454859 0.643268i
\(175\) 0 0
\(176\) −0.724745 1.25529i −0.0546297 0.0946214i
\(177\) 11.2474 15.9063i 0.845410 1.19559i
\(178\) −6.44949 + 11.1708i −0.483410 + 0.837290i
\(179\) 8.89898 0.665141 0.332570 0.943078i \(-0.392084\pi\)
0.332570 + 0.943078i \(0.392084\pi\)
\(180\) 0 0
\(181\) 10.4495 0.776704 0.388352 0.921511i \(-0.373044\pi\)
0.388352 + 0.921511i \(0.373044\pi\)
\(182\) 5.44949 9.43879i 0.403943 0.699650i
\(183\) −0.775255 0.0714323i −0.0573085 0.00528043i
\(184\) −1.44949 2.51059i −0.106858 0.185083i
\(185\) 0 0
\(186\) −4.67423 10.1459i −0.342732 0.743933i
\(187\) 2.82577 4.89437i 0.206640 0.357912i
\(188\) −0.449490 −0.0327824
\(189\) 16.5732 16.1206i 1.20552 1.17260i
\(190\) 0 0
\(191\) 3.12372 5.41045i 0.226025 0.391486i −0.730602 0.682804i \(-0.760760\pi\)
0.956626 + 0.291318i \(0.0940936\pi\)
\(192\) −0.724745 1.57313i −0.0523040 0.113531i
\(193\) −7.84847 13.5939i −0.564945 0.978514i −0.997055 0.0766927i \(-0.975564\pi\)
0.432110 0.901821i \(-0.357769\pi\)
\(194\) 6.50000 + 11.2583i 0.466673 + 0.808301i
\(195\) 0 0
\(196\) −6.39898 + 11.0834i −0.457070 + 0.791668i
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) 4.27526 + 0.794593i 0.303829 + 0.0564693i
\(199\) 20.4495 1.44963 0.724813 0.688946i \(-0.241926\pi\)
0.724813 + 0.688946i \(0.241926\pi\)
\(200\) 0 0
\(201\) 9.44949 13.3636i 0.666516 0.942595i
\(202\) 4.00000 + 6.92820i 0.281439 + 0.487467i
\(203\) −13.3485 23.1202i −0.936879 1.62272i
\(204\) 3.89898 5.51399i 0.272983 0.386056i
\(205\) 0 0
\(206\) −10.2474 −0.713974
\(207\) 8.55051 + 1.58919i 0.594302 + 0.110456i
\(208\) 2.44949 0.169842
\(209\) 0.398979 0.691053i 0.0275980 0.0478011i
\(210\) 0 0
\(211\) 7.89898 + 13.6814i 0.543788 + 0.941869i 0.998682 + 0.0513231i \(0.0163438\pi\)
−0.454894 + 0.890546i \(0.650323\pi\)
\(212\) 4.22474 + 7.31747i 0.290157 + 0.502566i
\(213\) −1.77526 3.85337i −0.121638 0.264029i
\(214\) 0.825765 1.43027i 0.0564482 0.0977711i
\(215\) 0 0
\(216\) 5.00000 + 1.41421i 0.340207 + 0.0962250i
\(217\) −28.6969 −1.94808
\(218\) 4.00000 6.92820i 0.270914 0.469237i
\(219\) −3.47730 7.54782i −0.234974 0.510035i
\(220\) 0 0
\(221\) 4.77526 + 8.27098i 0.321218 + 0.556367i
\(222\) −13.7980 1.27135i −0.926058 0.0853274i
\(223\) 9.44949 16.3670i 0.632785 1.09602i −0.354195 0.935171i \(-0.615245\pi\)
0.986980 0.160844i \(-0.0514215\pi\)
\(224\) −4.44949 −0.297294
\(225\) 0 0
\(226\) −4.89898 −0.325875
\(227\) 0.724745 1.25529i 0.0481030 0.0833169i −0.840971 0.541080i \(-0.818016\pi\)
0.889074 + 0.457763i \(0.151349\pi\)
\(228\) 0.550510 0.778539i 0.0364584 0.0515600i
\(229\) 6.77526 + 11.7351i 0.447721 + 0.775476i 0.998237 0.0593484i \(-0.0189023\pi\)
−0.550516 + 0.834825i \(0.685569\pi\)
\(230\) 0 0
\(231\) 6.44949 9.12096i 0.424345 0.600115i
\(232\) 3.00000 5.19615i 0.196960 0.341144i
\(233\) −15.6969 −1.02834 −0.514170 0.857688i \(-0.671900\pi\)
−0.514170 + 0.857688i \(0.671900\pi\)
\(234\) −4.77526 + 5.58542i −0.312168 + 0.365130i
\(235\) 0 0
\(236\) 5.62372 9.74058i 0.366073 0.634058i
\(237\) −12.6742 1.16781i −0.823280 0.0758573i
\(238\) −8.67423 15.0242i −0.562267 0.973875i
\(239\) −14.3485 24.8523i −0.928125 1.60756i −0.786456 0.617646i \(-0.788086\pi\)
−0.141669 0.989914i \(-0.545247\pi\)
\(240\) 0 0
\(241\) −0.500000 + 0.866025i −0.0322078 + 0.0557856i −0.881680 0.471848i \(-0.843587\pi\)
0.849472 + 0.527633i \(0.176921\pi\)
\(242\) −8.89898 −0.572048
\(243\) −12.9722 + 8.64420i −0.832167 + 0.554526i
\(244\) −0.449490 −0.0287756
\(245\) 0 0
\(246\) 0.724745 + 1.57313i 0.0462080 + 0.100299i
\(247\) 0.674235 + 1.16781i 0.0429005 + 0.0743059i
\(248\) −3.22474 5.58542i −0.204772 0.354675i
\(249\) 6.89898 + 0.635674i 0.437205 + 0.0402842i
\(250\) 0 0
\(251\) 11.4495 0.722685 0.361343 0.932433i \(-0.382318\pi\)
0.361343 + 0.932433i \(0.382318\pi\)
\(252\) 8.67423 10.1459i 0.546425 0.639132i
\(253\) 4.20204 0.264180
\(254\) −1.44949 + 2.51059i −0.0909491 + 0.157528i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 9.94949 + 17.2330i 0.620632 + 1.07497i 0.989368 + 0.145432i \(0.0464573\pi\)
−0.368736 + 0.929534i \(0.620209\pi\)
\(258\) 7.44949 10.5352i 0.463785 0.655891i
\(259\) −17.7980 + 30.8270i −1.10591 + 1.91549i
\(260\) 0 0
\(261\) 6.00000 + 16.9706i 0.371391 + 1.05045i
\(262\) −4.89898 −0.302660
\(263\) −3.77526 + 6.53893i −0.232792 + 0.403208i −0.958629 0.284659i \(-0.908120\pi\)
0.725837 + 0.687867i \(0.241453\pi\)
\(264\) 2.50000 + 0.230351i 0.153864 + 0.0141771i
\(265\) 0 0
\(266\) −1.22474 2.12132i −0.0750939 0.130066i
\(267\) −9.34847 20.2918i −0.572117 1.24184i
\(268\) 4.72474 8.18350i 0.288610 0.499887i
\(269\) −28.0454 −1.70996 −0.854979 0.518662i \(-0.826430\pi\)
−0.854979 + 0.518662i \(0.826430\pi\)
\(270\) 0 0
\(271\) 23.5959 1.43335 0.716675 0.697407i \(-0.245663\pi\)
0.716675 + 0.697407i \(0.245663\pi\)
\(272\) 1.94949 3.37662i 0.118205 0.204737i
\(273\) 7.89898 + 17.1455i 0.478068 + 1.03770i
\(274\) 1.50000 + 2.59808i 0.0906183 + 0.156956i
\(275\) 0 0
\(276\) 5.00000 + 0.460702i 0.300965 + 0.0277310i
\(277\) 4.79796 8.31031i 0.288281 0.499318i −0.685118 0.728432i \(-0.740249\pi\)
0.973400 + 0.229114i \(0.0735828\pi\)
\(278\) −11.2474 −0.674577
\(279\) 19.0227 + 3.53553i 1.13886 + 0.211667i
\(280\) 0 0
\(281\) −6.00000 + 10.3923i −0.357930 + 0.619953i −0.987615 0.156898i \(-0.949851\pi\)
0.629685 + 0.776851i \(0.283184\pi\)
\(282\) 0.449490 0.635674i 0.0267667 0.0378539i
\(283\) 2.00000 + 3.46410i 0.118888 + 0.205919i 0.919327 0.393494i \(-0.128734\pi\)
−0.800439 + 0.599414i \(0.795400\pi\)
\(284\) −1.22474 2.12132i −0.0726752 0.125877i
\(285\) 0 0
\(286\) −1.77526 + 3.07483i −0.104973 + 0.181819i
\(287\) 4.44949 0.262645
\(288\) 2.94949 + 0.548188i 0.173800 + 0.0323023i
\(289\) −1.79796 −0.105762
\(290\) 0 0
\(291\) −22.4217 2.06594i −1.31438 0.121108i
\(292\) −2.39898 4.15515i −0.140390 0.243162i
\(293\) 9.00000 + 15.5885i 0.525786 + 0.910687i 0.999549 + 0.0300351i \(0.00956192\pi\)
−0.473763 + 0.880652i \(0.657105\pi\)
\(294\) −9.27526 20.1329i −0.540944 1.17417i
\(295\) 0 0
\(296\) −8.00000 −0.464991
\(297\) −5.39898 + 5.25153i −0.313281 + 0.304725i
\(298\) 16.2474 0.941189
\(299\) −3.55051 + 6.14966i −0.205331 + 0.355644i
\(300\) 0 0
\(301\) −16.5732 28.7056i −0.955264 1.65457i
\(302\) 3.44949 + 5.97469i 0.198496 + 0.343805i
\(303\) −13.7980 1.27135i −0.792672 0.0730371i
\(304\) 0.275255 0.476756i 0.0157870 0.0273438i
\(305\) 0 0
\(306\) 3.89898 + 11.0280i 0.222890 + 0.630428i
\(307\) 23.9444 1.36658 0.683289 0.730148i \(-0.260549\pi\)
0.683289 + 0.730148i \(0.260549\pi\)
\(308\) 3.22474 5.58542i 0.183747 0.318259i
\(309\) 10.2474 14.4921i 0.582957 0.824426i
\(310\) 0 0
\(311\) −11.4495 19.8311i −0.649241 1.12452i −0.983304 0.181968i \(-0.941753\pi\)
0.334063 0.942551i \(-0.391580\pi\)
\(312\) −2.44949 + 3.46410i −0.138675 + 0.196116i
\(313\) 3.84847 6.66574i 0.217528 0.376770i −0.736523 0.676412i \(-0.763534\pi\)
0.954052 + 0.299642i \(0.0968672\pi\)
\(314\) −16.0000 −0.902932
\(315\) 0 0
\(316\) −7.34847 −0.413384
\(317\) −15.4722 + 26.7986i −0.869005 + 1.50516i −0.00599020 + 0.999982i \(0.501907\pi\)
−0.863015 + 0.505179i \(0.831427\pi\)
\(318\) −14.5732 1.34278i −0.817225 0.0752994i
\(319\) 4.34847 + 7.53177i 0.243468 + 0.421698i
\(320\) 0 0
\(321\) 1.19694 + 2.59808i 0.0668066 + 0.145010i
\(322\) 6.44949 11.1708i 0.359416 0.622527i
\(323\) 2.14643 0.119430
\(324\) −7.00000 + 5.65685i −0.388889 + 0.314270i
\(325\) 0 0
\(326\) −0.449490 + 0.778539i −0.0248949 + 0.0431193i
\(327\) 5.79796 + 12.5851i 0.320628 + 0.695955i
\(328\) 0.500000 + 0.866025i 0.0276079 + 0.0478183i
\(329\) −1.00000 1.73205i −0.0551318 0.0954911i
\(330\) 0 0
\(331\) −16.6969 + 28.9199i −0.917747 + 1.58958i −0.114917 + 0.993375i \(0.536660\pi\)
−0.802829 + 0.596209i \(0.796673\pi\)
\(332\) 4.00000 0.219529
\(333\) 15.5959 18.2419i 0.854651 0.999651i
\(334\) 24.2474 1.32676
\(335\) 0 0
\(336\) 4.44949 6.29253i 0.242740 0.343286i
\(337\) −10.2980 17.8366i −0.560966 0.971621i −0.997413 0.0718909i \(-0.977097\pi\)
0.436447 0.899730i \(-0.356237\pi\)
\(338\) 3.50000 + 6.06218i 0.190375 + 0.329739i
\(339\) 4.89898 6.92820i 0.266076 0.376288i
\(340\) 0 0
\(341\) 9.34847 0.506248
\(342\) 0.550510 + 1.55708i 0.0297682 + 0.0841971i
\(343\) −25.7980 −1.39296
\(344\) 3.72474 6.45145i 0.200825 0.347839i
\(345\) 0 0
\(346\) 3.89898 + 6.75323i 0.209610 + 0.363056i
\(347\) −7.62372 13.2047i −0.409263 0.708864i 0.585544 0.810640i \(-0.300881\pi\)
−0.994807 + 0.101776i \(0.967547\pi\)
\(348\) 4.34847 + 9.43879i 0.233102 + 0.505972i
\(349\) −5.79796 + 10.0424i −0.310358 + 0.537555i −0.978440 0.206532i \(-0.933782\pi\)
0.668082 + 0.744088i \(0.267115\pi\)
\(350\) 0 0
\(351\) −3.12372 12.3387i −0.166732 0.658589i
\(352\) 1.44949 0.0772581
\(353\) −3.29796 + 5.71223i −0.175533 + 0.304031i −0.940345 0.340221i \(-0.889498\pi\)
0.764813 + 0.644253i \(0.222831\pi\)
\(354\) 8.15153 + 17.6937i 0.433249 + 0.940411i
\(355\) 0 0
\(356\) −6.44949 11.1708i −0.341822 0.592054i
\(357\) 29.9217 + 2.75699i 1.58362 + 0.145916i
\(358\) −4.44949 + 7.70674i −0.235163 + 0.407314i
\(359\) 8.44949 0.445947 0.222974 0.974825i \(-0.428424\pi\)
0.222974 + 0.974825i \(0.428424\pi\)
\(360\) 0 0
\(361\) −18.6969 −0.984049
\(362\) −5.22474 + 9.04952i −0.274606 + 0.475632i
\(363\) 8.89898 12.5851i 0.467075 0.660544i
\(364\) 5.44949 + 9.43879i 0.285631 + 0.494727i
\(365\) 0 0
\(366\) 0.449490 0.635674i 0.0234952 0.0332272i
\(367\) −5.79796 + 10.0424i −0.302651 + 0.524207i −0.976736 0.214447i \(-0.931205\pi\)
0.674085 + 0.738654i \(0.264538\pi\)
\(368\) 2.89898 0.151120
\(369\) −2.94949 0.548188i −0.153544 0.0285375i
\(370\) 0 0
\(371\) −18.7980 + 32.5590i −0.975941 + 1.69038i
\(372\) 11.1237 + 1.02494i 0.576738 + 0.0531409i
\(373\) 12.7980 + 22.1667i 0.662653 + 1.14775i 0.979916 + 0.199411i \(0.0639030\pi\)
−0.317263 + 0.948338i \(0.602764\pi\)
\(374\) 2.82577 + 4.89437i 0.146117 + 0.253082i
\(375\) 0 0
\(376\) 0.224745 0.389270i 0.0115903 0.0200750i
\(377\) −14.6969 −0.756931
\(378\) 5.67423 + 22.4131i 0.291851 + 1.15281i
\(379\) −30.1464 −1.54852 −0.774259 0.632869i \(-0.781877\pi\)
−0.774259 + 0.632869i \(0.781877\pi\)
\(380\) 0 0
\(381\) −2.10102 4.56048i −0.107639 0.233640i
\(382\) 3.12372 + 5.41045i 0.159824 + 0.276823i
\(383\) 0.898979 + 1.55708i 0.0459357 + 0.0795630i 0.888079 0.459691i \(-0.152040\pi\)
−0.842143 + 0.539254i \(0.818706\pi\)
\(384\) 1.72474 + 0.158919i 0.0880155 + 0.00810978i
\(385\) 0 0
\(386\) 15.6969 0.798953
\(387\) 7.44949 + 21.0703i 0.378679 + 1.07107i
\(388\) −13.0000 −0.659975
\(389\) −11.2247 + 19.4418i −0.569117 + 0.985740i 0.427536 + 0.903998i \(0.359382\pi\)
−0.996654 + 0.0817417i \(0.973952\pi\)
\(390\) 0 0
\(391\) 5.65153 + 9.78874i 0.285810 + 0.495038i
\(392\) −6.39898 11.0834i −0.323197 0.559794i
\(393\) 4.89898 6.92820i 0.247121 0.349482i
\(394\) −4.00000 + 6.92820i −0.201517 + 0.349038i
\(395\) 0 0
\(396\) −2.82577 + 3.30518i −0.142000 + 0.166092i
\(397\) −17.7980 −0.893254 −0.446627 0.894720i \(-0.647375\pi\)
−0.446627 + 0.894720i \(0.647375\pi\)
\(398\) −10.2247 + 17.7098i −0.512520 + 0.887711i
\(399\) 4.22474 + 0.389270i 0.211502 + 0.0194879i
\(400\) 0 0
\(401\) −14.3990 24.9398i −0.719051 1.24543i −0.961376 0.275237i \(-0.911244\pi\)
0.242326 0.970195i \(-0.422090\pi\)
\(402\) 6.84847 + 14.8653i 0.341571 + 0.741414i
\(403\) −7.89898 + 13.6814i −0.393476 + 0.681521i
\(404\) −8.00000 −0.398015
\(405\) 0 0
\(406\) 26.6969 1.32495
\(407\) 5.79796 10.0424i 0.287394 0.497781i
\(408\) 2.82577 + 6.13361i 0.139896 + 0.303659i
\(409\) −3.05051 5.28364i −0.150838 0.261259i 0.780698 0.624909i \(-0.214864\pi\)
−0.931536 + 0.363650i \(0.881531\pi\)
\(410\) 0 0
\(411\) −5.17423 0.476756i −0.255226 0.0235166i
\(412\) 5.12372 8.87455i 0.252428 0.437218i
\(413\) 50.0454 2.46257
\(414\) −5.65153 + 6.61037i −0.277758 + 0.324882i
\(415\) 0 0
\(416\) −1.22474 + 2.12132i −0.0600481 + 0.104006i
\(417\) 11.2474 15.9063i 0.550790 0.778935i
\(418\) 0.398979 + 0.691053i 0.0195147 + 0.0338005i
\(419\) −0.449490 0.778539i −0.0219590 0.0380341i 0.854837 0.518896i \(-0.173657\pi\)
−0.876796 + 0.480862i \(0.840324\pi\)
\(420\) 0 0
\(421\) 8.22474 14.2457i 0.400850 0.694292i −0.592979 0.805218i \(-0.702048\pi\)
0.993829 + 0.110926i \(0.0353817\pi\)
\(422\) −15.7980 −0.769033
\(423\) 0.449490 + 1.27135i 0.0218549 + 0.0618151i
\(424\) −8.44949 −0.410343
\(425\) 0 0
\(426\) 4.22474 + 0.389270i 0.204690 + 0.0188602i
\(427\) −1.00000 1.73205i −0.0483934 0.0838198i
\(428\) 0.825765 + 1.43027i 0.0399149 + 0.0691346i
\(429\) −2.57321 5.58542i −0.124236 0.269667i
\(430\) 0 0
\(431\) 13.7526 0.662437 0.331219 0.943554i \(-0.392540\pi\)
0.331219 + 0.943554i \(0.392540\pi\)
\(432\) −3.72474 + 3.62302i −0.179207 + 0.174313i
\(433\) −23.0000 −1.10531 −0.552655 0.833410i \(-0.686385\pi\)
−0.552655 + 0.833410i \(0.686385\pi\)
\(434\) 14.3485 24.8523i 0.688749 1.19295i
\(435\) 0 0
\(436\) 4.00000 + 6.92820i 0.191565 + 0.331801i
\(437\) 0.797959 + 1.38211i 0.0381716 + 0.0661151i
\(438\) 8.27526 + 0.762485i 0.395407 + 0.0364329i
\(439\) 11.0227 19.0919i 0.526085 0.911206i −0.473453 0.880819i \(-0.656993\pi\)
0.999538 0.0303869i \(-0.00967395\pi\)
\(440\) 0 0
\(441\) 37.7474 + 7.01569i 1.79750 + 0.334080i
\(442\) −9.55051 −0.454271
\(443\) −1.62372 + 2.81237i −0.0771455 + 0.133620i −0.902017 0.431700i \(-0.857914\pi\)
0.824872 + 0.565320i \(0.191247\pi\)
\(444\) 8.00000 11.3137i 0.379663 0.536925i
\(445\) 0 0
\(446\) 9.44949 + 16.3670i 0.447446 + 0.775000i
\(447\) −16.2474 + 22.9774i −0.768478 + 1.08679i
\(448\) 2.22474 3.85337i 0.105109 0.182055i
\(449\) −0.797959 −0.0376580 −0.0188290 0.999823i \(-0.505994\pi\)
−0.0188290 + 0.999823i \(0.505994\pi\)
\(450\) 0 0
\(451\) −1.44949 −0.0682538
\(452\) 2.44949 4.24264i 0.115214 0.199557i
\(453\) −11.8990 1.09638i −0.559063 0.0515123i
\(454\) 0.724745 + 1.25529i 0.0340140 + 0.0589139i
\(455\) 0 0
\(456\) 0.398979 + 0.866025i 0.0186839 + 0.0405554i
\(457\) −4.05051 + 7.01569i −0.189475 + 0.328180i −0.945075 0.326853i \(-0.894012\pi\)
0.755600 + 0.655033i \(0.227345\pi\)
\(458\) −13.5505 −0.633174
\(459\) −19.4949 5.51399i −0.909944 0.257371i
\(460\) 0 0
\(461\) −1.22474 + 2.12132i −0.0570421 + 0.0987997i −0.893136 0.449786i \(-0.851500\pi\)
0.836094 + 0.548586i \(0.184834\pi\)
\(462\) 4.67423 + 10.1459i 0.217465 + 0.472030i
\(463\) 12.0000 + 20.7846i 0.557687 + 0.965943i 0.997689 + 0.0679458i \(0.0216445\pi\)
−0.440002 + 0.897997i \(0.645022\pi\)
\(464\) 3.00000 + 5.19615i 0.139272 + 0.241225i
\(465\) 0 0
\(466\) 7.84847 13.5939i 0.363573 0.629727i
\(467\) −4.34847 −0.201223 −0.100612 0.994926i \(-0.532080\pi\)
−0.100612 + 0.994926i \(0.532080\pi\)
\(468\) −2.44949 6.92820i −0.113228 0.320256i
\(469\) 42.0454 1.94148
\(470\) 0 0
\(471\) 16.0000 22.6274i 0.737241 1.04262i
\(472\) 5.62372 + 9.74058i 0.258853 + 0.448346i
\(473\) 5.39898 + 9.35131i 0.248245 + 0.429974i
\(474\) 7.34847 10.3923i 0.337526 0.477334i
\(475\) 0 0
\(476\) 17.3485 0.795166
\(477\) 16.4722 19.2669i 0.754210 0.882169i
\(478\) 28.6969 1.31257
\(479\) 6.34847 10.9959i 0.290069 0.502414i −0.683757 0.729710i \(-0.739655\pi\)
0.973826 + 0.227296i \(0.0729884\pi\)
\(480\) 0 0
\(481\) 9.79796 + 16.9706i 0.446748 + 0.773791i
\(482\) −0.500000 0.866025i −0.0227744 0.0394464i
\(483\) 9.34847 + 20.2918i 0.425370 + 0.923309i
\(484\) 4.44949 7.70674i 0.202250 0.350306i
\(485\) 0 0
\(486\) −1.00000 15.5563i −0.0453609 0.705650i
\(487\) 34.8990 1.58142 0.790712 0.612188i \(-0.209711\pi\)
0.790712 + 0.612188i \(0.209711\pi\)
\(488\) 0.224745 0.389270i 0.0101737 0.0176214i
\(489\) −0.651531 1.41421i −0.0294632 0.0639529i
\(490\) 0 0
\(491\) −11.7247 20.3079i −0.529130 0.916481i −0.999423 0.0339700i \(-0.989185\pi\)
0.470293 0.882511i \(-0.344148\pi\)
\(492\) −1.72474 0.158919i −0.0777575 0.00716460i
\(493\) −11.6969 + 20.2597i −0.526804 + 0.912451i
\(494\) −1.34847 −0.0606705
\(495\) 0 0
\(496\) 6.44949 0.289591
\(497\) 5.44949 9.43879i 0.244443 0.423388i
\(498\) −4.00000 + 5.65685i −0.179244 + 0.253490i
\(499\) −1.62372 2.81237i −0.0726879 0.125899i 0.827391 0.561627i \(-0.189824\pi\)
−0.900078 + 0.435728i \(0.856491\pi\)
\(500\) 0 0
\(501\) −24.2474 + 34.2911i −1.08330 + 1.53201i
\(502\) −5.72474 + 9.91555i −0.255508 + 0.442553i
\(503\) −9.55051 −0.425836 −0.212918 0.977070i \(-0.568297\pi\)
−0.212918 + 0.977070i \(0.568297\pi\)
\(504\) 4.44949 + 12.5851i 0.198196 + 0.560583i
\(505\) 0 0
\(506\) −2.10102 + 3.63907i −0.0934018 + 0.161777i
\(507\) −12.0732 1.11243i −0.536190 0.0494048i
\(508\) −1.44949 2.51059i −0.0643107 0.111389i
\(509\) 3.79796 + 6.57826i 0.168342 + 0.291576i 0.937837 0.347076i \(-0.112826\pi\)
−0.769495 + 0.638652i \(0.779492\pi\)
\(510\) 0 0
\(511\) 10.6742 18.4883i 0.472200 0.817875i
\(512\) 1.00000 0.0441942
\(513\) −2.75255 0.778539i −0.121528 0.0343733i
\(514\) −19.8990 −0.877706
\(515\) 0 0
\(516\) 5.39898 + 11.7190i 0.237677 + 0.515902i
\(517\) 0.325765 + 0.564242i 0.0143271 + 0.0248153i
\(518\) −17.7980 30.8270i −0.781997 1.35446i
\(519\) −13.4495 1.23924i −0.590367 0.0543966i
\(520\) 0 0
\(521\) −7.69694 −0.337209 −0.168604 0.985684i \(-0.553926\pi\)
−0.168604 + 0.985684i \(0.553926\pi\)
\(522\) −17.6969 3.28913i −0.774574 0.143961i
\(523\) 29.7980 1.30297 0.651487 0.758660i \(-0.274146\pi\)
0.651487 + 0.758660i \(0.274146\pi\)
\(524\) 2.44949 4.24264i 0.107006 0.185341i
\(525\) 0 0
\(526\) −3.77526 6.53893i −0.164609 0.285111i
\(527\) 12.5732 + 21.7774i 0.547698 + 0.948640i
\(528\) −1.44949 + 2.04989i −0.0630809 + 0.0892099i
\(529\) 7.29796 12.6404i 0.317303 0.549584i
\(530\) 0 0
\(531\) −33.1742 6.16572i −1.43964 0.267569i
\(532\) 2.44949 0.106199
\(533\) 1.22474 2.12132i 0.0530496 0.0918846i
\(534\) 22.2474 + 2.04989i 0.962741 + 0.0887073i
\(535\) 0 0
\(536\) 4.72474 + 8.18350i 0.204078 + 0.353473i
\(537\) −6.44949 13.9993i −0.278316 0.604113i
\(538\) 14.0227 24.2880i 0.604562 1.04713i
\(539\) 18.5505 0.799027
\(540\) 0 0
\(541\) −39.5959 −1.70236 −0.851181 0.524873i \(-0.824113\pi\)
−0.851181 + 0.524873i \(0.824113\pi\)
\(542\) −11.7980 + 20.4347i −0.506766 + 0.877744i
\(543\) −7.57321 16.4384i −0.324998 0.705440i
\(544\) 1.94949 + 3.37662i 0.0835837 + 0.144771i
\(545\) 0 0
\(546\) −18.7980 1.73205i −0.804478 0.0741249i
\(547\) −3.62372 + 6.27647i −0.154939 + 0.268363i −0.933037 0.359781i \(-0.882852\pi\)
0.778098 + 0.628143i \(0.216185\pi\)
\(548\) −3.00000 −0.128154
\(549\) 0.449490 + 1.27135i 0.0191838 + 0.0542599i
\(550\) 0 0
\(551\) −1.65153 + 2.86054i −0.0703576 + 0.121863i
\(552\) −2.89898 + 4.09978i −0.123389 + 0.174498i
\(553\) −16.3485 28.3164i −0.695208 1.20413i
\(554\) 4.79796 + 8.31031i 0.203846 + 0.353071i
\(555\) 0 0
\(556\) 5.62372 9.74058i 0.238499 0.413092i
\(557\) 38.9444 1.65013 0.825063 0.565040i \(-0.191139\pi\)
0.825063 + 0.565040i \(0.191139\pi\)
\(558\) −12.5732 + 14.7064i −0.532267 + 0.622571i
\(559\) −18.2474 −0.771785
\(560\) 0 0
\(561\) −9.74745 0.898133i −0.411538 0.0379192i
\(562\) −6.00000 10.3923i −0.253095 0.438373i
\(563\) 18.0732 + 31.3037i 0.761695 + 1.31929i 0.941976 + 0.335680i \(0.108966\pi\)
−0.180281 + 0.983615i \(0.557701\pi\)
\(564\) 0.325765 + 0.707107i 0.0137172 + 0.0297746i
\(565\) 0 0
\(566\) −4.00000 −0.168133
\(567\) −37.3712 14.3885i −1.56944 0.604262i
\(568\) 2.44949 0.102778
\(569\) −8.74745 + 15.1510i −0.366712 + 0.635164i −0.989049 0.147585i \(-0.952850\pi\)
0.622337 + 0.782749i \(0.286183\pi\)
\(570\) 0 0
\(571\) −6.37628 11.0440i −0.266839 0.462178i 0.701205 0.712960i \(-0.252646\pi\)
−0.968044 + 0.250781i \(0.919312\pi\)
\(572\) −1.77526 3.07483i −0.0742271 0.128565i
\(573\) −10.7753 0.992836i −0.450143 0.0414763i
\(574\) −2.22474 + 3.85337i −0.0928591 + 0.160837i
\(575\) 0 0
\(576\) −1.94949 + 2.28024i −0.0812287 + 0.0950100i
\(577\) −13.6969 −0.570211 −0.285106 0.958496i \(-0.592029\pi\)
−0.285106 + 0.958496i \(0.592029\pi\)
\(578\) 0.898979 1.55708i 0.0373926 0.0647659i
\(579\) −15.6969 + 22.1988i −0.652343 + 0.922552i
\(580\) 0 0
\(581\) 8.89898 + 15.4135i 0.369192 + 0.639459i
\(582\) 13.0000 18.3848i 0.538867 0.762073i
\(583\) 6.12372 10.6066i 0.253619 0.439281i
\(584\) 4.79796 0.198541
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 14.9722 25.9326i 0.617969 1.07035i −0.371887 0.928278i \(-0.621289\pi\)
0.989856 0.142075i \(-0.0453774\pi\)
\(588\) 22.0732 + 2.03383i 0.910284 + 0.0838739i
\(589\) 1.77526 + 3.07483i 0.0731481 + 0.126696i
\(590\) 0 0
\(591\) −5.79796 12.5851i −0.238496 0.517680i
\(592\) 4.00000 6.92820i 0.164399 0.284747i
\(593\) −41.3939 −1.69984 −0.849921 0.526910i \(-0.823351\pi\)
−0.849921 + 0.526910i \(0.823351\pi\)
\(594\) −1.84847 7.30142i −0.0758436 0.299581i
\(595\) 0 0
\(596\) −8.12372 + 14.0707i −0.332761 + 0.576358i
\(597\) −14.8207 32.1698i −0.606569 1.31662i
\(598\) −3.55051 6.14966i −0.145191 0.251478i
\(599\) −7.10102 12.2993i −0.290140 0.502537i 0.683703 0.729761i \(-0.260368\pi\)
−0.973843 + 0.227224i \(0.927035\pi\)
\(600\) 0 0
\(601\) −9.60102 + 16.6295i −0.391634 + 0.678330i −0.992665 0.120896i \(-0.961423\pi\)
0.601031 + 0.799225i \(0.294757\pi\)
\(602\) 33.1464 1.35095
\(603\) −27.8712 5.18010i −1.13500 0.210950i
\(604\) −6.89898 −0.280715
\(605\) 0 0
\(606\) 8.00000 11.3137i 0.324978 0.459588i
\(607\) 5.79796 + 10.0424i 0.235332 + 0.407607i 0.959369 0.282154i \(-0.0910490\pi\)
−0.724037 + 0.689761i \(0.757716\pi\)
\(608\) 0.275255 + 0.476756i 0.0111631 + 0.0193350i
\(609\) −26.6969 + 37.7552i −1.08181 + 1.52992i
\(610\) 0 0
\(611\) −1.10102 −0.0445425
\(612\) −11.5000 2.13737i −0.464860 0.0863982i
\(613\) −16.9444 −0.684377 −0.342189 0.939631i \(-0.611168\pi\)
−0.342189 + 0.939631i \(0.611168\pi\)
\(614\) −11.9722 + 20.7364i −0.483158 + 0.836855i
\(615\) 0 0
\(616\) 3.22474 + 5.58542i 0.129929 + 0.225043i
\(617\) 18.8485 + 32.6465i 0.758811 + 1.31430i 0.943457 + 0.331494i \(0.107553\pi\)
−0.184647 + 0.982805i \(0.559114\pi\)
\(618\) 7.42679 + 16.1206i 0.298749 + 0.648465i
\(619\) 16.7247 28.9681i 0.672224 1.16433i −0.305048 0.952337i \(-0.598672\pi\)
0.977272 0.211989i \(-0.0679943\pi\)
\(620\) 0 0
\(621\) −3.69694 14.6028i −0.148353 0.585992i
\(622\) 22.8990 0.918165
\(623\) 28.6969 49.7046i 1.14972 1.99137i
\(624\) −1.77526 3.85337i −0.0710671 0.154258i
\(625\) 0 0
\(626\) 3.84847 + 6.66574i 0.153816 + 0.266417i
\(627\) −1.37628 0.126811i −0.0549632 0.00506433i
\(628\) 8.00000 13.8564i 0.319235 0.552931i
\(629\) 31.1918 1.24370
\(630\) 0 0
\(631\) 3.34847 0.133300 0.0666502 0.997776i \(-0.478769\pi\)
0.0666502 + 0.997776i \(0.478769\pi\)
\(632\) 3.67423 6.36396i 0.146153 0.253145i
\(633\) 15.7980 22.3417i 0.627912 0.888002i
\(634\) −15.4722 26.7986i −0.614479 1.06431i
\(635\) 0 0
\(636\) 8.44949 11.9494i 0.335044 0.473824i
\(637\) −15.6742 + 27.1486i −0.621036 + 1.07567i
\(638\) −8.69694 −0.344315
\(639\) −4.77526 + 5.58542i −0.188906 + 0.220956i
\(640\) 0 0
\(641\) 18.5000 32.0429i 0.730706 1.26562i −0.225876 0.974156i \(-0.572524\pi\)
0.956582 0.291464i \(-0.0941423\pi\)
\(642\) −2.84847 0.262459i −0.112420 0.0103584i
\(643\) −4.62372 8.00853i −0.182342 0.315825i 0.760336 0.649530i \(-0.225034\pi\)
−0.942678 + 0.333705i \(0.891701\pi\)
\(644\) 6.44949 + 11.1708i 0.254145 + 0.440193i
\(645\) 0 0
\(646\) −1.07321 + 1.85886i −0.0422250 + 0.0731359i
\(647\) −25.1010 −0.986823 −0.493411 0.869796i \(-0.664250\pi\)
−0.493411 + 0.869796i \(0.664250\pi\)
\(648\) −1.39898 8.89060i −0.0549571 0.349256i
\(649\) −16.3031 −0.639951
\(650\) 0 0
\(651\) 20.7980 + 45.1441i 0.815136 + 1.76934i
\(652\) −0.449490 0.778539i −0.0176034 0.0304899i
\(653\) −17.0000 29.4449i −0.665261 1.15227i −0.979214 0.202828i \(-0.934987\pi\)
0.313953 0.949439i \(-0.398347\pi\)
\(654\) −13.7980 1.27135i −0.539543 0.0497137i
\(655\) 0 0
\(656\) −1.00000 −0.0390434
\(657\) −9.35357 + 10.9405i −0.364918 + 0.426829i
\(658\) 2.00000 0.0779681
\(659\) 8.10102 14.0314i 0.315571 0.546585i −0.663988 0.747743i \(-0.731137\pi\)
0.979559 + 0.201159i \(0.0644706\pi\)
\(660\) 0 0
\(661\) 6.89898 + 11.9494i 0.268339 + 0.464777i 0.968433 0.249274i \(-0.0801919\pi\)
−0.700094 + 0.714051i \(0.746859\pi\)
\(662\) −16.6969 28.9199i −0.648945 1.12401i
\(663\) 9.55051 13.5065i 0.370911 0.524547i
\(664\) −2.00000 + 3.46410i −0.0776151 + 0.134433i
\(665\) 0 0
\(666\) 8.00000 + 22.6274i 0.309994 + 0.876795i
\(667\) −17.3939 −0.673494
\(668\) −12.1237 + 20.9989i −0.469081 + 0.812472i
\(669\) −32.5959 3.00340i −1.26023 0.116118i
\(670\) 0 0
\(671\) 0.325765 + 0.564242i 0.0125760 + 0.0217823i
\(672\) 3.22474 + 6.99964i 0.124397 + 0.270017i
\(673\) −9.55051 + 16.5420i −0.368145 + 0.637646i −0.989276 0.146061i \(-0.953340\pi\)
0.621130 + 0.783707i \(0.286674\pi\)
\(674\) 20.5959 0.793325
\(675\) 0 0
\(676\) −7.00000 −0.269231
\(677\) 0.202041 0.349945i 0.00776507 0.0134495i −0.862117 0.506710i \(-0.830862\pi\)
0.869882 + 0.493260i \(0.164195\pi\)
\(678\) 3.55051 + 7.70674i 0.136357 + 0.295976i
\(679\) −28.9217 50.0938i −1.10991 1.92242i
\(680\) 0 0
\(681\) −2.50000 0.230351i −0.0958002 0.00882707i
\(682\) −4.67423 + 8.09601i −0.178986 + 0.310012i
\(683\) 40.5505 1.55162 0.775811 0.630965i \(-0.217341\pi\)
0.775811 + 0.630965i \(0.217341\pi\)
\(684\) −1.62372 0.301783i −0.0620847 0.0115390i
\(685\) 0 0
\(686\) 12.8990 22.3417i 0.492485 0.853010i
\(687\) 13.5505 19.1633i 0.516984 0.731126i
\(688\) 3.72474 + 6.45145i 0.142005 + 0.245959i
\(689\) 10.3485 + 17.9241i 0.394245 + 0.682853i
\(690\) 0 0
\(691\) 10.7980 18.7026i 0.410774 0.711481i −0.584201 0.811609i \(-0.698592\pi\)
0.994975 + 0.100128i \(0.0319253\pi\)
\(692\) −7.79796 −0.296434
\(693\) −19.0227 3.53553i −0.722613 0.134304i
\(694\) 15.2474 0.578785
\(695\) 0 0
\(696\) −10.3485 0.953512i −0.392258 0.0361428i
\(697\) −1.94949 3.37662i −0.0738422 0.127898i
\(698\) −5.79796 10.0424i −0.219456 0.380109i
\(699\) 11.3763 + 24.6934i 0.430290 + 0.933989i
\(700\) 0 0
\(701\) 19.3939 0.732497 0.366248 0.930517i \(-0.380642\pi\)
0.366248 + 0.930517i \(0.380642\pi\)
\(702\) 12.2474 + 3.46410i 0.462250 + 0.130744i
\(703\) 4.40408 0.166103
\(704\) −0.724745 + 1.25529i −0.0273149 + 0.0473107i
\(705\) 0 0
\(706\) −3.29796 5.71223i −0.124120 0.214983i
\(707\) −17.7980 30.8270i −0.669361 1.15937i
\(708\) −19.3990 1.78743i −0.729058 0.0671757i
\(709\) −11.3258 + 19.6168i −0.425348 + 0.736724i −0.996453 0.0841527i \(-0.973182\pi\)
0.571105 + 0.820877i \(0.306515\pi\)
\(710\) 0 0
\(711\) 7.34847 + 20.7846i 0.275589 + 0.779484i
\(712\) 12.8990 0.483410
\(713\) −9.34847 + 16.1920i −0.350103 + 0.606396i
\(714\) −17.3485 + 24.5344i −0.649250 + 0.918178i
\(715\) 0 0
\(716\) −4.44949 7.70674i −0.166285 0.288014i
\(717\) −28.6969 + 40.5836i −1.07171 + 1.51562i
\(718\) −4.22474 + 7.31747i −0.157666 + 0.273086i
\(719\) 22.2020 0.827996 0.413998 0.910278i \(-0.364132\pi\)
0.413998 + 0.910278i \(0.364132\pi\)
\(720\) 0 0
\(721\) 45.5959 1.69808
\(722\) 9.34847 16.1920i 0.347914 0.602605i
\(723\) 1.72474 + 0.158919i 0.0641440 + 0.00591025i
\(724\) −5.22474 9.04952i −0.194176 0.336323i
\(725\) 0 0
\(726\) 6.44949 + 13.9993i 0.239363 + 0.519562i
\(727\) −5.32577 + 9.22450i −0.197522 + 0.342118i −0.947724 0.319090i \(-0.896623\pi\)
0.750203 + 0.661208i \(0.229956\pi\)
\(728\) −10.8990 −0.403943
\(729\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(730\) 0 0
\(731\) −14.5227 + 25.1541i −0.537142 + 0.930357i
\(732\) 0.325765 + 0.707107i 0.0120406 + 0.0261354i
\(733\) −6.57321 11.3851i −0.242787 0.420520i 0.718720 0.695300i \(-0.244728\pi\)
−0.961507 + 0.274780i \(0.911395\pi\)
\(734\) −5.79796 10.0424i −0.214007 0.370670i
\(735\) 0 0
\(736\) −1.44949 + 2.51059i −0.0534289 + 0.0925416i
\(737\) −13.6969 −0.504533
\(738\) 1.94949 2.28024i 0.0717617 0.0839368i
\(739\) 7.24745 0.266602 0.133301 0.991076i \(-0.457442\pi\)
0.133301 + 0.991076i \(0.457442\pi\)
\(740\) 0 0
\(741\) 1.34847 1.90702i 0.0495373 0.0700563i
\(742\) −18.7980 32.5590i −0.690095 1.19528i
\(743\) −6.55051 11.3458i −0.240315 0.416238i 0.720489 0.693466i \(-0.243917\pi\)
−0.960804 + 0.277229i \(0.910584\pi\)
\(744\) −6.44949 + 9.12096i −0.236450 + 0.334390i
\(745\) 0 0
\(746\) −25.5959 −0.937133
\(747\) −4.00000 11.3137i −0.146352 0.413947i
\(748\) −5.65153 −0.206640
\(749\) −3.67423 + 6.36396i −0.134254 + 0.232534i
\(750\) 0 0
\(751\) −22.4949 38.9623i −0.820850 1.42175i −0.905050 0.425306i \(-0.860167\pi\)
0.0841993 0.996449i \(-0.473167\pi\)
\(752\) 0.224745 + 0.389270i 0.00819560 + 0.0141952i
\(753\) −8.29796 18.0116i −0.302394 0.656378i
\(754\) 7.34847 12.7279i 0.267615 0.463524i
\(755\) 0 0
\(756\) −22.2474 6.29253i −0.809132 0.228857i
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 15.0732 26.1076i 0.547484 0.948270i
\(759\) −3.04541 6.61037i −0.110541 0.239941i
\(760\) 0 0
\(761\) 24.2474 + 41.9978i 0.878969 + 1.52242i 0.852473 + 0.522771i \(0.175102\pi\)
0.0264959 + 0.999649i \(0.491565\pi\)
\(762\) 5.00000 + 0.460702i 0.181131 + 0.0166895i
\(763\) −17.7980 + 30.8270i −0.644329 + 1.11601i
\(764\) −6.24745 −0.226025
\(765\) 0 0
\(766\) −1.79796 −0.0649629
\(767\) 13.7753 23.8594i 0.497396 0.861515i
\(768\) −1.00000 + 1.41421i −0.0360844 + 0.0510310i
\(769\) 12.2474 + 21.2132i 0.441654 + 0.764968i 0.997812 0.0661088i \(-0.0210584\pi\)
−0.556158 + 0.831076i \(0.687725\pi\)
\(770\) 0 0
\(771\) 19.8990 28.1414i 0.716644 1.01349i
\(772\) −7.84847 + 13.5939i −0.282473 + 0.489257i
\(773\) 23.3939 0.841419 0.420710 0.907195i \(-0.361781\pi\)
0.420710 + 0.907195i \(0.361781\pi\)
\(774\) −21.9722 4.08372i −0.789774 0.146786i
\(775\) 0 0
\(776\) 6.50000 11.2583i 0.233336 0.404151i
\(777\) 61.3939 + 5.65685i 2.20249 + 0.202939i
\(778\) −11.2247 19.4418i −0.402427 0.697023i
\(779\) −0.275255 0.476756i −0.00986204 0.0170816i
\(780\) 0 0
\(781\) −1.77526 + 3.07483i −0.0635236 + 0.110026i
\(782\) −11.3031 −0.404197
\(783\) 22.3485 21.7381i 0.798669 0.776857i
\(784\) 12.7980 0.457070
\(785\) 0 0
\(786\) 3.55051 + 7.70674i 0.126643 + 0.274890i
\(787\) 3.69694 + 6.40329i 0.131782 + 0.228252i 0.924363 0.381513i \(-0.124597\pi\)
−0.792582 + 0.609766i \(0.791264\pi\)
\(788\) −4.00000 6.92820i −0.142494 0.246807i
\(789\) 13.0227 + 1.19992i 0.463621 + 0.0427182i
\(790\) 0 0
\(791\) 21.7980 0.775046
\(792\) −1.44949 4.09978i −0.0515054 0.145679i
\(793\) −1.10102 −0.0390984
\(794\) 8.89898 15.4135i 0.315813 0.547004i
\(795\) 0 0
\(796\) −10.2247 17.7098i −0.362406 0.627706i
\(797\) −17.7980 30.8270i −0.630436 1.09195i −0.987463 0.157853i \(-0.949543\pi\)
0.357027 0.934094i \(-0.383791\pi\)
\(798\) −2.44949 + 3.46410i −0.0867110 + 0.122628i
\(799\) −0.876276 + 1.51775i −0.0310004 + 0.0536943i
\(800\) 0 0
\(801\) −25.1464 + 29.4128i −0.888505 + 1.03925i
\(802\) 28.7980 1.01689
\(803\) −3.47730 + 6.02285i −0.122711 + 0.212542i
\(804\) −16.2980 1.50170i −0.574785 0.0529609i
\(805\) 0 0
\(806\) −7.89898 13.6814i −0.278230 0.481908i
\(807\) 20.3258 + 44.1191i 0.715501 + 1.55307i
\(808\) 4.00000 6.92820i 0.140720 0.243733i
\(809\) 47.0908 1.65562 0.827812 0.561005i \(-0.189585\pi\)
0.827812 + 0.561005i \(0.189585\pi\)
\(810\) 0 0
\(811\) −17.2474 −0.605640 −0.302820 0.953048i \(-0.597928\pi\)
−0.302820 + 0.953048i \(0.597928\pi\)
\(812\) −13.3485 + 23.1202i −0.468439 + 0.811361i
\(813\) −17.1010 37.1195i −0.599759 1.30184i
\(814\) 5.79796 + 10.0424i 0.203218 + 0.351985i
\(815\) 0 0
\(816\) −6.72474 0.619620i −0.235413 0.0216911i
\(817\) −2.05051 + 3.55159i −0.0717383 + 0.124254i
\(818\) 6.10102 0.213317
\(819\) 21.2474 24.8523i 0.742446 0.868409i
\(820\) 0 0
\(821\) 21.0227 36.4124i 0.733697 1.27080i −0.221595 0.975139i \(-0.571126\pi\)
0.955292 0.295662i \(-0.0955404\pi\)
\(822\) 3.00000 4.24264i 0.104637 0.147979i
\(823\) 3.79796 + 6.57826i 0.132389 + 0.229304i 0.924597 0.380947i \(-0.124402\pi\)
−0.792208 + 0.610251i \(0.791069\pi\)
\(824\) 5.12372 + 8.87455i 0.178493 + 0.309160i
\(825\) 0 0
\(826\) −25.0227 + 43.3406i −0.870651 + 1.50801i
\(827\) 13.7980 0.479802 0.239901 0.970797i \(-0.422885\pi\)
0.239901 + 0.970797i \(0.422885\pi\)
\(828\) −2.89898 8.19955i −0.100747 0.284954i
\(829\) −21.5505 −0.748480 −0.374240 0.927332i \(-0.622096\pi\)
−0.374240 + 0.927332i \(0.622096\pi\)
\(830\) 0 0
\(831\) −16.5505 1.52497i −0.574131 0.0529006i
\(832\) −1.22474 2.12132i −0.0424604 0.0735436i
\(833\) 24.9495 + 43.2138i 0.864449 + 1.49727i
\(834\) 8.15153 + 17.6937i 0.282264 + 0.612684i
\(835\) 0 0
\(836\) −0.797959 −0.0275980
\(837\) −8.22474 32.4876i −0.284289 1.12294i
\(838\) 0.898979 0.0310547
\(839\) −7.87628 + 13.6421i −0.271919 + 0.470978i −0.969353 0.245671i \(-0.920992\pi\)
0.697434 + 0.716649i \(0.254325\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) 8.22474 + 14.2457i 0.283443 + 0.490938i
\(843\) 20.6969 + 1.90702i 0.712840 + 0.0656814i
\(844\) 7.89898 13.6814i 0.271894 0.470934i
\(845\) 0 0
\(846\) −1.32577 0.246405i −0.0455808 0.00847158i
\(847\) 39.5959 1.36053
\(848\) 4.22474 7.31747i 0.145078 0.251283i
\(849\) 4.00000 5.65685i 0.137280 0.194143i
\(850\) 0 0
\(851\) 11.5959 + 20.0847i 0.397503 + 0.688495i
\(852\) −2.44949 + 3.46410i −0.0839181 + 0.118678i
\(853\) −12.5732 + 21.7774i −0.430499 + 0.745646i −0.996916 0.0784728i \(-0.974996\pi\)
0.566418 + 0.824118i \(0.308329\pi\)
\(854\) 2.00000 0.0684386
\(855\) 0 0
\(856\) −1.65153 −0.0564482
\(857\) −26.6969 + 46.2405i −0.911950 + 1.57954i −0.100644 + 0.994923i \(0.532090\pi\)
−0.811306 + 0.584621i \(0.801243\pi\)
\(858\) 6.12372 + 0.564242i 0.209061 + 0.0192629i
\(859\) −17.8712 30.9538i −0.609757 1.05613i −0.991280 0.131770i \(-0.957934\pi\)
0.381524 0.924359i \(-0.375399\pi\)
\(860\) 0 0
\(861\) −3.22474 6.99964i −0.109899 0.238547i
\(862\) −6.87628 + 11.9101i −0.234207 + 0.405658i
\(863\) −21.5505 −0.733588 −0.366794 0.930302i \(-0.619545\pi\)
−0.366794 + 0.930302i \(0.619545\pi\)
\(864\) −1.27526 5.03723i −0.0433851 0.171370i
\(865\) 0 0
\(866\) 11.5000 19.9186i 0.390786 0.676861i
\(867\) 1.30306 + 2.82843i 0.0442543 + 0.0960584i
\(868\) 14.3485 + 24.8523i 0.487019 + 0.843541i
\(869\) 5.32577 + 9.22450i 0.180664 + 0.312920i
\(870\) 0 0
\(871\) 11.5732 20.0454i 0.392143 0.679212i
\(872\) −8.00000 −0.270914
\(873\) 13.0000 + 36.7696i 0.439983 + 1.24446i
\(874\) −1.59592 −0.0539827
\(875\) 0 0
\(876\) −4.79796 + 6.78534i −0.162108 + 0.229255i
\(877\) −27.5732 47.7582i −0.931081 1.61268i −0.781477 0.623934i \(-0.785533\pi\)
−0.149604 0.988746i \(-0.547800\pi\)
\(878\) 11.0227 + 19.0919i 0.371998 + 0.644320i
\(879\) 18.0000 25.4558i 0.607125 0.858604i
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) −24.9495 + 29.1824i −0.840093 + 0.982623i
\(883\) 11.4495 0.385306 0.192653 0.981267i \(-0.438291\pi\)
0.192653 + 0.981267i \(0.438291\pi\)
\(884\) 4.77526 8.27098i 0.160609 0.278183i
\(885\) 0 0
\(886\) −1.62372 2.81237i −0.0545501 0.0944835i
\(887\) 2.32577 + 4.02834i 0.0780916 + 0.135259i 0.902427 0.430844i \(-0.141784\pi\)
−0.824335 + 0.566102i \(0.808451\pi\)
\(888\) 5.79796 + 12.5851i 0.194567 + 0.422327i
\(889\) 6.44949 11.1708i 0.216309 0.374658i
\(890\) 0 0
\(891\) 12.1742 + 4.68729i 0.407852 + 0.157030i
\(892\) −18.8990 −0.632785
\(893\) −0.123724 + 0.214297i −0.00414028 + 0.00717117i
\(894\) −11.7753 25.5594i −0.393823 0.854834i
\(895\) 0 0
\(896\) 2.22474 + 3.85337i 0.0743235 + 0.128732i
\(897\) 12.2474 + 1.12848i 0.408930 + 0.0376790i
\(898\) 0.398979 0.691053i 0.0133141 0.0230607i
\(899\) −38.6969 −1.29062
\(900\) 0 0
\(901\) 32.9444 1.09754
\(902\) 0.724745 1.25529i 0.0241314 0.0417967i
\(903\) −33.1464 + 46.8761i −1.10304 + 1.55994i
\(904\) 2.44949 + 4.24264i 0.0814688 + 0.141108i
\(905\) 0 0
\(906\) 6.89898 9.75663i 0.229203 0.324142i
\(907\) 16.8712 29.2217i 0.560198 0.970292i −0.437281 0.899325i \(-0.644058\pi\)
0.997479 0.0709665i \(-0.0226083\pi\)
\(908\) −1.44949 −0.0481030
\(909\) 8.00000 + 22.6274i 0.265343 + 0.750504i
\(910\) 0 0
\(911\) 0.123724 0.214297i 0.00409917 0.00709997i −0.863969 0.503546i \(-0.832029\pi\)
0.868068 + 0.496446i \(0.165362\pi\)
\(912\) −0.949490 0.0874863i −0.0314407 0.00289696i
\(913\) −2.89898 5.02118i −0.0959422 0.166177i
\(914\) −4.05051 7.01569i −0.133979 0.232058i
\(915\) 0 0
\(916\) 6.77526 11.7351i 0.223861 0.387738i
\(917\) 21.7980 0.719832
\(918\) 14.5227 14.1261i 0.479321 0.466230i
\(919\) 10.8990 0.359524 0.179762 0.983710i \(-0.442467\pi\)
0.179762 + 0.983710i \(0.442467\pi\)
\(920\) 0 0
\(921\) −17.3536 37.6677i −0.571820 1.24119i
\(922\) −1.22474 2.12132i −0.0403348 0.0698620i
\(923\) −3.00000 5.19615i −0.0987462 0.171033i
\(924\) −11.1237 1.02494i −0.365944 0.0337182i
\(925\) 0 0
\(926\) −24.0000 −0.788689
\(927\) −30.2247 5.61753i −0.992711 0.184504i
\(928\) −6.00000 −0.196960
\(929\) 27.7980 48.1475i 0.912021 1.57967i 0.100817 0.994905i \(-0.467854\pi\)
0.811205 0.584762i \(-0.198812\pi\)
\(930\) 0 0
\(931\) 3.52270 + 6.10150i 0.115452 + 0.199969i
\(932\) 7.84847 + 13.5939i 0.257085 + 0.445285i
\(933\) −22.8990 + 32.3840i −0.749679 + 1.06021i
\(934\) 2.17423 3.76588i 0.0711431 0.123224i
\(935\) 0 0
\(936\) 7.22474 + 1.34278i 0.236148 + 0.0438902i
\(937\) 39.5959 1.29354 0.646771 0.762684i \(-0.276119\pi\)
0.646771 + 0.762684i \(0.276119\pi\)
\(938\) −21.0227 + 36.4124i −0.686416 + 1.18891i
\(939\) −13.2753 1.22319i −0.433222 0.0399172i
\(940\) 0 0
\(941\) 24.8990 + 43.1263i 0.811684 + 1.40588i 0.911685 + 0.410890i \(0.134782\pi\)
−0.100001 + 0.994987i \(0.531885\pi\)
\(942\) 11.5959 + 25.1701i 0.377815 + 0.820087i
\(943\) 1.44949 2.51059i 0.0472019 0.0817561i
\(944\) −11.2474 −0.366073
\(945\) 0 0
\(946\) −10.7980 −0.351072
\(947\) −10.6237 + 18.4008i −0.345225 + 0.597947i −0.985395 0.170287i \(-0.945531\pi\)
0.640170 + 0.768233i \(0.278864\pi\)
\(948\) 5.32577 + 11.5601i 0.172973 + 0.375455i
\(949\) −5.87628 10.1780i −0.190752 0.330392i
\(950\) 0 0
\(951\) 53.3712 + 4.91764i 1.73068 + 0.159465i
\(952\) −8.67423 + 15.0242i −0.281134 + 0.486938i
\(953\) 50.7980 1.64551 0.822754 0.568398i \(-0.192437\pi\)
0.822754 + 0.568398i \(0.192437\pi\)
\(954\) 8.44949 + 23.8988i 0.273562 + 0.773751i
\(955\) 0 0
\(956\) −14.3485 + 24.8523i −0.464063 + 0.803780i
\(957\) 8.69694 12.2993i 0.281132 0.397581i
\(958\) 6.34847 + 10.9959i 0.205110 + 0.355260i
\(959\) −6.67423 11.5601i −0.215522 0.373296i
\(960\) 0 0
\(961\) −5.29796 + 9.17633i −0.170902 + 0.296011i
\(962\) −19.5959 −0.631798
\(963\) 3.21964 3.76588i 0.103752 0.121354i
\(964\) 1.00000 0.0322078
\(965\) 0 0
\(966\) −22.2474 2.04989i −0.715800 0.0659541i
\(967\) −14.3485 24.8523i −0.461416 0.799195i 0.537616 0.843190i \(-0.319325\pi\)
−0.999032 + 0.0439944i \(0.985992\pi\)
\(968\) 4.44949 + 7.70674i 0.143012 + 0.247704i
\(969\) −1.55561 3.37662i −0.0499735 0.108473i
\(970\) 0 0
\(971\) −23.3939 −0.750745 −0.375373 0.926874i \(-0.622485\pi\)
−0.375373 + 0.926874i \(0.622485\pi\)
\(972\) 13.9722 + 6.91215i 0.448158 + 0.221707i
\(973\) 50.0454 1.60438
\(974\) −17.4495 + 30.2234i −0.559118 + 0.968420i
\(975\) 0 0
\(976\) 0.224745 + 0.389270i 0.00719391 + 0.0124602i
\(977\) 18.9495 + 32.8215i 0.606248 + 1.05005i 0.991853 + 0.127388i \(0.0406594\pi\)
−0.385605 + 0.922664i \(0.626007\pi\)
\(978\) 1.55051 + 0.142865i 0.0495799 + 0.00456831i
\(979\) −9.34847 + 16.1920i −0.298778 + 0.517499i
\(980\) 0 0
\(981\) 15.5959 18.2419i 0.497939 0.582419i
\(982\) 23.4495 0.748303
\(983\) −18.6969 + 32.3840i −0.596340 + 1.03289i 0.397017 + 0.917811i \(0.370046\pi\)
−0.993356 + 0.115079i \(0.963288\pi\)
\(984\) 1.00000 1.41421i 0.0318788 0.0450835i
\(985\) 0 0
\(986\) −11.6969 20.2597i −0.372506 0.645200i
\(987\) −2.00000 + 2.82843i −0.0636607 + 0.0900298i
\(988\) 0.674235 1.16781i 0.0214503 0.0371529i
\(989\) −21.5959 −0.686710
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) −3.22474 + 5.58542i −0.102386 + 0.177337i
\(993\) 57.5959 + 5.30691i 1.82775 + 0.168410i
\(994\) 5.44949 + 9.43879i 0.172847 + 0.299380i
\(995\) 0 0
\(996\) −2.89898 6.29253i −0.0918577 0.199386i
\(997\) −16.4722 + 28.5307i −0.521680 + 0.903576i 0.478002 + 0.878359i \(0.341361\pi\)
−0.999682 + 0.0252170i \(0.991972\pi\)
\(998\) 3.24745 0.102796
\(999\) −40.0000 11.3137i −1.26554 0.357950i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.2.e.k.151.1 4
3.2 odd 2 1350.2.e.m.451.2 4
5.2 odd 4 90.2.i.b.79.1 yes 8
5.3 odd 4 90.2.i.b.79.4 yes 8
5.4 even 2 450.2.e.n.151.2 4
9.2 odd 6 4050.2.a.bm.1.1 2
9.4 even 3 inner 450.2.e.k.301.1 4
9.5 odd 6 1350.2.e.m.901.2 4
9.7 even 3 4050.2.a.bs.1.1 2
15.2 even 4 270.2.i.b.19.3 8
15.8 even 4 270.2.i.b.19.2 8
15.14 odd 2 1350.2.e.j.451.1 4
20.3 even 4 720.2.by.c.529.1 8
20.7 even 4 720.2.by.c.529.4 8
45.2 even 12 810.2.c.e.649.2 4
45.4 even 6 450.2.e.n.301.2 4
45.7 odd 12 810.2.c.f.649.3 4
45.13 odd 12 90.2.i.b.49.1 8
45.14 odd 6 1350.2.e.j.901.1 4
45.22 odd 12 90.2.i.b.49.4 yes 8
45.23 even 12 270.2.i.b.199.3 8
45.29 odd 6 4050.2.a.bz.1.2 2
45.32 even 12 270.2.i.b.199.2 8
45.34 even 6 4050.2.a.bq.1.2 2
45.38 even 12 810.2.c.e.649.4 4
45.43 odd 12 810.2.c.f.649.1 4
60.23 odd 4 2160.2.by.d.289.4 8
60.47 odd 4 2160.2.by.d.289.1 8
180.23 odd 12 2160.2.by.d.1009.1 8
180.67 even 12 720.2.by.c.49.1 8
180.103 even 12 720.2.by.c.49.4 8
180.167 odd 12 2160.2.by.d.1009.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.b.49.1 8 45.13 odd 12
90.2.i.b.49.4 yes 8 45.22 odd 12
90.2.i.b.79.1 yes 8 5.2 odd 4
90.2.i.b.79.4 yes 8 5.3 odd 4
270.2.i.b.19.2 8 15.8 even 4
270.2.i.b.19.3 8 15.2 even 4
270.2.i.b.199.2 8 45.32 even 12
270.2.i.b.199.3 8 45.23 even 12
450.2.e.k.151.1 4 1.1 even 1 trivial
450.2.e.k.301.1 4 9.4 even 3 inner
450.2.e.n.151.2 4 5.4 even 2
450.2.e.n.301.2 4 45.4 even 6
720.2.by.c.49.1 8 180.67 even 12
720.2.by.c.49.4 8 180.103 even 12
720.2.by.c.529.1 8 20.3 even 4
720.2.by.c.529.4 8 20.7 even 4
810.2.c.e.649.2 4 45.2 even 12
810.2.c.e.649.4 4 45.38 even 12
810.2.c.f.649.1 4 45.43 odd 12
810.2.c.f.649.3 4 45.7 odd 12
1350.2.e.j.451.1 4 15.14 odd 2
1350.2.e.j.901.1 4 45.14 odd 6
1350.2.e.m.451.2 4 3.2 odd 2
1350.2.e.m.901.2 4 9.5 odd 6
2160.2.by.d.289.1 8 60.47 odd 4
2160.2.by.d.289.4 8 60.23 odd 4
2160.2.by.d.1009.1 8 180.23 odd 12
2160.2.by.d.1009.4 8 180.167 odd 12
4050.2.a.bm.1.1 2 9.2 odd 6
4050.2.a.bq.1.2 2 45.34 even 6
4050.2.a.bs.1.1 2 9.7 even 3
4050.2.a.bz.1.2 2 45.29 odd 6