L(s) = 1 | − 2·9-s − 8·11-s − 8·19-s − 10·25-s + 16·29-s + 8·31-s − 4·41-s + 16·49-s + 20·59-s − 36·71-s − 32·79-s + 3·81-s − 32·89-s + 16·99-s + 20·101-s + 48·109-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 24·169-s + ⋯ |
L(s) = 1 | − 2/3·9-s − 2.41·11-s − 1.83·19-s − 2·25-s + 2.97·29-s + 1.43·31-s − 0.624·41-s + 16/7·49-s + 2.60·59-s − 4.27·71-s − 3.60·79-s + 1/3·81-s − 3.39·89-s + 1.60·99-s + 1.99·101-s + 4.59·109-s − 0.363·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.84·169-s + ⋯ |
Λ(s)=(=((216⋅34⋅54⋅174)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅34⋅54⋅174)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅34⋅54⋅174
|
Sign: |
1
|
Analytic conductor: |
1.12654×106 |
Root analytic conductor: |
5.70779 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅34⋅54⋅174, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.1705144675 |
L(21) |
≈ |
0.1705144675 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | (1+T2)2 |
| 5 | C2 | (1+pT2)2 |
| 17 | C2 | (1+T2)2 |
good | 7 | D4×C2 | 1−16T2+142T4−16p2T6+p4T8 |
| 11 | C2 | (1+2T+pT2)4 |
| 13 | D4×C2 | 1−24T2+302T4−24p2T6+p4T8 |
| 19 | D4 | (1+4T+22T2+4pT3+p2T4)2 |
| 23 | C22 | (1−30T2+p2T4)2 |
| 29 | C2 | (1−4T+pT2)4 |
| 31 | C4 | (1−4T+46T2−4pT3+p2T4)2 |
| 37 | C2 | (1−12T+pT2)2(1+12T+pT2)2 |
| 41 | D4 | (1+2T+38T2+2pT3+p2T4)2 |
| 43 | D4×C2 | 1+80T2+4798T4+80p2T6+p4T8 |
| 47 | D4×C2 | 1−76T2+2982T4−76p2T6+p4T8 |
| 53 | D4×C2 | 1−44T2+4822T4−44p2T6+p4T8 |
| 59 | D4 | (1−10T+98T2−10pT3+p2T4)2 |
| 61 | C22 | (1+102T2+p2T4)2 |
| 67 | D4×C2 | 1−128T2+8574T4−128p2T6+p4T8 |
| 71 | D4 | (1+18T+218T2+18pT3+p2T4)2 |
| 73 | D4×C2 | 1−40T2+8638T4−40p2T6+p4T8 |
| 79 | D4 | (1+16T+142T2+16pT3+p2T4)2 |
| 83 | D4×C2 | 1−220T2+22998T4−220p2T6+p4T8 |
| 89 | D4 | (1+16T+222T2+16pT3+p2T4)2 |
| 97 | D4×C2 | 1−248T2+29694T4−248p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.02244475709297635281973488973, −5.70134575522069334691078882688, −5.59072527763094925640632060388, −5.38313141692913691597224538846, −5.17843912155961614641938952091, −5.09300375656129953604384451321, −4.70766003212774932856010075898, −4.42181694466282766178358907042, −4.37241611052468460928019853961, −4.27089181925853376177795912031, −4.10610048722845622415751108265, −3.79966083414469113715176292498, −3.45176441543282188055113069834, −3.03120219789291241890020678953, −3.01425772458401786756405067313, −2.80217576298623238814174035331, −2.67782010055908602708073282445, −2.41172681570718965548775681708, −2.15056542184496250130093119113, −1.98247643508177530252271915590, −1.68185555287550977864723945373, −1.10301304985688485936536160564, −1.04622488441678741255469473672, −0.47714848154106191539011068639, −0.082846234740168725565072584165,
0.082846234740168725565072584165, 0.47714848154106191539011068639, 1.04622488441678741255469473672, 1.10301304985688485936536160564, 1.68185555287550977864723945373, 1.98247643508177530252271915590, 2.15056542184496250130093119113, 2.41172681570718965548775681708, 2.67782010055908602708073282445, 2.80217576298623238814174035331, 3.01425772458401786756405067313, 3.03120219789291241890020678953, 3.45176441543282188055113069834, 3.79966083414469113715176292498, 4.10610048722845622415751108265, 4.27089181925853376177795912031, 4.37241611052468460928019853961, 4.42181694466282766178358907042, 4.70766003212774932856010075898, 5.09300375656129953604384451321, 5.17843912155961614641938952091, 5.38313141692913691597224538846, 5.59072527763094925640632060388, 5.70134575522069334691078882688, 6.02244475709297635281973488973