Properties

Label 4080.2.m.m
Level 40804080
Weight 22
Character orbit 4080.m
Analytic conductor 32.57932.579
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4080,2,Mod(2449,4080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4080.2449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4080=243517 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4080.m (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 32.578964024732.5789640247
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,5)\Q(i, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+3x2+1 x^{4} + 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 510)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3β2q5+(β2β1)q7q92q11+(β23β1)q13β3q15+β1q17+(2β32)q19+(β31)q21++2q99+O(q100) q - \beta_1 q^{3} - \beta_{2} q^{5} + (\beta_{2} - \beta_1) q^{7} - q^{9} - 2 q^{11} + ( - \beta_{2} - 3 \beta_1) q^{13} - \beta_{3} q^{15} + \beta_1 q^{17} + ( - 2 \beta_{3} - 2) q^{19} + (\beta_{3} - 1) q^{21}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q98q118q194q2120q25+16q29+8q31+20q3512q394q41+4q49+4q51+20q5920q65+16q6936q7132q79+4q81++8q99+O(q100) 4 q - 4 q^{9} - 8 q^{11} - 8 q^{19} - 4 q^{21} - 20 q^{25} + 16 q^{29} + 8 q^{31} + 20 q^{35} - 12 q^{39} - 4 q^{41} + 4 q^{49} + 4 q^{51} + 20 q^{59} - 20 q^{65} + 16 q^{69} - 36 q^{71} - 32 q^{79} + 4 q^{81}+ \cdots + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+3x2+1 x^{4} + 3x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν3+2ν \nu^{3} + 2\nu Copy content Toggle raw display
β2\beta_{2}== ν3+4ν \nu^{3} + 4\nu Copy content Toggle raw display
β3\beta_{3}== 2ν2+3 2\nu^{2} + 3 Copy content Toggle raw display
ν\nu== (β2β1)/2 ( \beta_{2} - \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β33)/2 ( \beta_{3} - 3 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== β2+2β1 -\beta_{2} + 2\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4080Z)×\left(\mathbb{Z}/4080\mathbb{Z}\right)^\times.

nn 241241 511511 817817 13611361 30613061
χ(n)\chi(n) 11 11 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2449.1
0.618034i
1.61803i
1.61803i
0.618034i
0 1.00000i 0 2.23607i 0 1.23607i 0 −1.00000 0
2449.2 0 1.00000i 0 2.23607i 0 3.23607i 0 −1.00000 0
2449.3 0 1.00000i 0 2.23607i 0 3.23607i 0 −1.00000 0
2449.4 0 1.00000i 0 2.23607i 0 1.23607i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4080.2.m.m 4
4.b odd 2 1 510.2.d.b 4
5.b even 2 1 inner 4080.2.m.m 4
12.b even 2 1 1530.2.d.f 4
20.d odd 2 1 510.2.d.b 4
20.e even 4 1 2550.2.a.bh 2
20.e even 4 1 2550.2.a.bk 2
60.h even 2 1 1530.2.d.f 4
60.l odd 4 1 7650.2.a.cx 2
60.l odd 4 1 7650.2.a.da 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.d.b 4 4.b odd 2 1
510.2.d.b 4 20.d odd 2 1
1530.2.d.f 4 12.b even 2 1
1530.2.d.f 4 60.h even 2 1
2550.2.a.bh 2 20.e even 4 1
2550.2.a.bk 2 20.e even 4 1
4080.2.m.m 4 1.a even 1 1 trivial
4080.2.m.m 4 5.b even 2 1 inner
7650.2.a.cx 2 60.l odd 4 1
7650.2.a.da 2 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(4080,[χ])S_{2}^{\mathrm{new}}(4080, [\chi]):

T74+12T72+16 T_{7}^{4} + 12T_{7}^{2} + 16 Copy content Toggle raw display
T11+2 T_{11} + 2 Copy content Toggle raw display
T232+16 T_{23}^{2} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
55 (T2+5)2 (T^{2} + 5)^{2} Copy content Toggle raw display
77 T4+12T2+16 T^{4} + 12T^{2} + 16 Copy content Toggle raw display
1111 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
1313 T4+28T2+16 T^{4} + 28T^{2} + 16 Copy content Toggle raw display
1717 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
1919 (T2+4T16)2 (T^{2} + 4 T - 16)^{2} Copy content Toggle raw display
2323 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
2929 (T4)4 (T - 4)^{4} Copy content Toggle raw display
3131 (T24T16)2 (T^{2} - 4 T - 16)^{2} Copy content Toggle raw display
3737 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
4141 (T2+2T44)2 (T^{2} + 2 T - 44)^{2} Copy content Toggle raw display
4343 T4+252T2+15376 T^{4} + 252 T^{2} + 15376 Copy content Toggle raw display
4747 T4+112T2+256 T^{4} + 112T^{2} + 256 Copy content Toggle raw display
5353 T4+168T2+5776 T^{4} + 168T^{2} + 5776 Copy content Toggle raw display
5959 (T210T20)2 (T^{2} - 10 T - 20)^{2} Copy content Toggle raw display
6161 (T220)2 (T^{2} - 20)^{2} Copy content Toggle raw display
6767 T4+140T2+400 T^{4} + 140T^{2} + 400 Copy content Toggle raw display
7171 (T2+18T+76)2 (T^{2} + 18 T + 76)^{2} Copy content Toggle raw display
7373 T4+252T2+13456 T^{4} + 252 T^{2} + 13456 Copy content Toggle raw display
7979 (T2+16T16)2 (T^{2} + 16 T - 16)^{2} Copy content Toggle raw display
8383 T4+112T2+256 T^{4} + 112T^{2} + 256 Copy content Toggle raw display
8989 (T2+16T+44)2 (T^{2} + 16 T + 44)^{2} Copy content Toggle raw display
9797 T4+140T2+400 T^{4} + 140T^{2} + 400 Copy content Toggle raw display
show more
show less