L(s) = 1 | + (−1.79 + 1.33i)5-s + (−0.390 − 0.390i)7-s + 0.378i·11-s + (−3.06 + 3.06i)13-s + (5.04 − 5.04i)17-s − 1.94i·19-s + (−0.707 − 0.707i)23-s + (1.45 − 4.78i)25-s − 0.264·29-s + 0.305·31-s + (1.22 + 0.182i)35-s + (1.13 + 1.13i)37-s + 4.48i·41-s + (−2.13 + 2.13i)43-s + (5.21 − 5.21i)47-s + ⋯ |
L(s) = 1 | + (−0.803 + 0.595i)5-s + (−0.147 − 0.147i)7-s + 0.114i·11-s + (−0.848 + 0.848i)13-s + (1.22 − 1.22i)17-s − 0.447i·19-s + (−0.147 − 0.147i)23-s + (0.291 − 0.956i)25-s − 0.0491·29-s + 0.0548·31-s + (0.206 + 0.0307i)35-s + (0.187 + 0.187i)37-s + 0.700i·41-s + (−0.325 + 0.325i)43-s + (0.761 − 0.761i)47-s + ⋯ |
Λ(s)=(=(4140s/2ΓC(s)L(s)(0.522−0.852i)Λ(2−s)
Λ(s)=(=(4140s/2ΓC(s+1/2)L(s)(0.522−0.852i)Λ(1−s)
Degree: |
2 |
Conductor: |
4140
= 22⋅32⋅5⋅23
|
Sign: |
0.522−0.852i
|
Analytic conductor: |
33.0580 |
Root analytic conductor: |
5.74961 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4140(737,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4140, ( :1/2), 0.522−0.852i)
|
Particular Values
L(1) |
≈ |
1.261093027 |
L(21) |
≈ |
1.261093027 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(1.79−1.33i)T |
| 23 | 1+(0.707+0.707i)T |
good | 7 | 1+(0.390+0.390i)T+7iT2 |
| 11 | 1−0.378iT−11T2 |
| 13 | 1+(3.06−3.06i)T−13iT2 |
| 17 | 1+(−5.04+5.04i)T−17iT2 |
| 19 | 1+1.94iT−19T2 |
| 29 | 1+0.264T+29T2 |
| 31 | 1−0.305T+31T2 |
| 37 | 1+(−1.13−1.13i)T+37iT2 |
| 41 | 1−4.48iT−41T2 |
| 43 | 1+(2.13−2.13i)T−43iT2 |
| 47 | 1+(−5.21+5.21i)T−47iT2 |
| 53 | 1+(−9.69−9.69i)T+53iT2 |
| 59 | 1−12.8T+59T2 |
| 61 | 1+11.2T+61T2 |
| 67 | 1+(1.52+1.52i)T+67iT2 |
| 71 | 1−11.3iT−71T2 |
| 73 | 1+(6.79−6.79i)T−73iT2 |
| 79 | 1+3.47iT−79T2 |
| 83 | 1+(5.49+5.49i)T+83iT2 |
| 89 | 1−9.03T+89T2 |
| 97 | 1+(−0.595−0.595i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.485685992456050363609839712687, −7.55615582193701603825370170018, −7.21488160653564471587758063479, −6.56950377280867725974703857891, −5.51177286665786341162834322295, −4.69800348252045193800422187456, −3.97519387870975053500252329560, −3.05240492065385069458847996656, −2.35306934480135335157885136738, −0.820702517071723870793153071009,
0.50066037140714451721306177754, 1.67146668663098332902751581373, 2.95926287282431679502083410851, 3.70451924088705379578779552941, 4.45439714977539397050222329743, 5.47041842242541578819776674764, 5.81974068028505288457016989573, 7.03043127070465534176002074954, 7.72873555461067549181075663879, 8.178932444086718854763645964489