L(s) = 1 | + (−1.79 + 1.33i)5-s + (−0.390 − 0.390i)7-s + 0.378i·11-s + (−3.06 + 3.06i)13-s + (5.04 − 5.04i)17-s − 1.94i·19-s + (−0.707 − 0.707i)23-s + (1.45 − 4.78i)25-s − 0.264·29-s + 0.305·31-s + (1.22 + 0.182i)35-s + (1.13 + 1.13i)37-s + 4.48i·41-s + (−2.13 + 2.13i)43-s + (5.21 − 5.21i)47-s + ⋯ |
L(s) = 1 | + (−0.803 + 0.595i)5-s + (−0.147 − 0.147i)7-s + 0.114i·11-s + (−0.848 + 0.848i)13-s + (1.22 − 1.22i)17-s − 0.447i·19-s + (−0.147 − 0.147i)23-s + (0.291 − 0.956i)25-s − 0.0491·29-s + 0.0548·31-s + (0.206 + 0.0307i)35-s + (0.187 + 0.187i)37-s + 0.700i·41-s + (−0.325 + 0.325i)43-s + (0.761 − 0.761i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.261093027\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.261093027\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.79 - 1.33i)T \) |
| 23 | \( 1 + (0.707 + 0.707i)T \) |
good | 7 | \( 1 + (0.390 + 0.390i)T + 7iT^{2} \) |
| 11 | \( 1 - 0.378iT - 11T^{2} \) |
| 13 | \( 1 + (3.06 - 3.06i)T - 13iT^{2} \) |
| 17 | \( 1 + (-5.04 + 5.04i)T - 17iT^{2} \) |
| 19 | \( 1 + 1.94iT - 19T^{2} \) |
| 29 | \( 1 + 0.264T + 29T^{2} \) |
| 31 | \( 1 - 0.305T + 31T^{2} \) |
| 37 | \( 1 + (-1.13 - 1.13i)T + 37iT^{2} \) |
| 41 | \( 1 - 4.48iT - 41T^{2} \) |
| 43 | \( 1 + (2.13 - 2.13i)T - 43iT^{2} \) |
| 47 | \( 1 + (-5.21 + 5.21i)T - 47iT^{2} \) |
| 53 | \( 1 + (-9.69 - 9.69i)T + 53iT^{2} \) |
| 59 | \( 1 - 12.8T + 59T^{2} \) |
| 61 | \( 1 + 11.2T + 61T^{2} \) |
| 67 | \( 1 + (1.52 + 1.52i)T + 67iT^{2} \) |
| 71 | \( 1 - 11.3iT - 71T^{2} \) |
| 73 | \( 1 + (6.79 - 6.79i)T - 73iT^{2} \) |
| 79 | \( 1 + 3.47iT - 79T^{2} \) |
| 83 | \( 1 + (5.49 + 5.49i)T + 83iT^{2} \) |
| 89 | \( 1 - 9.03T + 89T^{2} \) |
| 97 | \( 1 + (-0.595 - 0.595i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.485685992456050363609839712687, −7.55615582193701603825370170018, −7.21488160653564471587758063479, −6.56950377280867725974703857891, −5.51177286665786341162834322295, −4.69800348252045193800422187456, −3.97519387870975053500252329560, −3.05240492065385069458847996656, −2.35306934480135335157885136738, −0.820702517071723870793153071009,
0.50066037140714451721306177754, 1.67146668663098332902751581373, 2.95926287282431679502083410851, 3.70451924088705379578779552941, 4.45439714977539397050222329743, 5.47041842242541578819776674764, 5.81974068028505288457016989573, 7.03043127070465534176002074954, 7.72873555461067549181075663879, 8.178932444086718854763645964489