Properties

Label 4140.2.s.b.737.4
Level $4140$
Weight $2$
Character 4140.737
Analytic conductor $33.058$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4140,2,Mod(737,4140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4140.737");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4140 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4140.s (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.0580664368\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 737.4
Character \(\chi\) \(=\) 4140.737
Dual form 4140.2.s.b.2393.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.79713 + 1.33054i) q^{5} +(-0.390251 - 0.390251i) q^{7} +0.378344i q^{11} +(-3.06090 + 3.06090i) q^{13} +(5.04090 - 5.04090i) q^{17} -1.94855i q^{19} +(-0.707107 - 0.707107i) q^{23} +(1.45932 - 4.78230i) q^{25} -0.264721 q^{29} +0.305510 q^{31} +(1.22058 + 0.182086i) q^{35} +(1.13840 + 1.13840i) q^{37} +4.48650i q^{41} +(-2.13201 + 2.13201i) q^{43} +(5.21999 - 5.21999i) q^{47} -6.69541i q^{49} +(9.69083 + 9.69083i) q^{53} +(-0.503402 - 0.679931i) q^{55} +12.8410 q^{59} -11.2123 q^{61} +(1.42817 - 9.57349i) q^{65} +(-1.52032 - 1.52032i) q^{67} +11.3873i q^{71} +(-6.79549 + 6.79549i) q^{73} +(0.147649 - 0.147649i) q^{77} -3.47102i q^{79} +(-5.49333 - 5.49333i) q^{83} +(-2.35201 + 15.7662i) q^{85} +9.03991 q^{89} +2.38904 q^{91} +(2.59262 + 3.50178i) q^{95} +(0.595525 + 0.595525i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4 q^{7} - 4 q^{13} - 24 q^{25} + 32 q^{31} + 40 q^{37} - 8 q^{43} - 24 q^{55} + 64 q^{61} + 12 q^{67} - 84 q^{73} - 104 q^{85} - 48 q^{91} + 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4140\mathbb{Z}\right)^\times\).

\(n\) \(461\) \(1657\) \(2071\) \(3961\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.79713 + 1.33054i −0.803699 + 0.595036i
\(6\) 0 0
\(7\) −0.390251 0.390251i −0.147501 0.147501i 0.629500 0.777001i \(-0.283260\pi\)
−0.777001 + 0.629500i \(0.783260\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.378344i 0.114075i 0.998372 + 0.0570375i \(0.0181655\pi\)
−0.998372 + 0.0570375i \(0.981835\pi\)
\(12\) 0 0
\(13\) −3.06090 + 3.06090i −0.848942 + 0.848942i −0.990001 0.141059i \(-0.954949\pi\)
0.141059 + 0.990001i \(0.454949\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.04090 5.04090i 1.22260 1.22260i 0.255892 0.966705i \(-0.417631\pi\)
0.966705 0.255892i \(-0.0823690\pi\)
\(18\) 0 0
\(19\) 1.94855i 0.447027i −0.974701 0.223513i \(-0.928247\pi\)
0.974701 0.223513i \(-0.0717527\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.707107 0.707107i −0.147442 0.147442i
\(24\) 0 0
\(25\) 1.45932 4.78230i 0.291865 0.956460i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.264721 −0.0491575 −0.0245787 0.999698i \(-0.507824\pi\)
−0.0245787 + 0.999698i \(0.507824\pi\)
\(30\) 0 0
\(31\) 0.305510 0.0548713 0.0274356 0.999624i \(-0.491266\pi\)
0.0274356 + 0.999624i \(0.491266\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.22058 + 0.182086i 0.206315 + 0.0307781i
\(36\) 0 0
\(37\) 1.13840 + 1.13840i 0.187151 + 0.187151i 0.794463 0.607312i \(-0.207752\pi\)
−0.607312 + 0.794463i \(0.707752\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.48650i 0.700673i 0.936624 + 0.350337i \(0.113933\pi\)
−0.936624 + 0.350337i \(0.886067\pi\)
\(42\) 0 0
\(43\) −2.13201 + 2.13201i −0.325128 + 0.325128i −0.850731 0.525602i \(-0.823840\pi\)
0.525602 + 0.850731i \(0.323840\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.21999 5.21999i 0.761414 0.761414i −0.215164 0.976578i \(-0.569029\pi\)
0.976578 + 0.215164i \(0.0690285\pi\)
\(48\) 0 0
\(49\) 6.69541i 0.956487i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.69083 + 9.69083i 1.33114 + 1.33114i 0.904353 + 0.426786i \(0.140354\pi\)
0.426786 + 0.904353i \(0.359646\pi\)
\(54\) 0 0
\(55\) −0.503402 0.679931i −0.0678787 0.0916819i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.8410 1.67176 0.835879 0.548913i \(-0.184958\pi\)
0.835879 + 0.548913i \(0.184958\pi\)
\(60\) 0 0
\(61\) −11.2123 −1.43558 −0.717792 0.696258i \(-0.754847\pi\)
−0.717792 + 0.696258i \(0.754847\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.42817 9.57349i 0.177143 1.18744i
\(66\) 0 0
\(67\) −1.52032 1.52032i −0.185737 0.185737i 0.608113 0.793850i \(-0.291927\pi\)
−0.793850 + 0.608113i \(0.791927\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.3873i 1.35142i 0.737167 + 0.675711i \(0.236163\pi\)
−0.737167 + 0.675711i \(0.763837\pi\)
\(72\) 0 0
\(73\) −6.79549 + 6.79549i −0.795352 + 0.795352i −0.982359 0.187006i \(-0.940121\pi\)
0.187006 + 0.982359i \(0.440121\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.147649 0.147649i 0.0168262 0.0168262i
\(78\) 0 0
\(79\) 3.47102i 0.390521i −0.980751 0.195260i \(-0.937445\pi\)
0.980751 0.195260i \(-0.0625552\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.49333 5.49333i −0.602972 0.602972i 0.338128 0.941100i \(-0.390206\pi\)
−0.941100 + 0.338128i \(0.890206\pi\)
\(84\) 0 0
\(85\) −2.35201 + 15.7662i −0.255111 + 1.71009i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.03991 0.958228 0.479114 0.877753i \(-0.340958\pi\)
0.479114 + 0.877753i \(0.340958\pi\)
\(90\) 0 0
\(91\) 2.38904 0.250440
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.59262 + 3.50178i 0.265997 + 0.359275i
\(96\) 0 0
\(97\) 0.595525 + 0.595525i 0.0604664 + 0.0604664i 0.736693 0.676227i \(-0.236386\pi\)
−0.676227 + 0.736693i \(0.736386\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.10005i 0.905489i 0.891640 + 0.452744i \(0.149555\pi\)
−0.891640 + 0.452744i \(0.850445\pi\)
\(102\) 0 0
\(103\) −7.45740 + 7.45740i −0.734799 + 0.734799i −0.971566 0.236767i \(-0.923912\pi\)
0.236767 + 0.971566i \(0.423912\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.9285 + 12.9285i −1.24985 + 1.24985i −0.294061 + 0.955787i \(0.595007\pi\)
−0.955787 + 0.294061i \(0.904993\pi\)
\(108\) 0 0
\(109\) 2.66333i 0.255100i 0.991832 + 0.127550i \(0.0407114\pi\)
−0.991832 + 0.127550i \(0.959289\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.00681 + 8.00681i 0.753217 + 0.753217i 0.975078 0.221861i \(-0.0712132\pi\)
−0.221861 + 0.975078i \(0.571213\pi\)
\(114\) 0 0
\(115\) 2.21159 + 0.329926i 0.206232 + 0.0307657i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.93443 −0.360669
\(120\) 0 0
\(121\) 10.8569 0.986987
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.74046 + 10.5361i 0.334557 + 0.942376i
\(126\) 0 0
\(127\) 13.0117 + 13.0117i 1.15461 + 1.15461i 0.985618 + 0.168988i \(0.0540498\pi\)
0.168988 + 0.985618i \(0.445950\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18.5763i 1.62302i −0.584340 0.811509i \(-0.698647\pi\)
0.584340 0.811509i \(-0.301353\pi\)
\(132\) 0 0
\(133\) −0.760423 + 0.760423i −0.0659370 + 0.0659370i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.91585 2.91585i 0.249118 0.249118i −0.571491 0.820608i \(-0.693635\pi\)
0.820608 + 0.571491i \(0.193635\pi\)
\(138\) 0 0
\(139\) 17.6430i 1.49646i 0.663438 + 0.748231i \(0.269097\pi\)
−0.663438 + 0.748231i \(0.730903\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.15807 1.15807i −0.0968430 0.0968430i
\(144\) 0 0
\(145\) 0.475737 0.352222i 0.0395078 0.0292505i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.68085 0.137701 0.0688504 0.997627i \(-0.478067\pi\)
0.0688504 + 0.997627i \(0.478067\pi\)
\(150\) 0 0
\(151\) −2.42425 −0.197282 −0.0986412 0.995123i \(-0.531450\pi\)
−0.0986412 + 0.995123i \(0.531450\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.549041 + 0.406494i −0.0441000 + 0.0326504i
\(156\) 0 0
\(157\) 6.83622 + 6.83622i 0.545590 + 0.545590i 0.925162 0.379572i \(-0.123929\pi\)
−0.379572 + 0.925162i \(0.623929\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.551899i 0.0434957i
\(162\) 0 0
\(163\) −14.6273 + 14.6273i −1.14570 + 1.14570i −0.158311 + 0.987389i \(0.550605\pi\)
−0.987389 + 0.158311i \(0.949395\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.3506 12.3506i 0.955721 0.955721i −0.0433391 0.999060i \(-0.513800\pi\)
0.999060 + 0.0433391i \(0.0137996\pi\)
\(168\) 0 0
\(169\) 5.73826i 0.441404i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.05676 1.05676i −0.0803443 0.0803443i 0.665793 0.746137i \(-0.268094\pi\)
−0.746137 + 0.665793i \(0.768094\pi\)
\(174\) 0 0
\(175\) −2.43580 + 1.29680i −0.184129 + 0.0980286i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 21.8585 1.63378 0.816891 0.576791i \(-0.195695\pi\)
0.816891 + 0.576791i \(0.195695\pi\)
\(180\) 0 0
\(181\) 22.2558 1.65426 0.827131 0.562009i \(-0.189971\pi\)
0.827131 + 0.562009i \(0.189971\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.56053 0.531159i −0.261775 0.0390516i
\(186\) 0 0
\(187\) 1.90719 + 1.90719i 0.139468 + 0.139468i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.59932i 0.405152i −0.979267 0.202576i \(-0.935069\pi\)
0.979267 0.202576i \(-0.0649314\pi\)
\(192\) 0 0
\(193\) 8.98826 8.98826i 0.646989 0.646989i −0.305275 0.952264i \(-0.598748\pi\)
0.952264 + 0.305275i \(0.0987485\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.8838 + 12.8838i −0.917935 + 0.917935i −0.996879 0.0789441i \(-0.974845\pi\)
0.0789441 + 0.996879i \(0.474845\pi\)
\(198\) 0 0
\(199\) 0.592145i 0.0419761i 0.999780 + 0.0209880i \(0.00668119\pi\)
−0.999780 + 0.0209880i \(0.993319\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.103308 + 0.103308i 0.00725079 + 0.00725079i
\(204\) 0 0
\(205\) −5.96947 8.06280i −0.416926 0.563130i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.737220 0.0509946
\(210\) 0 0
\(211\) −17.8701 −1.23023 −0.615114 0.788438i \(-0.710890\pi\)
−0.615114 + 0.788438i \(0.710890\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.994764 6.66822i 0.0678424 0.454769i
\(216\) 0 0
\(217\) −0.119226 0.119226i −0.00809358 0.00809358i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 30.8594i 2.07583i
\(222\) 0 0
\(223\) 4.20692 4.20692i 0.281717 0.281717i −0.552077 0.833793i \(-0.686164\pi\)
0.833793 + 0.552077i \(0.186164\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.8073 10.8073i 0.717303 0.717303i −0.250749 0.968052i \(-0.580677\pi\)
0.968052 + 0.250749i \(0.0806769\pi\)
\(228\) 0 0
\(229\) 23.9329i 1.58153i 0.612120 + 0.790765i \(0.290317\pi\)
−0.612120 + 0.790765i \(0.709683\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.95547 + 4.95547i 0.324644 + 0.324644i 0.850545 0.525902i \(-0.176272\pi\)
−0.525902 + 0.850545i \(0.676272\pi\)
\(234\) 0 0
\(235\) −2.43557 + 16.3264i −0.158879 + 1.06502i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 19.8752 1.28562 0.642810 0.766025i \(-0.277768\pi\)
0.642810 + 0.766025i \(0.277768\pi\)
\(240\) 0 0
\(241\) −0.195792 −0.0126121 −0.00630605 0.999980i \(-0.502007\pi\)
−0.00630605 + 0.999980i \(0.502007\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.90851 + 12.0325i 0.569144 + 0.768728i
\(246\) 0 0
\(247\) 5.96431 + 5.96431i 0.379500 + 0.379500i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.592680i 0.0374097i 0.999825 + 0.0187048i \(0.00595428\pi\)
−0.999825 + 0.0187048i \(0.994046\pi\)
\(252\) 0 0
\(253\) 0.267529 0.267529i 0.0168194 0.0168194i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −17.9835 + 17.9835i −1.12178 + 1.12178i −0.130305 + 0.991474i \(0.541596\pi\)
−0.991474 + 0.130305i \(0.958404\pi\)
\(258\) 0 0
\(259\) 0.888523i 0.0552101i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.211954 0.211954i −0.0130696 0.0130696i 0.700542 0.713611i \(-0.252942\pi\)
−0.713611 + 0.700542i \(0.752942\pi\)
\(264\) 0 0
\(265\) −30.3097 4.52160i −1.86191 0.277760i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 12.1274 0.739419 0.369710 0.929147i \(-0.379457\pi\)
0.369710 + 0.929147i \(0.379457\pi\)
\(270\) 0 0
\(271\) −15.7837 −0.958793 −0.479396 0.877598i \(-0.659144\pi\)
−0.479396 + 0.877598i \(0.659144\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.80935 + 0.552126i 0.109108 + 0.0332944i
\(276\) 0 0
\(277\) −12.3108 12.3108i −0.739683 0.739683i 0.232834 0.972517i \(-0.425200\pi\)
−0.972517 + 0.232834i \(0.925200\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.1437i 0.664778i −0.943142 0.332389i \(-0.892145\pi\)
0.943142 0.332389i \(-0.107855\pi\)
\(282\) 0 0
\(283\) 16.9336 16.9336i 1.00660 1.00660i 0.00661907 0.999978i \(-0.497893\pi\)
0.999978 0.00661907i \(-0.00210693\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.75086 1.75086i 0.103350 0.103350i
\(288\) 0 0
\(289\) 33.8213i 1.98949i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.64771 + 6.64771i 0.388363 + 0.388363i 0.874103 0.485740i \(-0.161450\pi\)
−0.485740 + 0.874103i \(0.661450\pi\)
\(294\) 0 0
\(295\) −23.0769 + 17.0855i −1.34359 + 0.994757i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.32877 0.250339
\(300\) 0 0
\(301\) 1.66404 0.0959137
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 20.1499 14.9184i 1.15378 0.854224i
\(306\) 0 0
\(307\) 22.1708 + 22.1708i 1.26535 + 1.26535i 0.948462 + 0.316890i \(0.102639\pi\)
0.316890 + 0.948462i \(0.397361\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.08384i 0.515097i 0.966265 + 0.257549i \(0.0829148\pi\)
−0.966265 + 0.257549i \(0.917085\pi\)
\(312\) 0 0
\(313\) −22.6175 + 22.6175i −1.27842 + 1.27842i −0.336865 + 0.941553i \(0.609366\pi\)
−0.941553 + 0.336865i \(0.890634\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −21.7782 + 21.7782i −1.22318 + 1.22318i −0.256689 + 0.966494i \(0.582632\pi\)
−0.966494 + 0.256689i \(0.917368\pi\)
\(318\) 0 0
\(319\) 0.100156i 0.00560764i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −9.82241 9.82241i −0.546534 0.546534i
\(324\) 0 0
\(325\) 10.1713 + 19.1050i 0.564203 + 1.05975i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.07422 −0.224619
\(330\) 0 0
\(331\) 30.1036 1.65464 0.827320 0.561730i \(-0.189864\pi\)
0.827320 + 0.561730i \(0.189864\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.75506 + 0.709360i 0.259797 + 0.0387565i
\(336\) 0 0
\(337\) −12.0825 12.0825i −0.658178 0.658178i 0.296771 0.954949i \(-0.404090\pi\)
−0.954949 + 0.296771i \(0.904090\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.115588i 0.00625944i
\(342\) 0 0
\(343\) −5.34465 + 5.34465i −0.288584 + 0.288584i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.56567 + 8.56567i −0.459829 + 0.459829i −0.898599 0.438770i \(-0.855414\pi\)
0.438770 + 0.898599i \(0.355414\pi\)
\(348\) 0 0
\(349\) 17.3738i 0.929997i 0.885311 + 0.464999i \(0.153945\pi\)
−0.885311 + 0.464999i \(0.846055\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.10209 + 7.10209i 0.378006 + 0.378006i 0.870382 0.492376i \(-0.163872\pi\)
−0.492376 + 0.870382i \(0.663872\pi\)
\(354\) 0 0
\(355\) −15.1512 20.4644i −0.804144 1.08614i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.778254 0.0410747 0.0205373 0.999789i \(-0.493462\pi\)
0.0205373 + 0.999789i \(0.493462\pi\)
\(360\) 0 0
\(361\) 15.2032 0.800167
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.17068 21.2540i 0.165961 1.11249i
\(366\) 0 0
\(367\) 14.8512 + 14.8512i 0.775228 + 0.775228i 0.979015 0.203787i \(-0.0653250\pi\)
−0.203787 + 0.979015i \(0.565325\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.56373i 0.392689i
\(372\) 0 0
\(373\) −2.72301 + 2.72301i −0.140992 + 0.140992i −0.774080 0.633088i \(-0.781787\pi\)
0.633088 + 0.774080i \(0.281787\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.810286 0.810286i 0.0417318 0.0417318i
\(378\) 0 0
\(379\) 10.2608i 0.527062i −0.964651 0.263531i \(-0.915113\pi\)
0.964651 0.263531i \(-0.0848871\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.9668 + 14.9668i 0.764768 + 0.764768i 0.977180 0.212412i \(-0.0681319\pi\)
−0.212412 + 0.977180i \(0.568132\pi\)
\(384\) 0 0
\(385\) −0.0688909 + 0.461798i −0.00351101 + 0.0235354i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.98218 −0.100500 −0.0502502 0.998737i \(-0.516002\pi\)
−0.0502502 + 0.998737i \(0.516002\pi\)
\(390\) 0 0
\(391\) −7.12890 −0.360524
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.61834 + 6.23787i 0.232374 + 0.313861i
\(396\) 0 0
\(397\) −5.27555 5.27555i −0.264772 0.264772i 0.562217 0.826990i \(-0.309948\pi\)
−0.826990 + 0.562217i \(0.809948\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.5574i 0.776900i 0.921470 + 0.388450i \(0.126989\pi\)
−0.921470 + 0.388450i \(0.873011\pi\)
\(402\) 0 0
\(403\) −0.935138 + 0.935138i −0.0465825 + 0.0465825i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.430706 + 0.430706i −0.0213493 + 0.0213493i
\(408\) 0 0
\(409\) 34.0115i 1.68176i −0.541220 0.840881i \(-0.682037\pi\)
0.541220 0.840881i \(-0.317963\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5.01123 5.01123i −0.246586 0.246586i
\(414\) 0 0
\(415\) 17.1813 + 2.56311i 0.843397 + 0.125818i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.7236 0.670442 0.335221 0.942140i \(-0.391189\pi\)
0.335221 + 0.942140i \(0.391189\pi\)
\(420\) 0 0
\(421\) −15.9539 −0.777547 −0.388773 0.921333i \(-0.627101\pi\)
−0.388773 + 0.921333i \(0.627101\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −16.7508 31.4634i −0.812532 1.52620i
\(426\) 0 0
\(427\) 4.37560 + 4.37560i 0.211750 + 0.211750i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 33.3406i 1.60596i −0.596005 0.802981i \(-0.703246\pi\)
0.596005 0.802981i \(-0.296754\pi\)
\(432\) 0 0
\(433\) 5.93869 5.93869i 0.285395 0.285395i −0.549861 0.835256i \(-0.685319\pi\)
0.835256 + 0.549861i \(0.185319\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.37783 + 1.37783i −0.0659105 + 0.0659105i
\(438\) 0 0
\(439\) 11.0639i 0.528053i −0.964515 0.264026i \(-0.914949\pi\)
0.964515 0.264026i \(-0.0850506\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.62107 + 9.62107i 0.457111 + 0.457111i 0.897706 0.440595i \(-0.145232\pi\)
−0.440595 + 0.897706i \(0.645232\pi\)
\(444\) 0 0
\(445\) −16.2458 + 12.0280i −0.770127 + 0.570180i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −21.0299 −0.992462 −0.496231 0.868191i \(-0.665283\pi\)
−0.496231 + 0.868191i \(0.665283\pi\)
\(450\) 0 0
\(451\) −1.69744 −0.0799293
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.29341 + 3.17872i −0.201278 + 0.149021i
\(456\) 0 0
\(457\) −8.72296 8.72296i −0.408043 0.408043i 0.473013 0.881056i \(-0.343166\pi\)
−0.881056 + 0.473013i \(0.843166\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.09765i 0.190846i 0.995437 + 0.0954232i \(0.0304204\pi\)
−0.995437 + 0.0954232i \(0.969580\pi\)
\(462\) 0 0
\(463\) 14.6742 14.6742i 0.681966 0.681966i −0.278477 0.960443i \(-0.589830\pi\)
0.960443 + 0.278477i \(0.0898296\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.3781 11.3781i 0.526513 0.526513i −0.393018 0.919531i \(-0.628569\pi\)
0.919531 + 0.393018i \(0.128569\pi\)
\(468\) 0 0
\(469\) 1.18662i 0.0547928i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.806633 0.806633i −0.0370890 0.0370890i
\(474\) 0 0
\(475\) −9.31852 2.84356i −0.427563 0.130471i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 18.2134 0.832190 0.416095 0.909321i \(-0.363398\pi\)
0.416095 + 0.909321i \(0.363398\pi\)
\(480\) 0 0
\(481\) −6.96905 −0.317761
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.86260 0.277863i −0.0845765 0.0126171i
\(486\) 0 0
\(487\) 7.72112 + 7.72112i 0.349877 + 0.349877i 0.860064 0.510187i \(-0.170424\pi\)
−0.510187 + 0.860064i \(0.670424\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.14636i 0.232252i −0.993234 0.116126i \(-0.962952\pi\)
0.993234 0.116126i \(-0.0370477\pi\)
\(492\) 0 0
\(493\) −1.33443 + 1.33443i −0.0600998 + 0.0600998i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.44390 4.44390i 0.199336 0.199336i
\(498\) 0 0
\(499\) 4.79931i 0.214847i −0.994213 0.107423i \(-0.965740\pi\)
0.994213 0.107423i \(-0.0342600\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −27.0724 27.0724i −1.20710 1.20710i −0.971962 0.235139i \(-0.924446\pi\)
−0.235139 0.971962i \(-0.575554\pi\)
\(504\) 0 0
\(505\) −12.1080 16.3539i −0.538798 0.727741i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17.3756 0.770160 0.385080 0.922883i \(-0.374174\pi\)
0.385080 + 0.922883i \(0.374174\pi\)
\(510\) 0 0
\(511\) 5.30390 0.234631
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.47951 23.3243i 0.153326 1.02779i
\(516\) 0 0
\(517\) 1.97495 + 1.97495i 0.0868583 + 0.0868583i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 19.4972i 0.854189i 0.904207 + 0.427094i \(0.140463\pi\)
−0.904207 + 0.427094i \(0.859537\pi\)
\(522\) 0 0
\(523\) 15.7092 15.7092i 0.686913 0.686913i −0.274635 0.961549i \(-0.588557\pi\)
0.961549 + 0.274635i \(0.0885571\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.54005 1.54005i 0.0670855 0.0670855i
\(528\) 0 0
\(529\) 1.00000i 0.0434783i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −13.7327 13.7327i −0.594831 0.594831i
\(534\) 0 0
\(535\) 6.03226 40.4361i 0.260797 1.74821i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.53317 0.109111
\(540\) 0 0
\(541\) 19.8334 0.852705 0.426352 0.904557i \(-0.359798\pi\)
0.426352 + 0.904557i \(0.359798\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.54367 4.78633i −0.151794 0.205024i
\(546\) 0 0
\(547\) −16.7996 16.7996i −0.718298 0.718298i 0.249959 0.968257i \(-0.419583\pi\)
−0.968257 + 0.249959i \(0.919583\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.515821i 0.0219747i
\(552\) 0 0
\(553\) −1.35457 + 1.35457i −0.0576023 + 0.0576023i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.18914 2.18914i 0.0927568 0.0927568i −0.659206 0.751963i \(-0.729107\pi\)
0.751963 + 0.659206i \(0.229107\pi\)
\(558\) 0 0
\(559\) 13.0518i 0.552030i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6.06369 + 6.06369i 0.255554 + 0.255554i 0.823243 0.567689i \(-0.192162\pi\)
−0.567689 + 0.823243i \(0.692162\pi\)
\(564\) 0 0
\(565\) −25.0426 3.73586i −1.05355 0.157169i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.41183 0.0591872 0.0295936 0.999562i \(-0.490579\pi\)
0.0295936 + 0.999562i \(0.490579\pi\)
\(570\) 0 0
\(571\) 18.0732 0.756341 0.378170 0.925736i \(-0.376553\pi\)
0.378170 + 0.925736i \(0.376553\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.41349 + 2.34970i −0.184055 + 0.0979892i
\(576\) 0 0
\(577\) 9.43120 + 9.43120i 0.392626 + 0.392626i 0.875622 0.482996i \(-0.160452\pi\)
−0.482996 + 0.875622i \(0.660452\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.28756i 0.177878i
\(582\) 0 0
\(583\) −3.66647 + 3.66647i −0.151850 + 0.151850i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.35721 9.35721i 0.386213 0.386213i −0.487121 0.873334i \(-0.661953\pi\)
0.873334 + 0.487121i \(0.161953\pi\)
\(588\) 0 0
\(589\) 0.595301i 0.0245289i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.93801 + 1.93801i 0.0795847 + 0.0795847i 0.745779 0.666194i \(-0.232078\pi\)
−0.666194 + 0.745779i \(0.732078\pi\)
\(594\) 0 0
\(595\) 7.07067 5.23493i 0.289869 0.214611i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 32.7542 1.33830 0.669151 0.743126i \(-0.266658\pi\)
0.669151 + 0.743126i \(0.266658\pi\)
\(600\) 0 0
\(601\) 0.394168 0.0160785 0.00803923 0.999968i \(-0.497441\pi\)
0.00803923 + 0.999968i \(0.497441\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −19.5111 + 14.4455i −0.793241 + 0.587293i
\(606\) 0 0
\(607\) 15.0119 + 15.0119i 0.609314 + 0.609314i 0.942767 0.333453i \(-0.108214\pi\)
−0.333453 + 0.942767i \(0.608214\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 31.9558i 1.29279i
\(612\) 0 0
\(613\) −14.1990 + 14.1990i −0.573494 + 0.573494i −0.933103 0.359609i \(-0.882910\pi\)
0.359609 + 0.933103i \(0.382910\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.73614 1.73614i 0.0698942 0.0698942i −0.671296 0.741190i \(-0.734262\pi\)
0.741190 + 0.671296i \(0.234262\pi\)
\(618\) 0 0
\(619\) 44.8347i 1.80206i −0.433757 0.901030i \(-0.642812\pi\)
0.433757 0.901030i \(-0.357188\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.52784 3.52784i −0.141340 0.141340i
\(624\) 0 0
\(625\) −20.7408 13.9578i −0.829630 0.558313i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 11.4771 0.457621
\(630\) 0 0
\(631\) 24.5581 0.977641 0.488820 0.872384i \(-0.337427\pi\)
0.488820 + 0.872384i \(0.337427\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −40.6964 6.07109i −1.61499 0.240924i
\(636\) 0 0
\(637\) 20.4940 + 20.4940i 0.812002 + 0.812002i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 29.7042i 1.17324i 0.809861 + 0.586622i \(0.199543\pi\)
−0.809861 + 0.586622i \(0.800457\pi\)
\(642\) 0 0
\(643\) −29.7459 + 29.7459i −1.17306 + 1.17306i −0.191588 + 0.981475i \(0.561364\pi\)
−0.981475 + 0.191588i \(0.938636\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −21.8748 + 21.8748i −0.859989 + 0.859989i −0.991336 0.131347i \(-0.958070\pi\)
0.131347 + 0.991336i \(0.458070\pi\)
\(648\) 0 0
\(649\) 4.85832i 0.190706i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.3774 17.3774i −0.680029 0.680029i 0.279978 0.960007i \(-0.409673\pi\)
−0.960007 + 0.279978i \(0.909673\pi\)
\(654\) 0 0
\(655\) 24.7165 + 33.3839i 0.965754 + 1.30442i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −45.3952 −1.76834 −0.884172 0.467161i \(-0.845277\pi\)
−0.884172 + 0.467161i \(0.845277\pi\)
\(660\) 0 0
\(661\) −25.1430 −0.977949 −0.488975 0.872298i \(-0.662629\pi\)
−0.488975 + 0.872298i \(0.662629\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.354802 2.37835i 0.0137586 0.0922284i
\(666\) 0 0
\(667\) 0.187186 + 0.187186i 0.00724787 + 0.00724787i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.24209i 0.163764i
\(672\) 0 0
\(673\) −16.1263 + 16.1263i −0.621623 + 0.621623i −0.945946 0.324323i \(-0.894863\pi\)
0.324323 + 0.945946i \(0.394863\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.9685 20.9685i 0.805885 0.805885i −0.178123 0.984008i \(-0.557003\pi\)
0.984008 + 0.178123i \(0.0570026\pi\)
\(678\) 0 0
\(679\) 0.464809i 0.0178377i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −13.2992 13.2992i −0.508879 0.508879i 0.405303 0.914182i \(-0.367166\pi\)
−0.914182 + 0.405303i \(0.867166\pi\)
\(684\) 0 0
\(685\) −1.36049 + 9.11979i −0.0519817 + 0.348449i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −59.3254 −2.26012
\(690\) 0 0
\(691\) 23.7767 0.904507 0.452254 0.891889i \(-0.350620\pi\)
0.452254 + 0.891889i \(0.350620\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −23.4748 31.7068i −0.890449 1.20271i
\(696\) 0 0
\(697\) 22.6160 + 22.6160i 0.856641 + 0.856641i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.72768i 0.178562i −0.996006 0.0892811i \(-0.971543\pi\)
0.996006 0.0892811i \(-0.0284569\pi\)
\(702\) 0 0
\(703\) 2.21822 2.21822i 0.0836617 0.0836617i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.55131 3.55131i 0.133561 0.133561i
\(708\) 0 0
\(709\) 41.0895i 1.54315i −0.636139 0.771574i \(-0.719470\pi\)
0.636139 0.771574i \(-0.280530\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.216028 0.216028i −0.00809033 0.00809033i
\(714\) 0 0
\(715\) 3.62207 + 0.540340i 0.135458 + 0.0202076i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −19.3520 −0.721708 −0.360854 0.932622i \(-0.617515\pi\)
−0.360854 + 0.932622i \(0.617515\pi\)
\(720\) 0 0
\(721\) 5.82052 0.216768
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.386314 + 1.26598i −0.0143473 + 0.0470171i
\(726\) 0 0
\(727\) 2.58374 + 2.58374i 0.0958258 + 0.0958258i 0.753395 0.657569i \(-0.228415\pi\)
−0.657569 + 0.753395i \(0.728415\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 21.4945i 0.795002i
\(732\) 0 0
\(733\) −15.5843 + 15.5843i −0.575618 + 0.575618i −0.933693 0.358075i \(-0.883433\pi\)
0.358075 + 0.933693i \(0.383433\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.575204 0.575204i 0.0211879 0.0211879i
\(738\) 0 0
\(739\) 15.9119i 0.585330i 0.956215 + 0.292665i \(0.0945422\pi\)
−0.956215 + 0.292665i \(0.905458\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.5394 + 13.5394i 0.496714 + 0.496714i 0.910414 0.413699i \(-0.135764\pi\)
−0.413699 + 0.910414i \(0.635764\pi\)
\(744\) 0 0
\(745\) −3.02071 + 2.23644i −0.110670 + 0.0819370i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.0907 0.368708
\(750\) 0 0
\(751\) 32.2409 1.17649 0.588244 0.808684i \(-0.299820\pi\)
0.588244 + 0.808684i \(0.299820\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.35667 3.22556i 0.158556 0.117390i
\(756\) 0 0
\(757\) −18.4185 18.4185i −0.669432 0.669432i 0.288153 0.957585i \(-0.406959\pi\)
−0.957585 + 0.288153i \(0.906959\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 46.8459i 1.69816i 0.528263 + 0.849081i \(0.322843\pi\)
−0.528263 + 0.849081i \(0.677157\pi\)
\(762\) 0 0
\(763\) 1.03937 1.03937i 0.0376276 0.0376276i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −39.3051 + 39.3051i −1.41923 + 1.41923i
\(768\) 0 0
\(769\) 10.6033i 0.382364i −0.981555 0.191182i \(-0.938768\pi\)
0.981555 0.191182i \(-0.0612321\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.69554 5.69554i −0.204854 0.204854i 0.597222 0.802076i \(-0.296271\pi\)
−0.802076 + 0.597222i \(0.796271\pi\)
\(774\) 0 0
\(775\) 0.445838 1.46104i 0.0160150 0.0524822i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.74214 0.313220
\(780\) 0 0
\(781\) −4.30831 −0.154163
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −21.3814 3.18968i −0.763135 0.113844i
\(786\) 0 0
\(787\) 33.6861 + 33.6861i 1.20078 + 1.20078i 0.973929 + 0.226851i \(0.0728430\pi\)
0.226851 + 0.973929i \(0.427157\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.24934i 0.222201i
\(792\) 0 0
\(793\) 34.3197 34.3197i 1.21873 1.21873i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.0466887 0.0466887i 0.00165380 0.00165380i −0.706279 0.707933i \(-0.749628\pi\)
0.707933 + 0.706279i \(0.249628\pi\)
\(798\) 0 0
\(799\) 52.6269i 1.86181i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2.57103 2.57103i −0.0907298 0.0907298i
\(804\) 0 0
\(805\) −0.734324 0.991832i −0.0258815 0.0349575i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −10.4158 −0.366201 −0.183101 0.983094i \(-0.558613\pi\)
−0.183101 + 0.983094i \(0.558613\pi\)
\(810\) 0 0
\(811\) 35.1939 1.23582 0.617912 0.786247i \(-0.287979\pi\)
0.617912 + 0.786247i \(0.287979\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.82489 45.7494i 0.239065 1.60253i
\(816\) 0 0
\(817\) 4.15432 + 4.15432i 0.145341 + 0.145341i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19.1595i 0.668671i 0.942454 + 0.334336i \(0.108512\pi\)
−0.942454 + 0.334336i \(0.891488\pi\)
\(822\) 0 0
\(823\) −4.10453 + 4.10453i −0.143075 + 0.143075i −0.775016 0.631941i \(-0.782258\pi\)
0.631941 + 0.775016i \(0.282258\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −22.5903 + 22.5903i −0.785541 + 0.785541i −0.980760 0.195218i \(-0.937458\pi\)
0.195218 + 0.980760i \(0.437458\pi\)
\(828\) 0 0
\(829\) 3.14301i 0.109161i 0.998509 + 0.0545806i \(0.0173822\pi\)
−0.998509 + 0.0545806i \(0.982618\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −33.7509 33.7509i −1.16940 1.16940i
\(834\) 0 0
\(835\) −5.76263 + 38.6287i −0.199424 + 1.33680i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 26.5815 0.917696 0.458848 0.888515i \(-0.348262\pi\)
0.458848 + 0.888515i \(0.348262\pi\)
\(840\) 0 0
\(841\) −28.9299 −0.997584
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 7.63499 + 10.3124i 0.262652 + 0.354756i
\(846\) 0 0
\(847\) −4.23690 4.23690i −0.145582 0.145582i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.60994i 0.0551879i
\(852\) 0 0
\(853\) −11.9932 + 11.9932i −0.410639 + 0.410639i −0.881961 0.471322i \(-0.843777\pi\)
0.471322 + 0.881961i \(0.343777\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.94081 + 3.94081i −0.134616 + 0.134616i −0.771204 0.636588i \(-0.780345\pi\)
0.636588 + 0.771204i \(0.280345\pi\)
\(858\) 0 0
\(859\) 55.4201i 1.89091i −0.325756 0.945454i \(-0.605619\pi\)
0.325756 0.945454i \(-0.394381\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −14.2660 14.2660i −0.485621 0.485621i 0.421300 0.906921i \(-0.361574\pi\)
−0.906921 + 0.421300i \(0.861574\pi\)
\(864\) 0 0
\(865\) 3.30521 + 0.493070i 0.112380 + 0.0167649i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.31324 0.0445486
\(870\) 0 0
\(871\) 9.30712 0.315360
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.65200 5.57144i 0.0896541 0.188349i
\(876\) 0 0
\(877\) −18.7475 18.7475i −0.633058 0.633058i 0.315776 0.948834i \(-0.397735\pi\)
−0.948834 + 0.315776i \(0.897735\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 51.3210i 1.72905i −0.502593 0.864523i \(-0.667620\pi\)
0.502593 0.864523i \(-0.332380\pi\)
\(882\) 0 0
\(883\) −32.6631 + 32.6631i −1.09920 + 1.09920i −0.104697 + 0.994504i \(0.533387\pi\)
−0.994504 + 0.104697i \(0.966613\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.80786 + 8.80786i −0.295739 + 0.295739i −0.839342 0.543603i \(-0.817060\pi\)
0.543603 + 0.839342i \(0.317060\pi\)
\(888\) 0 0
\(889\) 10.1557i 0.340611i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −10.1714 10.1714i −0.340373 0.340373i
\(894\) 0 0
\(895\) −39.2825 + 29.0837i −1.31307 + 0.972159i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.0808750 −0.00269733
\(900\) 0 0
\(901\) 97.7010 3.25489
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −39.9965 + 29.6123i −1.32953 + 0.984345i
\(906\) 0 0
\(907\) −12.1956 12.1956i −0.404950 0.404950i 0.475023 0.879973i \(-0.342440\pi\)
−0.879973 + 0.475023i \(0.842440\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 31.3821i 1.03973i −0.854247 0.519867i \(-0.825981\pi\)
0.854247 0.519867i \(-0.174019\pi\)
\(912\) 0 0
\(913\) 2.07837 2.07837i 0.0687839 0.0687839i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7.24942 + 7.24942i −0.239397 + 0.239397i
\(918\) 0 0
\(919\) 27.5489i 0.908753i −0.890810 0.454376i \(-0.849862\pi\)
0.890810 0.454376i \(-0.150138\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −34.8554 34.8554i −1.14728 1.14728i
\(924\) 0 0
\(925\) 7.10545 3.78287i 0.233626 0.124380i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −45.1369 −1.48090 −0.740448 0.672114i \(-0.765386\pi\)
−0.740448 + 0.672114i \(0.765386\pi\)
\(930\) 0 0
\(931\) −13.0463 −0.427575
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.96506 0.889868i −0.195078 0.0291018i
\(936\) 0 0
\(937\) 11.7767 + 11.7767i 0.384729 + 0.384729i 0.872803 0.488074i \(-0.162300\pi\)
−0.488074 + 0.872803i \(0.662300\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.396097i 0.0129124i −0.999979 0.00645619i \(-0.997945\pi\)
0.999979 0.00645619i \(-0.00205508\pi\)
\(942\) 0 0
\(943\) 3.17243 3.17243i 0.103309 0.103309i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 35.1802 35.1802i 1.14320 1.14320i 0.155343 0.987861i \(-0.450352\pi\)
0.987861 0.155343i \(-0.0496483\pi\)
\(948\) 0 0
\(949\) 41.6007i 1.35042i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −4.74912 4.74912i −0.153839 0.153839i 0.625991 0.779830i \(-0.284695\pi\)
−0.779830 + 0.625991i \(0.784695\pi\)
\(954\) 0 0
\(955\) 7.45012 + 10.0627i 0.241080 + 0.325621i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.27583 −0.0734903
\(960\) 0 0
\(961\) −30.9067 −0.996989
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −4.19379 + 28.1123i −0.135003 + 0.904966i
\(966\) 0 0
\(967\) −15.6993 15.6993i −0.504855 0.504855i 0.408088 0.912943i \(-0.366196\pi\)
−0.912943 + 0.408088i \(0.866196\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 25.6278i 0.822434i −0.911537 0.411217i \(-0.865104\pi\)
0.911537 0.411217i \(-0.134896\pi\)
\(972\) 0 0
\(973\) 6.88522 6.88522i 0.220730 0.220730i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.83000 + 2.83000i −0.0905397 + 0.0905397i −0.750926 0.660386i \(-0.770393\pi\)
0.660386 + 0.750926i \(0.270393\pi\)
\(978\) 0 0
\(979\) 3.42019i 0.109310i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.15281 + 3.15281i 0.100559 + 0.100559i 0.755596 0.655037i \(-0.227347\pi\)
−0.655037 + 0.755596i \(0.727347\pi\)
\(984\) 0 0
\(985\) 6.01140 40.2963i 0.191539 1.28395i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.01512 0.0958752
\(990\) 0 0
\(991\) 4.64796 0.147647 0.0738237 0.997271i \(-0.476480\pi\)
0.0738237 + 0.997271i \(0.476480\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.787873 1.06416i −0.0249773 0.0337361i
\(996\) 0 0
\(997\) −0.504569 0.504569i −0.0159798 0.0159798i 0.699072 0.715052i \(-0.253597\pi\)
−0.715052 + 0.699072i \(0.753597\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4140.2.s.b.737.4 44
3.2 odd 2 inner 4140.2.s.b.737.19 yes 44
5.3 odd 4 inner 4140.2.s.b.2393.19 yes 44
15.8 even 4 inner 4140.2.s.b.2393.4 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4140.2.s.b.737.4 44 1.1 even 1 trivial
4140.2.s.b.737.19 yes 44 3.2 odd 2 inner
4140.2.s.b.2393.4 yes 44 15.8 even 4 inner
4140.2.s.b.2393.19 yes 44 5.3 odd 4 inner