Properties

Label 4140.2
Level 4140
Weight 2
Dimension 191254
Nonzero newspaces 48
Sturm bound 1824768

Downloads

Learn more

Defining parameters

Level: N N = 4140=2232523 4140 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 23
Weight: k k = 2 2
Nonzero newspaces: 48 48
Sturm bound: 18247681824768

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(4140))M_{2}(\Gamma_1(4140)).

Total New Old
Modular forms 463232 193518 269714
Cusp forms 449153 191254 257899
Eisenstein series 14079 2264 11815

Decomposition of S2new(Γ1(4140))S_{2}^{\mathrm{new}}(\Gamma_1(4140))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
4140.2.a χ4140(1,)\chi_{4140}(1, \cdot) 4140.2.a.a 1 1
4140.2.a.b 1
4140.2.a.c 1
4140.2.a.d 1
4140.2.a.e 1
4140.2.a.f 1
4140.2.a.g 1
4140.2.a.h 1
4140.2.a.i 1
4140.2.a.j 1
4140.2.a.k 1
4140.2.a.l 2
4140.2.a.m 2
4140.2.a.n 2
4140.2.a.o 2
4140.2.a.p 2
4140.2.a.q 2
4140.2.a.r 2
4140.2.a.s 3
4140.2.a.t 5
4140.2.a.u 5
4140.2.f χ4140(829,)\chi_{4140}(829, \cdot) 4140.2.f.a 6 1
4140.2.f.b 12
4140.2.f.c 14
4140.2.f.d 24
4140.2.g χ4140(919,)\chi_{4140}(919, \cdot) n/a 356 1
4140.2.h χ4140(1151,)\chi_{4140}(1151, \cdot) n/a 176 1
4140.2.i χ4140(1241,)\chi_{4140}(1241, \cdot) 4140.2.i.a 16 1
4140.2.i.b 16
4140.2.n χ4140(2069,)\chi_{4140}(2069, \cdot) 4140.2.n.a 16 1
4140.2.n.b 32
4140.2.o χ4140(1979,)\chi_{4140}(1979, \cdot) n/a 264 1
4140.2.p χ4140(91,)\chi_{4140}(91, \cdot) n/a 240 1
4140.2.q χ4140(1381,)\chi_{4140}(1381, \cdot) n/a 176 2
4140.2.r χ4140(827,)\chi_{4140}(827, \cdot) n/a 576 2
4140.2.s χ4140(737,)\chi_{4140}(737, \cdot) 4140.2.s.a 44 2
4140.2.s.b 44
4140.2.t χ4140(1243,)\chi_{4140}(1243, \cdot) n/a 660 2
4140.2.u χ4140(1333,)\chi_{4140}(1333, \cdot) n/a 120 2
4140.2.z χ4140(1471,)\chi_{4140}(1471, \cdot) n/a 1152 2
4140.2.ba χ4140(689,)\chi_{4140}(689, \cdot) n/a 288 2
4140.2.bb χ4140(599,)\chi_{4140}(599, \cdot) n/a 1584 2
4140.2.bg χ4140(2531,)\chi_{4140}(2531, \cdot) n/a 1056 2
4140.2.bh χ4140(2621,)\chi_{4140}(2621, \cdot) n/a 192 2
4140.2.bi χ4140(2209,)\chi_{4140}(2209, \cdot) n/a 264 2
4140.2.bj χ4140(2299,)\chi_{4140}(2299, \cdot) n/a 1712 2
4140.2.bo χ4140(361,)\chi_{4140}(361, \cdot) n/a 400 10
4140.2.bt χ4140(1013,)\chi_{4140}(1013, \cdot) n/a 528 4
4140.2.bu χ4140(1103,)\chi_{4140}(1103, \cdot) n/a 3424 4
4140.2.bv χ4140(1057,)\chi_{4140}(1057, \cdot) n/a 576 4
4140.2.bw χ4140(967,)\chi_{4140}(967, \cdot) n/a 3168 4
4140.2.bx χ4140(451,)\chi_{4140}(451, \cdot) n/a 2400 10
4140.2.by χ4140(179,)\chi_{4140}(179, \cdot) n/a 2880 10
4140.2.bz χ4140(89,)\chi_{4140}(89, \cdot) n/a 480 10
4140.2.ce χ4140(341,)\chi_{4140}(341, \cdot) n/a 320 10
4140.2.cf χ4140(71,)\chi_{4140}(71, \cdot) n/a 1920 10
4140.2.cg χ4140(19,)\chi_{4140}(19, \cdot) n/a 3560 10
4140.2.ch χ4140(289,)\chi_{4140}(289, \cdot) n/a 600 10
4140.2.cm χ4140(121,)\chi_{4140}(121, \cdot) n/a 1920 20
4140.2.cr χ4140(37,)\chi_{4140}(37, \cdot) n/a 1200 20
4140.2.cs χ4140(127,)\chi_{4140}(127, \cdot) n/a 7120 20
4140.2.ct χ4140(197,)\chi_{4140}(197, \cdot) n/a 960 20
4140.2.cu χ4140(107,)\chi_{4140}(107, \cdot) n/a 5760 20
4140.2.cz χ4140(79,)\chi_{4140}(79, \cdot) n/a 17120 20
4140.2.da χ4140(49,)\chi_{4140}(49, \cdot) n/a 2880 20
4140.2.db χ4140(221,)\chi_{4140}(221, \cdot) n/a 1920 20
4140.2.dc χ4140(131,)\chi_{4140}(131, \cdot) n/a 11520 20
4140.2.dh χ4140(59,)\chi_{4140}(59, \cdot) n/a 17120 20
4140.2.di χ4140(149,)\chi_{4140}(149, \cdot) n/a 2880 20
4140.2.dj χ4140(511,)\chi_{4140}(511, \cdot) n/a 11520 20
4140.2.dk χ4140(187,)\chi_{4140}(187, \cdot) n/a 34240 40
4140.2.dl χ4140(97,)\chi_{4140}(97, \cdot) n/a 5760 40
4140.2.dm χ4140(83,)\chi_{4140}(83, \cdot) n/a 34240 40
4140.2.dn χ4140(77,)\chi_{4140}(77, \cdot) n/a 5760 40

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(4140))S_{2}^{\mathrm{old}}(\Gamma_1(4140)) into lower level spaces

S2old(Γ1(4140)) S_{2}^{\mathrm{old}}(\Gamma_1(4140)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))36^{\oplus 36}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))24^{\oplus 24}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))24^{\oplus 24}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))12^{\oplus 12}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))18^{\oplus 18}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))16^{\oplus 16}\oplusS2new(Γ1(9))S_{2}^{\mathrm{new}}(\Gamma_1(9))12^{\oplus 12}\oplusS2new(Γ1(10))S_{2}^{\mathrm{new}}(\Gamma_1(10))12^{\oplus 12}\oplusS2new(Γ1(12))S_{2}^{\mathrm{new}}(\Gamma_1(12))8^{\oplus 8}\oplusS2new(Γ1(15))S_{2}^{\mathrm{new}}(\Gamma_1(15))12^{\oplus 12}\oplusS2new(Γ1(18))S_{2}^{\mathrm{new}}(\Gamma_1(18))8^{\oplus 8}\oplusS2new(Γ1(20))S_{2}^{\mathrm{new}}(\Gamma_1(20))6^{\oplus 6}\oplusS2new(Γ1(23))S_{2}^{\mathrm{new}}(\Gamma_1(23))18^{\oplus 18}\oplusS2new(Γ1(30))S_{2}^{\mathrm{new}}(\Gamma_1(30))8^{\oplus 8}\oplusS2new(Γ1(36))S_{2}^{\mathrm{new}}(\Gamma_1(36))4^{\oplus 4}\oplusS2new(Γ1(45))S_{2}^{\mathrm{new}}(\Gamma_1(45))6^{\oplus 6}\oplusS2new(Γ1(46))S_{2}^{\mathrm{new}}(\Gamma_1(46))12^{\oplus 12}\oplusS2new(Γ1(60))S_{2}^{\mathrm{new}}(\Gamma_1(60))4^{\oplus 4}\oplusS2new(Γ1(69))S_{2}^{\mathrm{new}}(\Gamma_1(69))12^{\oplus 12}\oplusS2new(Γ1(90))S_{2}^{\mathrm{new}}(\Gamma_1(90))4^{\oplus 4}\oplusS2new(Γ1(92))S_{2}^{\mathrm{new}}(\Gamma_1(92))6^{\oplus 6}\oplusS2new(Γ1(115))S_{2}^{\mathrm{new}}(\Gamma_1(115))9^{\oplus 9}\oplusS2new(Γ1(138))S_{2}^{\mathrm{new}}(\Gamma_1(138))8^{\oplus 8}\oplusS2new(Γ1(180))S_{2}^{\mathrm{new}}(\Gamma_1(180))2^{\oplus 2}\oplusS2new(Γ1(207))S_{2}^{\mathrm{new}}(\Gamma_1(207))6^{\oplus 6}\oplusS2new(Γ1(230))S_{2}^{\mathrm{new}}(\Gamma_1(230))6^{\oplus 6}\oplusS2new(Γ1(276))S_{2}^{\mathrm{new}}(\Gamma_1(276))4^{\oplus 4}\oplusS2new(Γ1(345))S_{2}^{\mathrm{new}}(\Gamma_1(345))6^{\oplus 6}\oplusS2new(Γ1(414))S_{2}^{\mathrm{new}}(\Gamma_1(414))4^{\oplus 4}\oplusS2new(Γ1(460))S_{2}^{\mathrm{new}}(\Gamma_1(460))3^{\oplus 3}\oplusS2new(Γ1(690))S_{2}^{\mathrm{new}}(\Gamma_1(690))4^{\oplus 4}\oplusS2new(Γ1(828))S_{2}^{\mathrm{new}}(\Gamma_1(828))2^{\oplus 2}\oplusS2new(Γ1(1035))S_{2}^{\mathrm{new}}(\Gamma_1(1035))3^{\oplus 3}\oplusS2new(Γ1(1380))S_{2}^{\mathrm{new}}(\Gamma_1(1380))2^{\oplus 2}\oplusS2new(Γ1(2070))S_{2}^{\mathrm{new}}(\Gamma_1(2070))2^{\oplus 2}