Properties

Label 4140.bw
Modulus 41404140
Conductor 180180
Order 1212
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,4,3,0]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(967,4140))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 41404140
Conductor: 180180
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 180.x
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.344373768000000000.1

Characters in Galois orbit

Character 1-1 11 77 1111 1313 1717 1919 2929 3131 3737 4141 4343
χ4140(967,)\chi_{4140}(967,\cdot) 11 11 e(112)e\left(\frac{1}{12}\right) e(56)e\left(\frac{5}{6}\right) e(512)e\left(\frac{5}{12}\right) ii 11 e(56)e\left(\frac{5}{6}\right) e(16)e\left(\frac{1}{6}\right) ii e(23)e\left(\frac{2}{3}\right) e(712)e\left(\frac{7}{12}\right)
χ4140(2347,)\chi_{4140}(2347,\cdot) 11 11 e(512)e\left(\frac{5}{12}\right) e(16)e\left(\frac{1}{6}\right) e(112)e\left(\frac{1}{12}\right) ii 11 e(16)e\left(\frac{1}{6}\right) e(56)e\left(\frac{5}{6}\right) ii e(13)e\left(\frac{1}{3}\right) e(1112)e\left(\frac{11}{12}\right)
χ4140(2623,)\chi_{4140}(2623,\cdot) 11 11 e(712)e\left(\frac{7}{12}\right) e(56)e\left(\frac{5}{6}\right) e(1112)e\left(\frac{11}{12}\right) i-i 11 e(56)e\left(\frac{5}{6}\right) e(16)e\left(\frac{1}{6}\right) i-i e(23)e\left(\frac{2}{3}\right) e(112)e\left(\frac{1}{12}\right)
χ4140(4003,)\chi_{4140}(4003,\cdot) 11 11 e(1112)e\left(\frac{11}{12}\right) e(16)e\left(\frac{1}{6}\right) e(712)e\left(\frac{7}{12}\right) i-i 11 e(16)e\left(\frac{1}{6}\right) e(56)e\left(\frac{5}{6}\right) i-i e(13)e\left(\frac{1}{3}\right) e(512)e\left(\frac{5}{12}\right)