Properties

Label 4140.2623
Modulus 41404140
Conductor 180180
Order 1212
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,4,9,0]))
 
pari: [g,chi] = znchar(Mod(2623,4140))
 

Basic properties

Modulus: 41404140
Conductor: 180180
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ180(103,)\chi_{180}(103,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4140.bw

χ4140(967,)\chi_{4140}(967,\cdot) χ4140(2347,)\chi_{4140}(2347,\cdot) χ4140(2623,)\chi_{4140}(2623,\cdot) χ4140(4003,)\chi_{4140}(4003,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.344373768000000000.1

Values on generators

(2071,461,1657,3961)(2071,461,1657,3961)(1,e(13),i,1)(-1,e\left(\frac{1}{3}\right),-i,1)

First values

aa 1-11177111113131717191929293131373741414343
χ4140(2623,a) \chi_{ 4140 }(2623, a) 1111e(712)e\left(\frac{7}{12}\right)e(56)e\left(\frac{5}{6}\right)e(1112)e\left(\frac{11}{12}\right)i-i11e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)i-ie(23)e\left(\frac{2}{3}\right)e(112)e\left(\frac{1}{12}\right)
sage: chi.jacobi_sum(n)
 
χ4140(2623,a)   \chi_{ 4140 }(2623,a) \; at   a=\;a = e.g. 2