Properties

Label 4140.dk
Modulus $4140$
Conductor $4140$
Order $132$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(132))
 
M = H._module
 
chi = DirichletCharacter(H, M([66,88,33,96]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(187,4140))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4140\)
Conductor: \(4140\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(132\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{132})$
Fixed field: Number field defined by a degree 132 polynomial (not computed)

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{4140}(187,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{132}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{35}{132}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{73}{132}\right)\)
\(\chi_{4140}(223,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{132}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{89}{132}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{31}{132}\right)\)
\(\chi_{4140}(403,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{132}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{41}{132}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{127}{132}\right)\)
\(\chi_{4140}(427,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{132}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{43}{132}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{101}{132}\right)\)
\(\chi_{4140}(463,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{132}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{13}{132}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{95}{132}\right)\)
\(\chi_{4140}(547,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{132}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{95}{132}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{85}{132}\right)\)
\(\chi_{4140}(583,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{132}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{53}{132}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{103}{132}\right)\)
\(\chi_{4140}(607,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{132}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{103}{132}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{113}{132}\right)\)
\(\chi_{4140}(763,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{132}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{17}{132}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{43}{132}\right)\)
\(\chi_{4140}(823,\cdot)\) \(1\) \(1\) \(e\left(\frac{125}{132}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{73}{132}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{107}{132}\right)\)
\(\chi_{4140}(1087,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{132}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{71}{132}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{1}{132}\right)\)
\(\chi_{4140}(1267,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{132}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{47}{132}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{49}{132}\right)\)
\(\chi_{4140}(1327,\cdot)\) \(1\) \(1\) \(e\left(\frac{131}{132}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{67}{132}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{53}{132}\right)\)
\(\chi_{4140}(1363,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{132}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{49}{132}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{23}{132}\right)\)
\(\chi_{4140}(1507,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{132}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{19}{132}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{17}{132}\right)\)
\(\chi_{4140}(1543,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{132}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{25}{132}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{71}{132}\right)\)
\(\chi_{4140}(1687,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{132}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{31}{132}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{125}{132}\right)\)
\(\chi_{4140}(1807,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{132}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{131}{132}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{13}{132}\right)\)
\(\chi_{4140}(1843,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{132}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{101}{132}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{7}{132}\right)\)
\(\chi_{4140}(1867,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{132}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{127}{132}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{65}{132}\right)\)
\(\chi_{4140}(1987,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{132}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{59}{132}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{25}{132}\right)\)
\(\chi_{4140}(2083,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{132}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{109}{132}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{35}{132}\right)\)
\(\chi_{4140}(2203,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{132}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{29}{132}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{19}{132}\right)\)
\(\chi_{4140}(2263,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{132}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{37}{132}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{47}{132}\right)\)
\(\chi_{4140}(2707,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{132}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{23}{132}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{97}{132}\right)\)
\(\chi_{4140}(2743,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{132}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{5}{132}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{67}{132}\right)\)
\(\chi_{4140}(2887,\cdot)\) \(1\) \(1\) \(e\left(\frac{91}{132}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{107}{132}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{61}{132}\right)\)
\(\chi_{4140}(2923,\cdot)\) \(1\) \(1\) \(e\left(\frac{85}{132}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{113}{132}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{115}{132}\right)\)
\(\chi_{4140}(2947,\cdot)\) \(1\) \(1\) \(e\left(\frac{119}{132}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{79}{132}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{29}{132}\right)\)
\(\chi_{4140}(2983,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{132}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{1}{132}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{119}{132}\right)\)
\(\chi_{4140}(3067,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{132}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{119}{132}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{37}{132}\right)\)