Properties

Label 4140.1327
Modulus $4140$
Conductor $4140$
Order $132$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(132))
 
M = H._module
 
chi = DirichletCharacter(H, M([66,44,33,48]))
 
pari: [g,chi] = znchar(Mod(1327,4140))
 

Basic properties

Modulus: \(4140\)
Conductor: \(4140\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(132\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4140.dk

\(\chi_{4140}(187,\cdot)\) \(\chi_{4140}(223,\cdot)\) \(\chi_{4140}(403,\cdot)\) \(\chi_{4140}(427,\cdot)\) \(\chi_{4140}(463,\cdot)\) \(\chi_{4140}(547,\cdot)\) \(\chi_{4140}(583,\cdot)\) \(\chi_{4140}(607,\cdot)\) \(\chi_{4140}(763,\cdot)\) \(\chi_{4140}(823,\cdot)\) \(\chi_{4140}(1087,\cdot)\) \(\chi_{4140}(1267,\cdot)\) \(\chi_{4140}(1327,\cdot)\) \(\chi_{4140}(1363,\cdot)\) \(\chi_{4140}(1507,\cdot)\) \(\chi_{4140}(1543,\cdot)\) \(\chi_{4140}(1687,\cdot)\) \(\chi_{4140}(1807,\cdot)\) \(\chi_{4140}(1843,\cdot)\) \(\chi_{4140}(1867,\cdot)\) \(\chi_{4140}(1987,\cdot)\) \(\chi_{4140}(2083,\cdot)\) \(\chi_{4140}(2203,\cdot)\) \(\chi_{4140}(2263,\cdot)\) \(\chi_{4140}(2707,\cdot)\) \(\chi_{4140}(2743,\cdot)\) \(\chi_{4140}(2887,\cdot)\) \(\chi_{4140}(2923,\cdot)\) \(\chi_{4140}(2947,\cdot)\) \(\chi_{4140}(2983,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{132})$
Fixed field: Number field defined by a degree 132 polynomial (not computed)

Values on generators

\((2071,461,1657,3961)\) → \((-1,e\left(\frac{1}{3}\right),i,e\left(\frac{4}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 4140 }(1327, a) \) \(1\)\(1\)\(e\left(\frac{131}{132}\right)\)\(e\left(\frac{7}{66}\right)\)\(e\left(\frac{67}{132}\right)\)\(e\left(\frac{35}{44}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{25}{66}\right)\)\(e\left(\frac{23}{66}\right)\)\(e\left(\frac{39}{44}\right)\)\(e\left(\frac{1}{33}\right)\)\(e\left(\frac{53}{132}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4140 }(1327,a) \;\) at \(\;a = \) e.g. 2