from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4140, base_ring=CyclotomicField(132))
M = H._module
chi = DirichletCharacter(H, M([66,44,33,48]))
pari: [g,chi] = znchar(Mod(1327,4140))
χ4140(187,⋅)
χ4140(223,⋅)
χ4140(403,⋅)
χ4140(427,⋅)
χ4140(463,⋅)
χ4140(547,⋅)
χ4140(583,⋅)
χ4140(607,⋅)
χ4140(763,⋅)
χ4140(823,⋅)
χ4140(1087,⋅)
χ4140(1267,⋅)
χ4140(1327,⋅)
χ4140(1363,⋅)
χ4140(1507,⋅)
χ4140(1543,⋅)
χ4140(1687,⋅)
χ4140(1807,⋅)
χ4140(1843,⋅)
χ4140(1867,⋅)
χ4140(1987,⋅)
χ4140(2083,⋅)
χ4140(2203,⋅)
χ4140(2263,⋅)
χ4140(2707,⋅)
χ4140(2743,⋅)
χ4140(2887,⋅)
χ4140(2923,⋅)
χ4140(2947,⋅)
χ4140(2983,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2071,461,1657,3961) → (−1,e(31),i,e(114))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 29 | 31 | 37 | 41 | 43 |
χ4140(1327,a) |
1 | 1 | e(132131) | e(667) | e(13267) | e(4435) | e(115) | e(6625) | e(6623) | e(4439) | e(331) | e(13253) |