Properties

Label 4140.1867
Modulus 41404140
Conductor 41404140
Order 132132
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(132))
 
M = H._module
 
chi = DirichletCharacter(H, M([66,44,33,24]))
 
pari: [g,chi] = znchar(Mod(1867,4140))
 

Basic properties

Modulus: 41404140
Conductor: 41404140
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 132132
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4140.dk

χ4140(187,)\chi_{4140}(187,\cdot) χ4140(223,)\chi_{4140}(223,\cdot) χ4140(403,)\chi_{4140}(403,\cdot) χ4140(427,)\chi_{4140}(427,\cdot) χ4140(463,)\chi_{4140}(463,\cdot) χ4140(547,)\chi_{4140}(547,\cdot) χ4140(583,)\chi_{4140}(583,\cdot) χ4140(607,)\chi_{4140}(607,\cdot) χ4140(763,)\chi_{4140}(763,\cdot) χ4140(823,)\chi_{4140}(823,\cdot) χ4140(1087,)\chi_{4140}(1087,\cdot) χ4140(1267,)\chi_{4140}(1267,\cdot) χ4140(1327,)\chi_{4140}(1327,\cdot) χ4140(1363,)\chi_{4140}(1363,\cdot) χ4140(1507,)\chi_{4140}(1507,\cdot) χ4140(1543,)\chi_{4140}(1543,\cdot) χ4140(1687,)\chi_{4140}(1687,\cdot) χ4140(1807,)\chi_{4140}(1807,\cdot) χ4140(1843,)\chi_{4140}(1843,\cdot) χ4140(1867,)\chi_{4140}(1867,\cdot) χ4140(1987,)\chi_{4140}(1987,\cdot) χ4140(2083,)\chi_{4140}(2083,\cdot) χ4140(2203,)\chi_{4140}(2203,\cdot) χ4140(2263,)\chi_{4140}(2263,\cdot) χ4140(2707,)\chi_{4140}(2707,\cdot) χ4140(2743,)\chi_{4140}(2743,\cdot) χ4140(2887,)\chi_{4140}(2887,\cdot) χ4140(2923,)\chi_{4140}(2923,\cdot) χ4140(2947,)\chi_{4140}(2947,\cdot) χ4140(2983,)\chi_{4140}(2983,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ132)\Q(\zeta_{132})
Fixed field: Number field defined by a degree 132 polynomial (not computed)

Values on generators

(2071,461,1657,3961)(2071,461,1657,3961)(1,e(13),i,e(211))(-1,e\left(\frac{1}{3}\right),i,e\left(\frac{2}{11}\right))

First values

aa 1-11177111113131717191929293131373741414343
χ4140(1867,a) \chi_{ 4140 }(1867, a) 1111e(71132)e\left(\frac{71}{132}\right)e(3166)e\left(\frac{31}{66}\right)e(127132)e\left(\frac{127}{132}\right)e(2344)e\left(\frac{23}{44}\right)e(811)e\left(\frac{8}{11}\right)e(766)e\left(\frac{7}{66}\right)e(1766)e\left(\frac{17}{66}\right)e(344)e\left(\frac{3}{44}\right)e(2833)e\left(\frac{28}{33}\right)e(65132)e\left(\frac{65}{132}\right)
sage: chi.jacobi_sum(n)
 
χ4140(1867,a)   \chi_{ 4140 }(1867,a) \; at   a=\;a = e.g. 2