Properties

Label 2-416-416.411-c1-0-18
Degree 22
Conductor 416416
Sign 0.7040.709i0.704 - 0.709i
Analytic cond. 3.321773.32177
Root an. cond. 1.822571.82257
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.24 − 0.672i)2-s + (1.34 − 0.555i)3-s + (1.09 + 1.67i)4-s + (1.54 + 3.73i)5-s + (−2.04 − 0.211i)6-s + 0.167i·7-s + (−0.234 − 2.81i)8-s + (−0.632 + 0.632i)9-s + (0.589 − 5.68i)10-s + (0.115 − 0.0478i)11-s + (2.39 + 1.63i)12-s + (0.804 + 3.51i)13-s + (0.112 − 0.208i)14-s + (4.14 + 4.14i)15-s + (−1.60 + 3.66i)16-s − 4.75·17-s + ⋯
L(s)  = 1  + (−0.879 − 0.475i)2-s + (0.773 − 0.320i)3-s + (0.547 + 0.837i)4-s + (0.691 + 1.67i)5-s + (−0.833 − 0.0863i)6-s + 0.0632i·7-s + (−0.0829 − 0.996i)8-s + (−0.210 + 0.210i)9-s + (0.186 − 1.79i)10-s + (0.0348 − 0.0144i)11-s + (0.691 + 0.472i)12-s + (0.223 + 0.974i)13-s + (0.0301 − 0.0556i)14-s + (1.07 + 1.07i)15-s + (−0.401 + 0.915i)16-s − 1.15·17-s + ⋯

Functional equation

Λ(s)=(416s/2ΓC(s)L(s)=((0.7040.709i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.704 - 0.709i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(416s/2ΓC(s+1/2)L(s)=((0.7040.709i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.704 - 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 416416    =    25132^{5} \cdot 13
Sign: 0.7040.709i0.704 - 0.709i
Analytic conductor: 3.321773.32177
Root analytic conductor: 1.822571.82257
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ416(411,)\chi_{416} (411, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 416, ( :1/2), 0.7040.709i)(2,\ 416,\ (\ :1/2),\ 0.704 - 0.709i)

Particular Values

L(1)L(1) \approx 1.13388+0.472203i1.13388 + 0.472203i
L(12)L(\frac12) \approx 1.13388+0.472203i1.13388 + 0.472203i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.24+0.672i)T 1 + (1.24 + 0.672i)T
13 1+(0.8043.51i)T 1 + (-0.804 - 3.51i)T
good3 1+(1.34+0.555i)T+(2.122.12i)T2 1 + (-1.34 + 0.555i)T + (2.12 - 2.12i)T^{2}
5 1+(1.543.73i)T+(3.53+3.53i)T2 1 + (-1.54 - 3.73i)T + (-3.53 + 3.53i)T^{2}
7 10.167iT7T2 1 - 0.167iT - 7T^{2}
11 1+(0.115+0.0478i)T+(7.777.77i)T2 1 + (-0.115 + 0.0478i)T + (7.77 - 7.77i)T^{2}
17 1+4.75T+17T2 1 + 4.75T + 17T^{2}
19 1+(1.08+2.62i)T+(13.413.4i)T2 1 + (-1.08 + 2.62i)T + (-13.4 - 13.4i)T^{2}
23 1+(0.8220.822i)T23iT2 1 + (0.822 - 0.822i)T - 23iT^{2}
29 1+(0.362+0.876i)T+(20.5+20.5i)T2 1 + (0.362 + 0.876i)T + (-20.5 + 20.5i)T^{2}
31 1+(1.60+1.60i)T31iT2 1 + (-1.60 + 1.60i)T - 31iT^{2}
37 1+(9.94+4.11i)T+(26.126.1i)T2 1 + (-9.94 + 4.11i)T + (26.1 - 26.1i)T^{2}
41 11.57T+41T2 1 - 1.57T + 41T^{2}
43 1+(2.99+7.23i)T+(30.430.4i)T2 1 + (-2.99 + 7.23i)T + (-30.4 - 30.4i)T^{2}
47 1+(5.14+5.14i)T47iT2 1 + (-5.14 + 5.14i)T - 47iT^{2}
53 1+(0.952+2.29i)T+(37.437.4i)T2 1 + (-0.952 + 2.29i)T + (-37.4 - 37.4i)T^{2}
59 1+(4.8011.6i)T+(41.7+41.7i)T2 1 + (-4.80 - 11.6i)T + (-41.7 + 41.7i)T^{2}
61 1+(1.39+3.37i)T+(43.1+43.1i)T2 1 + (1.39 + 3.37i)T + (-43.1 + 43.1i)T^{2}
67 1+(5.272.18i)T+(47.3+47.3i)T2 1 + (-5.27 - 2.18i)T + (47.3 + 47.3i)T^{2}
71 1+12.4T+71T2 1 + 12.4T + 71T^{2}
73 1+8.93iT73T2 1 + 8.93iT - 73T^{2}
79 114.3T+79T2 1 - 14.3T + 79T^{2}
83 1+(4.24+10.2i)T+(58.658.6i)T2 1 + (-4.24 + 10.2i)T + (-58.6 - 58.6i)T^{2}
89 16.33T+89T2 1 - 6.33T + 89T^{2}
97 1+(7.29+7.29i)T+97iT2 1 + (7.29 + 7.29i)T + 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.08839064998793446157461530321, −10.49156991744301373802282762928, −9.395764278324130480670248586605, −8.845259520242848239469663506617, −7.58074702816235839169922247761, −6.97811199170468831583591738910, −6.06735388008582330289790731998, −3.87786080962000735280154133621, −2.59577277094705939570397256442, −2.15837838765190770317265431945, 0.989540250095804174640263152590, 2.50400782621931479362899056075, 4.35277405225942873493620876199, 5.49830973588569366581058052535, 6.29745707851370418007694637281, 7.954155468348914991594762960124, 8.409746869841275489189698094703, 9.274229733122500580553914362311, 9.665345619885795411471800111371, 10.76423921269075994541411564384

Graph of the ZZ-function along the critical line