Properties

Label 416.2.bd.a.411.10
Level $416$
Weight $2$
Character 416.411
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(83,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bd (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 411.10
Character \(\chi\) \(=\) 416.411
Dual form 416.2.bd.a.83.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24384 - 0.672951i) q^{2} +(1.34047 - 0.555241i) q^{3} +(1.09427 + 1.67409i) q^{4} +(1.54705 + 3.73491i) q^{5} +(-2.04098 - 0.211441i) q^{6} +0.167444i q^{7} +(-0.234521 - 2.81869i) q^{8} +(-0.632754 + 0.632754i) q^{9} +(0.589131 - 5.68672i) q^{10} +(0.115501 - 0.0478422i) q^{11} +(2.39636 + 1.63648i) q^{12} +(0.804107 + 3.51474i) q^{13} +(0.112681 - 0.208273i) q^{14} +(4.14755 + 4.14755i) q^{15} +(-1.60513 + 3.66382i) q^{16} -4.75422 q^{17} +(1.21286 - 0.361232i) q^{18} +(1.08803 - 2.62674i) q^{19} +(-4.55967 + 6.67692i) q^{20} +(0.0929715 + 0.224453i) q^{21} +(-0.175861 - 0.0182187i) q^{22} +(-0.822050 + 0.822050i) q^{23} +(-1.87942 - 3.64815i) q^{24} +(-8.02068 + 8.02068i) q^{25} +(1.36507 - 4.91290i) q^{26} +(-2.16258 + 5.22093i) q^{27} +(-0.280315 + 0.183229i) q^{28} +(-0.362881 - 0.876073i) q^{29} +(-2.36779 - 7.94999i) q^{30} +(1.60097 - 1.60097i) q^{31} +(4.46210 - 3.47702i) q^{32} +(0.128262 - 0.128262i) q^{33} +(5.91349 + 3.19936i) q^{34} +(-0.625388 + 0.259044i) q^{35} +(-1.75169 - 0.366879i) q^{36} +(9.94226 - 4.11822i) q^{37} +(-3.12101 + 2.53505i) q^{38} +(3.02941 + 4.26493i) q^{39} +(10.1647 - 5.23657i) q^{40} +1.57976 q^{41} +(0.0354044 - 0.341749i) q^{42} +(2.99613 - 7.23329i) q^{43} +(0.206482 + 0.141007i) q^{44} +(-3.34218 - 1.38438i) q^{45} +(1.57570 - 0.469298i) q^{46} +(5.14120 - 5.14120i) q^{47} +(-0.117333 + 5.80247i) q^{48} +6.97196 q^{49} +(15.3740 - 4.57891i) q^{50} +(-6.37289 + 2.63974i) q^{51} +(-5.00407 + 5.19223i) q^{52} +(0.952080 - 2.29853i) q^{53} +(6.20333 - 5.03868i) q^{54} +(0.357373 + 0.357373i) q^{55} +(0.471971 - 0.0392691i) q^{56} -4.12519i q^{57} +(-0.138188 + 1.33390i) q^{58} +(4.80965 + 11.6115i) q^{59} +(-2.40481 + 11.4819i) q^{60} +(-1.39878 - 3.37697i) q^{61} +(-3.06872 + 0.913973i) q^{62} +(-0.105951 - 0.105951i) q^{63} +(-7.89000 + 1.32208i) q^{64} +(-11.8833 + 8.44076i) q^{65} +(-0.245852 + 0.0732233i) q^{66} +(5.27576 + 2.18529i) q^{67} +(-5.20242 - 7.95898i) q^{68} +(-0.645497 + 1.55837i) q^{69} +(0.952206 + 0.0986463i) q^{70} -12.4430 q^{71} +(1.93193 + 1.63514i) q^{72} -8.93301i q^{73} +(-15.1379 - 1.56825i) q^{74} +(-6.29807 + 15.2049i) q^{75} +(5.58800 - 1.05291i) q^{76} +(0.00801088 + 0.0193400i) q^{77} +(-0.898007 - 7.34354i) q^{78} +14.3833 q^{79} +(-16.1673 - 0.326920i) q^{80} +5.51470i q^{81} +(-1.96497 - 1.06310i) q^{82} +(4.24121 - 10.2392i) q^{83} +(-0.274018 + 0.401255i) q^{84} +(-7.35503 - 17.7566i) q^{85} +(-8.59435 + 6.98080i) q^{86} +(-0.972863 - 0.972863i) q^{87} +(-0.161940 - 0.314342i) q^{88} +6.33972 q^{89} +(3.22552 + 3.97107i) q^{90} +(-0.588521 + 0.134643i) q^{91} +(-2.27573 - 0.476636i) q^{92} +(1.25713 - 3.03497i) q^{93} +(-9.85461 + 2.93505i) q^{94} +11.4939 q^{95} +(4.05072 - 7.13838i) q^{96} +(-7.29863 - 7.29863i) q^{97} +(-8.67200 - 4.69179i) q^{98} +(-0.0428116 + 0.103356i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} + 8 q^{6} - 4 q^{8} - 8 q^{9} - 4 q^{11} - 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} - 12 q^{18} - 4 q^{19} - 20 q^{20} + 8 q^{21} - 24 q^{22} - 36 q^{24}+ \cdots - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{1}{8}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24384 0.672951i −0.879527 0.475848i
\(3\) 1.34047 0.555241i 0.773920 0.320568i 0.0394612 0.999221i \(-0.487436\pi\)
0.734459 + 0.678653i \(0.237436\pi\)
\(4\) 1.09427 + 1.67409i 0.547137 + 0.837043i
\(5\) 1.54705 + 3.73491i 0.691863 + 1.67030i 0.740994 + 0.671512i \(0.234355\pi\)
−0.0491308 + 0.998792i \(0.515645\pi\)
\(6\) −2.04098 0.211441i −0.833226 0.0863202i
\(7\) 0.167444i 0.0632878i 0.999499 + 0.0316439i \(0.0100742\pi\)
−0.999499 + 0.0316439i \(0.989926\pi\)
\(8\) −0.234521 2.81869i −0.0829157 0.996557i
\(9\) −0.632754 + 0.632754i −0.210918 + 0.210918i
\(10\) 0.589131 5.68672i 0.186300 1.79830i
\(11\) 0.115501 0.0478422i 0.0348250 0.0144250i −0.365203 0.930928i \(-0.619000\pi\)
0.400028 + 0.916503i \(0.369000\pi\)
\(12\) 2.39636 + 1.63648i 0.691770 + 0.472410i
\(13\) 0.804107 + 3.51474i 0.223019 + 0.974814i
\(14\) 0.112681 0.208273i 0.0301154 0.0556633i
\(15\) 4.14755 + 4.14755i 1.07089 + 1.07089i
\(16\) −1.60513 + 3.66382i −0.401283 + 0.915954i
\(17\) −4.75422 −1.15307 −0.576534 0.817073i \(-0.695595\pi\)
−0.576534 + 0.817073i \(0.695595\pi\)
\(18\) 1.21286 0.361232i 0.285873 0.0851431i
\(19\) 1.08803 2.62674i 0.249612 0.602616i −0.748559 0.663068i \(-0.769254\pi\)
0.998171 + 0.0604517i \(0.0192541\pi\)
\(20\) −4.55967 + 6.67692i −1.01957 + 1.49300i
\(21\) 0.0929715 + 0.224453i 0.0202881 + 0.0489797i
\(22\) −0.175861 0.0182187i −0.0374936 0.00388425i
\(23\) −0.822050 + 0.822050i −0.171409 + 0.171409i −0.787598 0.616189i \(-0.788676\pi\)
0.616189 + 0.787598i \(0.288676\pi\)
\(24\) −1.87942 3.64815i −0.383635 0.744675i
\(25\) −8.02068 + 8.02068i −1.60414 + 1.60414i
\(26\) 1.36507 4.91290i 0.267712 0.963499i
\(27\) −2.16258 + 5.22093i −0.416188 + 1.00477i
\(28\) −0.280315 + 0.183229i −0.0529746 + 0.0346270i
\(29\) −0.362881 0.876073i −0.0673854 0.162683i 0.886599 0.462539i \(-0.153061\pi\)
−0.953984 + 0.299856i \(0.903061\pi\)
\(30\) −2.36779 7.94999i −0.432297 1.45146i
\(31\) 1.60097 1.60097i 0.287542 0.287542i −0.548565 0.836108i \(-0.684826\pi\)
0.836108 + 0.548565i \(0.184826\pi\)
\(32\) 4.46210 3.47702i 0.788795 0.614656i
\(33\) 0.128262 0.128262i 0.0223276 0.0223276i
\(34\) 5.91349 + 3.19936i 1.01415 + 0.548686i
\(35\) −0.625388 + 0.259044i −0.105710 + 0.0437864i
\(36\) −1.75169 0.366879i −0.291948 0.0611466i
\(37\) 9.94226 4.11822i 1.63450 0.677031i 0.638772 0.769396i \(-0.279443\pi\)
0.995725 + 0.0923646i \(0.0294425\pi\)
\(38\) −3.12101 + 2.53505i −0.506294 + 0.411240i
\(39\) 3.02941 + 4.26493i 0.485094 + 0.682936i
\(40\) 10.1647 5.23657i 1.60719 0.827975i
\(41\) 1.57976 0.246717 0.123359 0.992362i \(-0.460633\pi\)
0.123359 + 0.992362i \(0.460633\pi\)
\(42\) 0.0354044 0.341749i 0.00546301 0.0527330i
\(43\) 2.99613 7.23329i 0.456905 1.10307i −0.512739 0.858545i \(-0.671369\pi\)
0.969644 0.244522i \(-0.0786309\pi\)
\(44\) 0.206482 + 0.141007i 0.0311284 + 0.0212576i
\(45\) −3.34218 1.38438i −0.498223 0.206371i
\(46\) 1.57570 0.469298i 0.232324 0.0691943i
\(47\) 5.14120 5.14120i 0.749921 0.749921i −0.224543 0.974464i \(-0.572089\pi\)
0.974464 + 0.224543i \(0.0720889\pi\)
\(48\) −0.117333 + 5.80247i −0.0169355 + 0.837514i
\(49\) 6.97196 0.995995
\(50\) 15.3740 4.57891i 2.17421 0.647556i
\(51\) −6.37289 + 2.63974i −0.892383 + 0.369637i
\(52\) −5.00407 + 5.19223i −0.693940 + 0.720033i
\(53\) 0.952080 2.29853i 0.130778 0.315727i −0.844903 0.534919i \(-0.820342\pi\)
0.975682 + 0.219192i \(0.0703422\pi\)
\(54\) 6.20333 5.03868i 0.844166 0.685678i
\(55\) 0.357373 + 0.357373i 0.0481882 + 0.0481882i
\(56\) 0.471971 0.0392691i 0.0630698 0.00524755i
\(57\) 4.12519i 0.546395i
\(58\) −0.138188 + 1.33390i −0.0181450 + 0.175149i
\(59\) 4.80965 + 11.6115i 0.626164 + 1.51169i 0.844353 + 0.535787i \(0.179985\pi\)
−0.218190 + 0.975906i \(0.570015\pi\)
\(60\) −2.40481 + 11.4819i −0.310459 + 1.48231i
\(61\) −1.39878 3.37697i −0.179096 0.432376i 0.808681 0.588247i \(-0.200182\pi\)
−0.987777 + 0.155871i \(0.950182\pi\)
\(62\) −3.06872 + 0.913973i −0.389728 + 0.116075i
\(63\) −0.105951 0.105951i −0.0133485 0.0133485i
\(64\) −7.89000 + 1.32208i −0.986250 + 0.165260i
\(65\) −11.8833 + 8.44076i −1.47394 + 1.04695i
\(66\) −0.245852 + 0.0732233i −0.0302623 + 0.00901317i
\(67\) 5.27576 + 2.18529i 0.644537 + 0.266976i 0.680915 0.732362i \(-0.261582\pi\)
−0.0363783 + 0.999338i \(0.511582\pi\)
\(68\) −5.20242 7.95898i −0.630886 0.965168i
\(69\) −0.645497 + 1.55837i −0.0777087 + 0.187606i
\(70\) 0.952206 + 0.0986463i 0.113810 + 0.0117905i
\(71\) −12.4430 −1.47671 −0.738357 0.674410i \(-0.764398\pi\)
−0.738357 + 0.674410i \(0.764398\pi\)
\(72\) 1.93193 + 1.63514i 0.227680 + 0.192703i
\(73\) 8.93301i 1.04553i −0.852477 0.522765i \(-0.824900\pi\)
0.852477 0.522765i \(-0.175100\pi\)
\(74\) −15.1379 1.56825i −1.75975 0.182306i
\(75\) −6.29807 + 15.2049i −0.727239 + 1.75571i
\(76\) 5.58800 1.05291i 0.640988 0.120777i
\(77\) 0.00801088 + 0.0193400i 0.000912925 + 0.00220399i
\(78\) −0.898007 7.34354i −0.101679 0.831492i
\(79\) 14.3833 1.61824 0.809122 0.587641i \(-0.199943\pi\)
0.809122 + 0.587641i \(0.199943\pi\)
\(80\) −16.1673 0.326920i −1.80756 0.0365508i
\(81\) 5.51470i 0.612744i
\(82\) −1.96497 1.06310i −0.216995 0.117400i
\(83\) 4.24121 10.2392i 0.465533 1.12390i −0.500560 0.865702i \(-0.666873\pi\)
0.966093 0.258194i \(-0.0831273\pi\)
\(84\) −0.274018 + 0.401255i −0.0298978 + 0.0437806i
\(85\) −7.35503 17.7566i −0.797765 1.92597i
\(86\) −8.59435 + 6.98080i −0.926753 + 0.752759i
\(87\) −0.972863 0.972863i −0.104302 0.104302i
\(88\) −0.161940 0.314342i −0.0172628 0.0335090i
\(89\) 6.33972 0.672009 0.336004 0.941860i \(-0.390924\pi\)
0.336004 + 0.941860i \(0.390924\pi\)
\(90\) 3.22552 + 3.97107i 0.340000 + 0.418588i
\(91\) −0.588521 + 0.134643i −0.0616938 + 0.0141144i
\(92\) −2.27573 0.476636i −0.237261 0.0496927i
\(93\) 1.25713 3.03497i 0.130358 0.314712i
\(94\) −9.85461 + 2.93505i −1.01642 + 0.302727i
\(95\) 11.4939 1.17925
\(96\) 4.05072 7.13838i 0.413425 0.728558i
\(97\) −7.29863 7.29863i −0.741063 0.741063i 0.231719 0.972783i \(-0.425565\pi\)
−0.972783 + 0.231719i \(0.925565\pi\)
\(98\) −8.67200 4.69179i −0.876004 0.473943i
\(99\) −0.0428116 + 0.103356i −0.00430273 + 0.0103877i
\(100\) −22.2041 4.65050i −2.22041 0.465050i
\(101\) −4.28791 + 10.3519i −0.426663 + 1.03006i 0.553675 + 0.832733i \(0.313225\pi\)
−0.980338 + 0.197323i \(0.936775\pi\)
\(102\) 9.70327 + 1.00524i 0.960766 + 0.0995331i
\(103\) 5.94537 + 5.94537i 0.585815 + 0.585815i 0.936495 0.350680i \(-0.114050\pi\)
−0.350680 + 0.936495i \(0.614050\pi\)
\(104\) 9.71838 3.09081i 0.952966 0.303079i
\(105\) −0.694481 + 0.694481i −0.0677745 + 0.0677745i
\(106\) −2.73103 + 2.21829i −0.265261 + 0.215460i
\(107\) −17.4698 7.23622i −1.68887 0.699552i −0.689182 0.724588i \(-0.742030\pi\)
−0.999687 + 0.0250362i \(0.992030\pi\)
\(108\) −11.1067 + 2.09277i −1.06875 + 0.201377i
\(109\) −2.26257 0.937189i −0.216715 0.0897664i 0.271685 0.962386i \(-0.412419\pi\)
−0.488400 + 0.872620i \(0.662419\pi\)
\(110\) −0.204020 0.685010i −0.0194526 0.0653131i
\(111\) 11.0407 11.0407i 1.04794 1.04794i
\(112\) −0.613483 0.268769i −0.0579687 0.0253963i
\(113\) 0.849823i 0.0799447i −0.999201 0.0399723i \(-0.987273\pi\)
0.999201 0.0399723i \(-0.0127270\pi\)
\(114\) −2.77605 + 5.13107i −0.260001 + 0.480569i
\(115\) −4.34204 1.79853i −0.404897 0.167714i
\(116\) 1.06953 1.56616i 0.0993035 0.145414i
\(117\) −2.73277 1.71516i −0.252645 0.158567i
\(118\) 1.83156 17.6795i 0.168609 1.62753i
\(119\) 0.796064i 0.0729751i
\(120\) 10.7180 12.6633i 0.978412 1.15600i
\(121\) −7.76712 + 7.76712i −0.706102 + 0.706102i
\(122\) −0.532670 + 5.14172i −0.0482256 + 0.465509i
\(123\) 2.11762 0.877148i 0.190940 0.0790897i
\(124\) 4.43206 + 0.928263i 0.398010 + 0.0833605i
\(125\) −23.6904 9.81288i −2.11893 0.877691i
\(126\) 0.0604859 + 0.203085i 0.00538852 + 0.0180923i
\(127\) 14.1303 1.25387 0.626933 0.779073i \(-0.284310\pi\)
0.626933 + 0.779073i \(0.284310\pi\)
\(128\) 10.7036 + 3.66513i 0.946073 + 0.323955i
\(129\) 11.3596i 1.00015i
\(130\) 20.4611 2.50209i 1.79456 0.219448i
\(131\) −16.9635 + 7.02653i −1.48211 + 0.613911i −0.969584 0.244759i \(-0.921291\pi\)
−0.512528 + 0.858670i \(0.671291\pi\)
\(132\) 0.355076 + 0.0743682i 0.0309054 + 0.00647292i
\(133\) 0.439831 + 0.182184i 0.0381382 + 0.0157974i
\(134\) −5.09161 6.26849i −0.439848 0.541515i
\(135\) −22.8453 −1.96621
\(136\) 1.11496 + 13.4007i 0.0956074 + 1.14910i
\(137\) 11.5094i 0.983314i 0.870789 + 0.491657i \(0.163609\pi\)
−0.870789 + 0.491657i \(0.836391\pi\)
\(138\) 1.85160 1.50397i 0.157619 0.128027i
\(139\) 0.979057 + 0.405539i 0.0830425 + 0.0343973i 0.423818 0.905747i \(-0.360690\pi\)
−0.340776 + 0.940145i \(0.610690\pi\)
\(140\) −1.11801 0.763488i −0.0944889 0.0645266i
\(141\) 4.03702 9.74623i 0.339978 0.820780i
\(142\) 15.4771 + 8.37355i 1.29881 + 0.702692i
\(143\) 0.261029 + 0.367487i 0.0218283 + 0.0307308i
\(144\) −1.30264 3.33395i −0.108553 0.277829i
\(145\) 2.71066 2.71066i 0.225108 0.225108i
\(146\) −6.01148 + 11.1112i −0.497514 + 0.919572i
\(147\) 9.34570 3.87112i 0.770821 0.319284i
\(148\) 17.7738 + 12.1378i 1.46100 + 0.997717i
\(149\) −1.87501 + 0.776656i −0.153607 + 0.0636262i −0.458162 0.888869i \(-0.651492\pi\)
0.304555 + 0.952495i \(0.401492\pi\)
\(150\) 18.0659 14.6741i 1.47508 1.19814i
\(151\) 15.1813 1.23544 0.617718 0.786400i \(-0.288057\pi\)
0.617718 + 0.786400i \(0.288057\pi\)
\(152\) −7.65913 2.45080i −0.621238 0.198786i
\(153\) 3.00825 3.00825i 0.243203 0.243203i
\(154\) 0.00305061 0.0294468i 0.000245825 0.00237289i
\(155\) 8.45626 + 3.50270i 0.679223 + 0.281343i
\(156\) −3.82486 + 9.73849i −0.306234 + 0.779704i
\(157\) −1.17723 2.84209i −0.0939532 0.226823i 0.869916 0.493201i \(-0.164173\pi\)
−0.963869 + 0.266378i \(0.914173\pi\)
\(158\) −17.8905 9.67924i −1.42329 0.770039i
\(159\) 3.60974i 0.286271i
\(160\) 19.8895 + 11.2864i 1.57240 + 0.892270i
\(161\) −0.137647 0.137647i −0.0108481 0.0108481i
\(162\) 3.71112 6.85940i 0.291573 0.538925i
\(163\) 4.24566 10.2499i 0.332546 0.802837i −0.665843 0.746092i \(-0.731928\pi\)
0.998389 0.0567448i \(-0.0180721\pi\)
\(164\) 1.72869 + 2.64466i 0.134988 + 0.206513i
\(165\) 0.677476 + 0.280620i 0.0527415 + 0.0218462i
\(166\) −12.1658 + 9.88177i −0.944253 + 0.766974i
\(167\) 1.63379i 0.126426i −0.998000 0.0632132i \(-0.979865\pi\)
0.998000 0.0632132i \(-0.0201348\pi\)
\(168\) 0.610860 0.314697i 0.0471288 0.0242794i
\(169\) −11.7068 + 5.65246i −0.900525 + 0.434805i
\(170\) −2.80086 + 27.0359i −0.214816 + 2.07356i
\(171\) 0.973625 + 2.35054i 0.0744549 + 0.179750i
\(172\) 15.3877 2.89942i 1.17330 0.221079i
\(173\) −3.26898 7.89203i −0.248536 0.600020i 0.749544 0.661955i \(-0.230273\pi\)
−0.998080 + 0.0619350i \(0.980273\pi\)
\(174\) 0.555396 + 1.86477i 0.0421044 + 0.141368i
\(175\) −1.34301 1.34301i −0.101522 0.101522i
\(176\) −0.0101099 + 0.499969i −0.000762066 + 0.0376866i
\(177\) 12.8944 + 12.8944i 0.969202 + 0.969202i
\(178\) −7.88559 4.26632i −0.591050 0.319774i
\(179\) −2.69384 + 1.11583i −0.201347 + 0.0834007i −0.481078 0.876678i \(-0.659755\pi\)
0.279731 + 0.960078i \(0.409755\pi\)
\(180\) −1.33969 7.10999i −0.0998548 0.529948i
\(181\) −14.1781 5.87274i −1.05385 0.436518i −0.212583 0.977143i \(-0.568188\pi\)
−0.841263 + 0.540625i \(0.818188\pi\)
\(182\) 0.822634 + 0.228572i 0.0609777 + 0.0169429i
\(183\) −3.75006 3.75006i −0.277212 0.277212i
\(184\) 2.50989 + 2.12431i 0.185032 + 0.156606i
\(185\) 30.7624 + 30.7624i 2.26170 + 2.26170i
\(186\) −3.60605 + 2.92903i −0.264408 + 0.214767i
\(187\) −0.549119 + 0.227453i −0.0401556 + 0.0166330i
\(188\) 14.2327 + 2.98094i 1.03803 + 0.217407i
\(189\) −0.874211 0.362110i −0.0635895 0.0263396i
\(190\) −14.2966 7.73484i −1.03718 0.561144i
\(191\) 12.8849i 0.932318i −0.884701 0.466159i \(-0.845637\pi\)
0.884701 0.466159i \(-0.154363\pi\)
\(192\) −9.84223 + 6.15306i −0.710302 + 0.444059i
\(193\) −10.8423 + 10.8423i −0.780448 + 0.780448i −0.979906 0.199458i \(-0.936082\pi\)
0.199458 + 0.979906i \(0.436082\pi\)
\(194\) 4.16670 + 13.9899i 0.299152 + 1.00442i
\(195\) −11.2425 + 17.9127i −0.805092 + 1.28275i
\(196\) 7.62923 + 11.6717i 0.544945 + 0.833691i
\(197\) −0.823725 1.98865i −0.0586880 0.141685i 0.891815 0.452399i \(-0.149432\pi\)
−0.950503 + 0.310714i \(0.899432\pi\)
\(198\) 0.122804 0.0997485i 0.00872734 0.00708882i
\(199\) −3.15196 3.15196i −0.223437 0.223437i 0.586507 0.809944i \(-0.300503\pi\)
−0.809944 + 0.586507i \(0.800503\pi\)
\(200\) 24.4888 + 20.7268i 1.73162 + 1.46560i
\(201\) 8.28536 0.584405
\(202\) 12.2998 9.99059i 0.865413 0.702935i
\(203\) 0.146693 0.0607622i 0.0102958 0.00426467i
\(204\) −11.3928 7.78018i −0.797658 0.544721i
\(205\) 2.44397 + 5.90027i 0.170694 + 0.412093i
\(206\) −3.39414 11.3960i −0.236481 0.794000i
\(207\) 1.04031i 0.0723066i
\(208\) −14.1681 2.69553i −0.982379 0.186901i
\(209\) 0.355446i 0.0245867i
\(210\) 1.33118 0.396471i 0.0918599 0.0273591i
\(211\) −5.28688 12.7637i −0.363964 0.878687i −0.994712 0.102699i \(-0.967252\pi\)
0.630748 0.775987i \(-0.282748\pi\)
\(212\) 4.88977 0.921349i 0.335831 0.0632785i
\(213\) −16.6795 + 6.90887i −1.14286 + 0.473388i
\(214\) 16.8600 + 20.7570i 1.15253 + 1.41892i
\(215\) 31.6509 2.15857
\(216\) 15.2233 + 4.87122i 1.03582 + 0.331444i
\(217\) 0.268072 + 0.268072i 0.0181979 + 0.0181979i
\(218\) 2.18360 + 2.68831i 0.147892 + 0.182076i
\(219\) −4.95997 11.9744i −0.335164 0.809157i
\(220\) −0.207210 + 0.989338i −0.0139701 + 0.0667012i
\(221\) −3.82290 16.7099i −0.257156 1.12403i
\(222\) −21.1627 + 6.30300i −1.42035 + 0.423030i
\(223\) −11.4720 + 11.4720i −0.768222 + 0.768222i −0.977793 0.209571i \(-0.932793\pi\)
0.209571 + 0.977793i \(0.432793\pi\)
\(224\) 0.582205 + 0.747150i 0.0389002 + 0.0499211i
\(225\) 10.1502i 0.676682i
\(226\) −0.571890 + 1.05704i −0.0380415 + 0.0703135i
\(227\) 13.0739 + 5.41538i 0.867744 + 0.359431i 0.771731 0.635949i \(-0.219391\pi\)
0.0960125 + 0.995380i \(0.469391\pi\)
\(228\) 6.90592 4.51408i 0.457356 0.298952i
\(229\) 9.83077 4.07204i 0.649635 0.269088i −0.0334344 0.999441i \(-0.510644\pi\)
0.683070 + 0.730353i \(0.260644\pi\)
\(230\) 4.19048 + 5.15907i 0.276312 + 0.340179i
\(231\) 0.0214767 + 0.0214767i 0.00141306 + 0.00141306i
\(232\) −2.38427 + 1.22831i −0.156535 + 0.0806423i
\(233\) 7.99196 + 7.99196i 0.523571 + 0.523571i 0.918648 0.395077i \(-0.129282\pi\)
−0.395077 + 0.918648i \(0.629282\pi\)
\(234\) 2.24490 + 3.97241i 0.146754 + 0.259684i
\(235\) 27.1556 + 11.2482i 1.77144 + 0.733754i
\(236\) −14.1756 + 20.7580i −0.922756 + 1.35123i
\(237\) 19.2803 7.98617i 1.25239 0.518758i
\(238\) −0.535712 + 0.990176i −0.0347251 + 0.0641836i
\(239\) −0.518131 0.518131i −0.0335151 0.0335151i 0.690151 0.723666i \(-0.257544\pi\)
−0.723666 + 0.690151i \(0.757544\pi\)
\(240\) −21.8532 + 8.53850i −1.41062 + 0.551158i
\(241\) −10.3809 10.3809i −0.668691 0.668691i 0.288722 0.957413i \(-0.406770\pi\)
−0.957413 + 0.288722i \(0.906770\pi\)
\(242\) 14.8879 4.43416i 0.957034 0.285038i
\(243\) −3.42575 8.27049i −0.219762 0.530552i
\(244\) 4.12268 6.03701i 0.263928 0.386480i
\(245\) 10.7860 + 26.0397i 0.689092 + 1.66361i
\(246\) −3.22426 0.334026i −0.205571 0.0212967i
\(247\) 10.1072 + 1.71197i 0.643107 + 0.108930i
\(248\) −4.88809 4.13717i −0.310394 0.262710i
\(249\) 16.0802i 1.01904i
\(250\) 22.8635 + 28.1481i 1.44601 + 1.78024i
\(251\) −26.6225 11.0274i −1.68040 0.696044i −0.681053 0.732234i \(-0.738478\pi\)
−0.999345 + 0.0361906i \(0.988478\pi\)
\(252\) 0.0614316 0.293309i 0.00386983 0.0184768i
\(253\) −0.0556192 + 0.134277i −0.00349675 + 0.00844190i
\(254\) −17.5759 9.50903i −1.10281 0.596650i
\(255\) −19.7184 19.7184i −1.23481 1.23481i
\(256\) −10.8471 11.7618i −0.677943 0.735114i
\(257\) 1.49040i 0.0929688i −0.998919 0.0464844i \(-0.985198\pi\)
0.998919 0.0464844i \(-0.0148018\pi\)
\(258\) −7.64444 + 14.1295i −0.475922 + 0.879664i
\(259\) 0.689570 + 1.66477i 0.0428478 + 0.103444i
\(260\) −27.1341 10.6571i −1.68279 0.660926i
\(261\) 0.783953 + 0.324724i 0.0485255 + 0.0200999i
\(262\) 25.8284 + 2.67577i 1.59569 + 0.165309i
\(263\) 20.6831 20.6831i 1.27537 1.27537i 0.332146 0.943228i \(-0.392227\pi\)
0.943228 0.332146i \(-0.107773\pi\)
\(264\) −0.391611 0.331451i −0.0241020 0.0203994i
\(265\) 10.0577 0.617840
\(266\) −0.424479 0.522593i −0.0260265 0.0320422i
\(267\) 8.49820 3.52007i 0.520081 0.215425i
\(268\) 2.11476 + 11.2234i 0.129179 + 0.685578i
\(269\) 6.23575 2.58293i 0.380200 0.157484i −0.184395 0.982852i \(-0.559032\pi\)
0.564595 + 0.825368i \(0.309032\pi\)
\(270\) 28.4159 + 15.3738i 1.72934 + 0.935620i
\(271\) −13.7184 + 13.7184i −0.833333 + 0.833333i −0.987971 0.154638i \(-0.950579\pi\)
0.154638 + 0.987971i \(0.450579\pi\)
\(272\) 7.63116 17.4186i 0.462707 1.05616i
\(273\) −0.714136 + 0.507255i −0.0432215 + 0.0307005i
\(274\) 7.74526 14.3158i 0.467908 0.864852i
\(275\) −0.542672 + 1.31013i −0.0327244 + 0.0790036i
\(276\) −3.31519 + 0.624662i −0.199551 + 0.0376002i
\(277\) 24.3471 + 10.0849i 1.46287 + 0.605942i 0.965221 0.261435i \(-0.0841957\pi\)
0.497652 + 0.867377i \(0.334196\pi\)
\(278\) −0.944882 1.16328i −0.0566702 0.0697690i
\(279\) 2.02604i 0.121296i
\(280\) 0.876831 + 1.70202i 0.0524007 + 0.101715i
\(281\) 31.9260 1.90455 0.952274 0.305245i \(-0.0987383\pi\)
0.952274 + 0.305245i \(0.0987383\pi\)
\(282\) −11.5801 + 9.40602i −0.689587 + 0.560121i
\(283\) −16.4236 6.80289i −0.976283 0.404390i −0.163235 0.986587i \(-0.552193\pi\)
−0.813047 + 0.582198i \(0.802193\pi\)
\(284\) −13.6161 20.8307i −0.807965 1.23607i
\(285\) 15.4072 6.38188i 0.912645 0.378030i
\(286\) −0.0773767 0.632755i −0.00457538 0.0374156i
\(287\) 0.264521i 0.0156142i
\(288\) −0.623310 + 5.02351i −0.0367289 + 0.296013i
\(289\) 5.60262 0.329566
\(290\) −5.19577 + 1.54748i −0.305106 + 0.0908714i
\(291\) −13.8361 5.73109i −0.811085 0.335963i
\(292\) 14.9546 9.77516i 0.875154 0.572048i
\(293\) −5.33878 + 2.21139i −0.311895 + 0.129191i −0.533140 0.846027i \(-0.678988\pi\)
0.221245 + 0.975218i \(0.428988\pi\)
\(294\) −14.2296 1.47416i −0.829889 0.0859745i
\(295\) −35.9273 + 35.9273i −2.09177 + 2.09177i
\(296\) −13.9396 27.0583i −0.810225 1.57273i
\(297\) 0.706487i 0.0409945i
\(298\) 2.85487 + 0.295758i 0.165378 + 0.0171328i
\(299\) −3.55031 2.22828i −0.205320 0.128865i
\(300\) −32.3461 + 6.09478i −1.86750 + 0.351882i
\(301\) 1.21117 + 0.501682i 0.0698106 + 0.0289165i
\(302\) −18.8831 10.2163i −1.08660 0.587880i
\(303\) 16.2573i 0.933956i
\(304\) 7.87747 + 8.20262i 0.451804 + 0.470453i
\(305\) 10.4487 10.4487i 0.598290 0.598290i
\(306\) −5.76619 + 1.71737i −0.329631 + 0.0981758i
\(307\) −21.9239 9.08120i −1.25127 0.518291i −0.344048 0.938952i \(-0.611798\pi\)
−0.907218 + 0.420661i \(0.861798\pi\)
\(308\) −0.0236107 + 0.0345741i −0.00134535 + 0.00197004i
\(309\) 11.2707 + 4.66848i 0.641168 + 0.265581i
\(310\) −8.16108 10.0474i −0.463518 0.570656i
\(311\) −16.0453 + 16.0453i −0.909848 + 0.909848i −0.996259 0.0864119i \(-0.972460\pi\)
0.0864119 + 0.996259i \(0.472460\pi\)
\(312\) 11.3111 9.53917i 0.640362 0.540049i
\(313\) 3.40491 + 3.40491i 0.192457 + 0.192457i 0.796757 0.604300i \(-0.206547\pi\)
−0.604300 + 0.796757i \(0.706547\pi\)
\(314\) −0.448300 + 4.32732i −0.0252990 + 0.244205i
\(315\) 0.231805 0.559628i 0.0130608 0.0315314i
\(316\) 15.7392 + 24.0788i 0.885400 + 1.35454i
\(317\) 10.0593 24.2852i 0.564984 1.36399i −0.340753 0.940153i \(-0.610682\pi\)
0.905737 0.423840i \(-0.139318\pi\)
\(318\) −2.42918 + 4.48993i −0.136222 + 0.251783i
\(319\) −0.0838266 0.0838266i −0.00469339 0.00469339i
\(320\) −17.1441 27.4231i −0.958385 1.53300i
\(321\) −27.4356 −1.53130
\(322\) 0.0785811 + 0.263841i 0.00437915 + 0.0147033i
\(323\) −5.17275 + 12.4881i −0.287819 + 0.694857i
\(324\) −9.23208 + 6.03459i −0.512894 + 0.335255i
\(325\) −34.6401 21.7411i −1.92149 1.20598i
\(326\) −12.1786 + 9.89215i −0.674512 + 0.547876i
\(327\) −3.55328 −0.196497
\(328\) −0.370487 4.45285i −0.0204567 0.245868i
\(329\) 0.860862 + 0.860862i 0.0474608 + 0.0474608i
\(330\) −0.653828 0.804955i −0.0359921 0.0443113i
\(331\) −5.20508 12.5662i −0.286097 0.690700i 0.713857 0.700292i \(-0.246947\pi\)
−0.999954 + 0.00959195i \(0.996947\pi\)
\(332\) 21.7823 4.10431i 1.19546 0.225253i
\(333\) −3.68518 + 8.89682i −0.201947 + 0.487543i
\(334\) −1.09946 + 2.03217i −0.0601598 + 0.111196i
\(335\) 23.0853i 1.26128i
\(336\) −0.971587 0.0196466i −0.0530044 0.00107181i
\(337\) −4.69307 −0.255648 −0.127824 0.991797i \(-0.540799\pi\)
−0.127824 + 0.991797i \(0.540799\pi\)
\(338\) 18.3652 + 0.847369i 0.998937 + 0.0460908i
\(339\) −0.471856 1.13916i −0.0256277 0.0618708i
\(340\) 21.6777 31.7435i 1.17564 1.72153i
\(341\) 0.108320 0.261508i 0.00586586 0.0141614i
\(342\) 0.370765 3.57889i 0.0200487 0.193524i
\(343\) 2.33952i 0.126322i
\(344\) −21.0910 6.74879i −1.13715 0.363870i
\(345\) −6.81899 −0.367122
\(346\) −1.24486 + 12.0163i −0.0669240 + 0.645999i
\(347\) 11.0734 26.7334i 0.594449 1.43513i −0.284718 0.958611i \(-0.591900\pi\)
0.879167 0.476515i \(-0.158100\pi\)
\(348\) 0.564079 2.69323i 0.0302378 0.144373i
\(349\) 13.3561 + 5.53227i 0.714934 + 0.296135i 0.710345 0.703854i \(-0.248539\pi\)
0.00458953 + 0.999989i \(0.498539\pi\)
\(350\) 0.766710 + 2.57427i 0.0409824 + 0.137601i
\(351\) −20.0892 3.40272i −1.07228 0.181624i
\(352\) 0.349030 0.615078i 0.0186034 0.0327837i
\(353\) −15.0043 15.0043i −0.798600 0.798600i 0.184275 0.982875i \(-0.441006\pi\)
−0.982875 + 0.184275i \(0.941006\pi\)
\(354\) −7.36125 24.7159i −0.391246 1.31363i
\(355\) −19.2500 46.4736i −1.02168 2.46656i
\(356\) 6.93738 + 10.6132i 0.367681 + 0.562501i
\(357\) −0.442007 1.06710i −0.0233935 0.0564769i
\(358\) 4.10160 + 0.424916i 0.216776 + 0.0224575i
\(359\) 6.78539i 0.358119i −0.983838 0.179060i \(-0.942694\pi\)
0.983838 0.179060i \(-0.0573055\pi\)
\(360\) −3.11832 + 9.74524i −0.164350 + 0.513619i
\(361\) 7.71907 + 7.71907i 0.406267 + 0.406267i
\(362\) 13.6832 + 16.8459i 0.719171 + 0.885400i
\(363\) −6.09897 + 14.7242i −0.320113 + 0.772821i
\(364\) −0.869407 0.837900i −0.0455693 0.0439179i
\(365\) 33.3640 13.8198i 1.74635 0.723363i
\(366\) 2.14086 + 7.18808i 0.111905 + 0.375727i
\(367\) 7.20556 0.376127 0.188064 0.982157i \(-0.439779\pi\)
0.188064 + 0.982157i \(0.439779\pi\)
\(368\) −1.69234 4.33134i −0.0882193 0.225787i
\(369\) −0.999600 + 0.999600i −0.0520371 + 0.0520371i
\(370\) −17.5619 58.9651i −0.912999 3.06545i
\(371\) 0.384874 + 0.159420i 0.0199816 + 0.00827667i
\(372\) 6.45644 1.21655i 0.334751 0.0630751i
\(373\) −12.2576 + 29.5926i −0.634677 + 1.53225i 0.199004 + 0.979999i \(0.436229\pi\)
−0.833681 + 0.552246i \(0.813771\pi\)
\(374\) 0.836081 + 0.0866160i 0.0432327 + 0.00447880i
\(375\) −37.2048 −1.92125
\(376\) −15.6972 13.2857i −0.809519 0.685159i
\(377\) 2.78738 1.97989i 0.143557 0.101970i
\(378\) 0.843696 + 1.03871i 0.0433950 + 0.0534254i
\(379\) −13.1898 + 5.46338i −0.677513 + 0.280635i −0.694787 0.719216i \(-0.744501\pi\)
0.0172737 + 0.999851i \(0.494501\pi\)
\(380\) 12.5775 + 19.2418i 0.645210 + 0.987083i
\(381\) 18.9413 7.84574i 0.970392 0.401950i
\(382\) −8.67090 + 16.0267i −0.443642 + 0.819999i
\(383\) −2.96879 + 2.96879i −0.151698 + 0.151698i −0.778876 0.627178i \(-0.784210\pi\)
0.627178 + 0.778876i \(0.284210\pi\)
\(384\) 16.3829 1.03008i 0.836035 0.0525659i
\(385\) −0.0598399 + 0.0598399i −0.00304972 + 0.00304972i
\(386\) 20.7825 6.18976i 1.05780 0.315050i
\(387\) 2.68108 + 6.47270i 0.136287 + 0.329026i
\(388\) 4.23184 20.2052i 0.214839 1.02576i
\(389\) −14.2653 + 34.4396i −0.723281 + 1.74616i −0.0595006 + 0.998228i \(0.518951\pi\)
−0.663781 + 0.747927i \(0.731049\pi\)
\(390\) 26.0382 14.7148i 1.31850 0.745114i
\(391\) 3.90821 3.90821i 0.197647 0.197647i
\(392\) −1.63507 19.6518i −0.0825836 0.992565i
\(393\) −18.8377 + 18.8377i −0.950236 + 0.950236i
\(394\) −0.313682 + 3.02789i −0.0158031 + 0.152543i
\(395\) 22.2517 + 53.7203i 1.11960 + 2.70296i
\(396\) −0.219875 + 0.0414297i −0.0110491 + 0.00208192i
\(397\) −0.839703 + 2.02722i −0.0421435 + 0.101743i −0.943550 0.331231i \(-0.892536\pi\)
0.901406 + 0.432975i \(0.142536\pi\)
\(398\) 1.79942 + 6.04165i 0.0901966 + 0.302840i
\(399\) 0.690737 0.0345801
\(400\) −16.5120 42.2606i −0.825602 2.11303i
\(401\) 1.35223 + 1.35223i 0.0675272 + 0.0675272i 0.740064 0.672537i \(-0.234795\pi\)
−0.672537 + 0.740064i \(0.734795\pi\)
\(402\) −10.3057 5.57565i −0.514000 0.278088i
\(403\) 6.91434 + 4.33964i 0.344428 + 0.216173i
\(404\) −22.0222 + 4.14951i −1.09564 + 0.206446i
\(405\) −20.5969 + 8.53153i −1.02347 + 0.423935i
\(406\) −0.223352 0.0231388i −0.0110848 0.00114836i
\(407\) 0.951320 0.951320i 0.0471552 0.0471552i
\(408\) 8.93517 + 17.3441i 0.442357 + 0.858661i
\(409\) 23.2371i 1.14900i 0.818504 + 0.574501i \(0.194804\pi\)
−0.818504 + 0.574501i \(0.805196\pi\)
\(410\) 0.930686 8.98367i 0.0459633 0.443672i
\(411\) 6.39049 + 15.4280i 0.315219 + 0.761007i
\(412\) −3.44721 + 16.4589i −0.169832 + 0.810874i
\(413\) −1.94428 + 0.805346i −0.0956717 + 0.0396285i
\(414\) −0.700078 + 1.29398i −0.0344070 + 0.0635956i
\(415\) 44.8038 2.19933
\(416\) 15.8088 + 12.8872i 0.775092 + 0.631848i
\(417\) 1.53757 0.0752950
\(418\) −0.239198 + 0.442118i −0.0116996 + 0.0216247i
\(419\) 5.64401 2.33783i 0.275728 0.114210i −0.240535 0.970641i \(-0.577323\pi\)
0.516263 + 0.856430i \(0.327323\pi\)
\(420\) −1.92257 0.402670i −0.0938120 0.0196483i
\(421\) 6.61577 + 15.9719i 0.322433 + 0.778422i 0.999112 + 0.0421436i \(0.0134187\pi\)
−0.676679 + 0.736279i \(0.736581\pi\)
\(422\) −2.01329 + 19.4338i −0.0980055 + 0.946021i
\(423\) 6.50623i 0.316344i
\(424\) −6.70211 2.14456i −0.325483 0.104149i
\(425\) 38.1321 38.1321i 1.84968 1.84968i
\(426\) 25.3959 + 2.63096i 1.23044 + 0.127470i
\(427\) 0.565452 0.234218i 0.0273641 0.0113346i
\(428\) −7.00265 37.1644i −0.338486 1.79641i
\(429\) 0.553945 + 0.347672i 0.0267447 + 0.0167858i
\(430\) −39.3686 21.2995i −1.89852 1.02715i
\(431\) −4.74711 4.74711i −0.228660 0.228660i 0.583472 0.812133i \(-0.301694\pi\)
−0.812133 + 0.583472i \(0.801694\pi\)
\(432\) −15.6573 16.3036i −0.753312 0.784406i
\(433\) −35.3538 −1.69899 −0.849497 0.527593i \(-0.823094\pi\)
−0.849497 + 0.527593i \(0.823094\pi\)
\(434\) −0.153039 0.513838i −0.00734611 0.0246650i
\(435\) 2.12849 5.13863i 0.102053 0.246378i
\(436\) −0.906938 4.81329i −0.0434345 0.230515i
\(437\) 1.26490 + 3.05373i 0.0605082 + 0.146080i
\(438\) −1.88880 + 18.2321i −0.0902504 + 0.871163i
\(439\) −21.1592 + 21.1592i −1.00988 + 1.00988i −0.00992460 + 0.999951i \(0.503159\pi\)
−0.999951 + 0.00992460i \(0.996841\pi\)
\(440\) 0.923512 1.09114i 0.0440267 0.0520178i
\(441\) −4.41154 + 4.41154i −0.210073 + 0.210073i
\(442\) −6.48984 + 23.3570i −0.308690 + 1.11098i
\(443\) 7.27080 17.5533i 0.345446 0.833980i −0.651700 0.758477i \(-0.725944\pi\)
0.997146 0.0755033i \(-0.0240563\pi\)
\(444\) 30.5646 + 6.40155i 1.45053 + 0.303804i
\(445\) 9.80788 + 23.6783i 0.464938 + 1.12246i
\(446\) 21.9894 6.54923i 1.04123 0.310115i
\(447\) −2.08217 + 2.08217i −0.0984832 + 0.0984832i
\(448\) −0.221374 1.32113i −0.0104590 0.0624176i
\(449\) −10.5786 + 10.5786i −0.499236 + 0.499236i −0.911200 0.411964i \(-0.864843\pi\)
0.411964 + 0.911200i \(0.364843\pi\)
\(450\) −6.83061 + 12.6253i −0.321998 + 0.595160i
\(451\) 0.182465 0.0755793i 0.00859192 0.00355889i
\(452\) 1.42268 0.929939i 0.0669171 0.0437406i
\(453\) 20.3501 8.42927i 0.956129 0.396042i
\(454\) −12.6175 15.5339i −0.592169 0.729044i
\(455\) −1.41335 1.98978i −0.0662590 0.0932822i
\(456\) −11.6276 + 0.967443i −0.544513 + 0.0453047i
\(457\) −8.47358 −0.396377 −0.198189 0.980164i \(-0.563506\pi\)
−0.198189 + 0.980164i \(0.563506\pi\)
\(458\) −14.9682 1.55067i −0.699417 0.0724579i
\(459\) 10.2814 24.8214i 0.479894 1.15857i
\(460\) −1.74048 9.23704i −0.0811502 0.430679i
\(461\) 19.6702 + 8.14766i 0.916132 + 0.379474i 0.790401 0.612590i \(-0.209872\pi\)
0.125731 + 0.992064i \(0.459872\pi\)
\(462\) −0.0122608 0.0411663i −0.000570423 0.00191523i
\(463\) 18.4109 18.4109i 0.855627 0.855627i −0.135193 0.990819i \(-0.543165\pi\)
0.990819 + 0.135193i \(0.0431653\pi\)
\(464\) 3.79224 + 0.0766835i 0.176050 + 0.00355994i
\(465\) 13.2802 0.615854
\(466\) −4.56251 15.3189i −0.211354 0.709635i
\(467\) 33.8363 14.0155i 1.56576 0.648559i 0.579681 0.814844i \(-0.303177\pi\)
0.986078 + 0.166285i \(0.0531772\pi\)
\(468\) −0.119061 6.45175i −0.00550359 0.298232i
\(469\) −0.365913 + 0.883393i −0.0168963 + 0.0407913i
\(470\) −26.2078 32.2654i −1.20887 1.48829i
\(471\) −3.15608 3.15608i −0.145425 0.145425i
\(472\) 31.6013 16.2801i 1.45457 0.749351i
\(473\) 0.978796i 0.0450051i
\(474\) −29.3559 3.04120i −1.34836 0.139687i
\(475\) 12.3415 + 29.7950i 0.566267 + 1.36709i
\(476\) 1.33268 0.871112i 0.0610833 0.0399273i
\(477\) 0.851968 + 2.05683i 0.0390089 + 0.0941759i
\(478\) 0.295795 + 0.993149i 0.0135293 + 0.0454256i
\(479\) −8.74720 8.74720i −0.399670 0.399670i 0.478447 0.878117i \(-0.341200\pi\)
−0.878117 + 0.478447i \(0.841200\pi\)
\(480\) 32.9279 + 4.08565i 1.50295 + 0.186484i
\(481\) 22.4691 + 31.6330i 1.02450 + 1.44234i
\(482\) 5.92631 + 19.8980i 0.269936 + 0.906327i
\(483\) −0.260939 0.108084i −0.0118731 0.00491801i
\(484\) −21.5022 4.50348i −0.977372 0.204704i
\(485\) 15.9684 38.5511i 0.725087 1.75052i
\(486\) −1.30456 + 12.5925i −0.0591759 + 0.571209i
\(487\) 25.0041 1.13304 0.566522 0.824047i \(-0.308289\pi\)
0.566522 + 0.824047i \(0.308289\pi\)
\(488\) −9.19057 + 4.73471i −0.416037 + 0.214330i
\(489\) 16.0971i 0.727936i
\(490\) 4.10740 39.6476i 0.185553 1.79110i
\(491\) −8.43661 + 20.3678i −0.380739 + 0.919184i 0.611085 + 0.791565i \(0.290734\pi\)
−0.991823 + 0.127619i \(0.959266\pi\)
\(492\) 3.78568 + 2.58524i 0.170672 + 0.116552i
\(493\) 1.72522 + 4.16505i 0.0776999 + 0.187584i
\(494\) −11.4197 8.93108i −0.513796 0.401828i
\(495\) −0.452259 −0.0203275
\(496\) 3.29588 + 8.43542i 0.147990 + 0.378761i
\(497\) 2.08351i 0.0934580i
\(498\) −10.8212 + 20.0012i −0.484909 + 0.896274i
\(499\) 3.20391 7.73492i 0.143427 0.346263i −0.835799 0.549035i \(-0.814995\pi\)
0.979226 + 0.202773i \(0.0649952\pi\)
\(500\) −9.49614 50.3978i −0.424680 2.25386i
\(501\) −0.907147 2.19005i −0.0405283 0.0978440i
\(502\) 25.6932 + 31.6320i 1.14674 + 1.41180i
\(503\) 4.00991 + 4.00991i 0.178793 + 0.178793i 0.790830 0.612036i \(-0.209649\pi\)
−0.612036 + 0.790830i \(0.709649\pi\)
\(504\) −0.273794 + 0.323489i −0.0121958 + 0.0144094i
\(505\) −45.2972 −2.01570
\(506\) 0.159543 0.129590i 0.00709255 0.00576096i
\(507\) −12.5542 + 14.0771i −0.557550 + 0.625184i
\(508\) 15.4625 + 23.6554i 0.686035 + 1.04954i
\(509\) −10.1900 + 24.6008i −0.451664 + 1.09041i 0.520026 + 0.854151i \(0.325922\pi\)
−0.971689 + 0.236262i \(0.924078\pi\)
\(510\) 11.2570 + 37.7960i 0.498468 + 1.67364i
\(511\) 1.49578 0.0661693
\(512\) 5.57691 + 21.9294i 0.246467 + 0.969151i
\(513\) 11.3611 + 11.3611i 0.501604 + 0.501604i
\(514\) −1.00297 + 1.85382i −0.0442391 + 0.0817686i
\(515\) −13.0077 + 31.4033i −0.573186 + 1.38379i
\(516\) 19.0169 12.4305i 0.837173 0.547221i
\(517\) 0.347849 0.839782i 0.0152984 0.0369336i
\(518\) 0.262594 2.53475i 0.0115377 0.111371i
\(519\) −8.76395 8.76395i −0.384695 0.384695i
\(520\) 26.5787 + 31.5157i 1.16556 + 1.38205i
\(521\) 23.9151 23.9151i 1.04774 1.04774i 0.0489379 0.998802i \(-0.484416\pi\)
0.998802 0.0489379i \(-0.0155836\pi\)
\(522\) −0.756588 0.931467i −0.0331150 0.0407692i
\(523\) −15.2407 6.31292i −0.666431 0.276045i 0.0237112 0.999719i \(-0.492452\pi\)
−0.690142 + 0.723674i \(0.742452\pi\)
\(524\) −30.3258 20.7095i −1.32479 0.904699i
\(525\) −2.54596 1.05457i −0.111115 0.0460253i
\(526\) −39.6451 + 11.8077i −1.72861 + 0.514841i
\(527\) −7.61136 + 7.61136i −0.331556 + 0.331556i
\(528\) 0.264051 + 0.675807i 0.0114913 + 0.0294107i
\(529\) 21.6485i 0.941238i
\(530\) −12.5102 6.76835i −0.543408 0.293998i
\(531\) −10.3906 4.30391i −0.450912 0.186774i
\(532\) 0.176304 + 0.935675i 0.00764373 + 0.0405667i
\(533\) 1.27030 + 5.55245i 0.0550227 + 0.240503i
\(534\) −12.9392 1.34047i −0.559935 0.0580080i
\(535\) 76.4430i 3.30492i
\(536\) 4.92238 15.3832i 0.212614 0.664454i
\(537\) −2.99146 + 2.99146i −0.129091 + 0.129091i
\(538\) −9.49446 0.983603i −0.409335 0.0424061i
\(539\) 0.805271 0.333554i 0.0346855 0.0143672i
\(540\) −24.9990 38.2451i −1.07579 1.64581i
\(541\) −15.3040 6.33914i −0.657972 0.272541i 0.0286128 0.999591i \(-0.490891\pi\)
−0.686585 + 0.727050i \(0.740891\pi\)
\(542\) 26.2953 7.83167i 1.12948 0.336399i
\(543\) −22.2660 −0.955527
\(544\) −21.2138 + 16.5305i −0.909534 + 0.708741i
\(545\) 9.90040i 0.424087i
\(546\) 1.22963 0.150366i 0.0526232 0.00643506i
\(547\) 14.7496 6.10949i 0.630648 0.261223i −0.0443805 0.999015i \(-0.514131\pi\)
0.675028 + 0.737792i \(0.264131\pi\)
\(548\) −19.2677 + 12.5944i −0.823077 + 0.538007i
\(549\) 3.02187 + 1.25170i 0.128970 + 0.0534213i
\(550\) 1.55665 1.26440i 0.0663757 0.0539140i
\(551\) −2.69605 −0.114855
\(552\) 4.54394 + 1.45399i 0.193403 + 0.0618857i
\(553\) 2.40839i 0.102415i
\(554\) −23.4972 28.9284i −0.998300 1.22905i
\(555\) 58.3166 + 24.1555i 2.47540 + 1.02534i
\(556\) 0.392449 + 2.08280i 0.0166435 + 0.0883302i
\(557\) −14.5724 + 35.1809i −0.617453 + 1.49066i 0.237198 + 0.971461i \(0.423771\pi\)
−0.854651 + 0.519202i \(0.826229\pi\)
\(558\) 1.36342 2.52006i 0.0577184 0.106683i
\(559\) 27.8324 + 4.71427i 1.17718 + 0.199392i
\(560\) 0.0547408 2.70711i 0.00231322 0.114396i
\(561\) −0.609787 + 0.609787i −0.0257452 + 0.0257452i
\(562\) −39.7109 21.4847i −1.67510 0.906276i
\(563\) −19.8298 + 8.21375i −0.835725 + 0.346168i −0.759166 0.650897i \(-0.774393\pi\)
−0.0765582 + 0.997065i \(0.524393\pi\)
\(564\) 20.7336 3.90671i 0.873043 0.164502i
\(565\) 3.17402 1.31472i 0.133532 0.0553107i
\(566\) 15.8503 + 19.5140i 0.666239 + 0.820234i
\(567\) −0.923401 −0.0387792
\(568\) 2.91815 + 35.0730i 0.122443 + 1.47163i
\(569\) 19.2787 19.2787i 0.808204 0.808204i −0.176158 0.984362i \(-0.556367\pi\)
0.984362 + 0.176158i \(0.0563669\pi\)
\(570\) −23.4588 2.43028i −0.982582 0.101793i
\(571\) −9.20125 3.81128i −0.385060 0.159497i 0.181752 0.983344i \(-0.441823\pi\)
−0.566812 + 0.823847i \(0.691823\pi\)
\(572\) −0.329569 + 0.839116i −0.0137800 + 0.0350852i
\(573\) −7.15422 17.2718i −0.298872 0.721540i
\(574\) 0.178010 0.329022i 0.00742998 0.0137331i
\(575\) 13.1868i 0.549928i
\(576\) 4.15587 5.82898i 0.173161 0.242874i
\(577\) −13.8986 13.8986i −0.578607 0.578607i 0.355912 0.934519i \(-0.384170\pi\)
−0.934519 + 0.355912i \(0.884170\pi\)
\(578\) −6.96876 3.77029i −0.289862 0.156823i
\(579\) −8.51372 + 20.5539i −0.353818 + 0.854192i
\(580\) 7.50409 + 1.57168i 0.311590 + 0.0652604i
\(581\) 1.71449 + 0.710163i 0.0711288 + 0.0294625i
\(582\) 13.3531 + 16.4396i 0.553505 + 0.681442i
\(583\) 0.311033i 0.0128817i
\(584\) −25.1794 + 2.09498i −1.04193 + 0.0866909i
\(585\) 2.17826 12.8601i 0.0900598 0.531700i
\(586\) 8.12874 + 0.842118i 0.335795 + 0.0347876i
\(587\) −5.99353 14.4697i −0.247379 0.597226i 0.750601 0.660756i \(-0.229764\pi\)
−0.997980 + 0.0635297i \(0.979764\pi\)
\(588\) 16.7073 + 11.4095i 0.688999 + 0.470518i
\(589\) −2.46343 5.94724i −0.101504 0.245052i
\(590\) 68.8651 20.5105i 2.83513 0.844403i
\(591\) −2.20836 2.20836i −0.0908396 0.0908396i
\(592\) −0.870255 + 43.0369i −0.0357673 + 1.76881i
\(593\) 33.8721 + 33.8721i 1.39096 + 1.39096i 0.823178 + 0.567783i \(0.192199\pi\)
0.567783 + 0.823178i \(0.307801\pi\)
\(594\) 0.475431 0.878756i 0.0195072 0.0360558i
\(595\) 2.97323 1.23155i 0.121891 0.0504887i
\(596\) −3.35197 2.28906i −0.137302 0.0937637i
\(597\) −5.97520 2.47501i −0.244549 0.101295i
\(598\) 2.91649 + 5.16080i 0.119264 + 0.211041i
\(599\) 24.6953 + 24.6953i 1.00902 + 1.00902i 0.999959 + 0.00906172i \(0.00288448\pi\)
0.00906172 + 0.999959i \(0.497116\pi\)
\(600\) 44.3349 + 14.1864i 1.80996 + 0.579159i
\(601\) −20.4462 20.4462i −0.834017 0.834017i 0.154047 0.988064i \(-0.450769\pi\)
−0.988064 + 0.154047i \(0.950769\pi\)
\(602\) −1.16889 1.43907i −0.0476405 0.0586521i
\(603\) −4.72101 + 1.95551i −0.192254 + 0.0796344i
\(604\) 16.6125 + 25.4148i 0.675952 + 1.03411i
\(605\) −41.0257 16.9934i −1.66793 0.690880i
\(606\) 10.9404 20.2214i 0.444422 0.821440i
\(607\) 27.1619i 1.10247i 0.834351 + 0.551234i \(0.185843\pi\)
−0.834351 + 0.551234i \(0.814157\pi\)
\(608\) −4.27834 15.5039i −0.173509 0.628766i
\(609\) 0.162900 0.162900i 0.00660103 0.00660103i
\(610\) −20.0279 + 5.96503i −0.810908 + 0.241517i
\(611\) 22.2041 + 13.9359i 0.898281 + 0.563787i
\(612\) 8.32792 + 1.74423i 0.336636 + 0.0705061i
\(613\) 8.81016 + 21.2696i 0.355839 + 0.859071i 0.995876 + 0.0907270i \(0.0289191\pi\)
−0.640037 + 0.768344i \(0.721081\pi\)
\(614\) 21.1587 + 26.0493i 0.853894 + 1.05126i
\(615\) 6.55214 + 6.55214i 0.264208 + 0.264208i
\(616\) 0.0526346 0.0271158i 0.00212071 0.00109253i
\(617\) −21.2107 −0.853909 −0.426954 0.904273i \(-0.640414\pi\)
−0.426954 + 0.904273i \(0.640414\pi\)
\(618\) −10.8773 13.3915i −0.437549 0.538684i
\(619\) 34.0488 14.1035i 1.36854 0.566866i 0.427145 0.904183i \(-0.359519\pi\)
0.941391 + 0.337317i \(0.109519\pi\)
\(620\) 3.38964 + 17.9894i 0.136131 + 0.722472i
\(621\) −2.51411 6.06961i −0.100888 0.243565i
\(622\) 30.7556 9.16009i 1.23319 0.367286i
\(623\) 1.06155i 0.0425299i
\(624\) −20.4885 + 4.25342i −0.820198 + 0.170273i
\(625\) 46.9479i 1.87791i
\(626\) −1.94382 6.52650i −0.0776907 0.260851i
\(627\) −0.197358 0.476465i −0.00788173 0.0190282i
\(628\) 3.46969 5.08080i 0.138456 0.202746i
\(629\) −47.2677 + 19.5789i −1.88469 + 0.780663i
\(630\) −0.664931 + 0.540093i −0.0264915 + 0.0215178i
\(631\) −17.1976 −0.684626 −0.342313 0.939586i \(-0.611210\pi\)
−0.342313 + 0.939586i \(0.611210\pi\)
\(632\) −3.37318 40.5419i −0.134178 1.61267i
\(633\) −14.1738 14.1738i −0.563358 0.563358i
\(634\) −28.8549 + 23.4375i −1.14597 + 0.930822i
\(635\) 21.8604 + 52.7756i 0.867503 + 2.09434i
\(636\) 6.04301 3.95004i 0.239621 0.156629i
\(637\) 5.60621 + 24.5046i 0.222126 + 0.970910i
\(638\) 0.0478556 + 0.160678i 0.00189462 + 0.00636131i
\(639\) 7.87337 7.87337i 0.311466 0.311466i
\(640\) 2.87008 + 45.6471i 0.113450 + 1.80436i
\(641\) 30.1213i 1.18972i −0.803830 0.594859i \(-0.797208\pi\)
0.803830 0.594859i \(-0.202792\pi\)
\(642\) 34.1254 + 18.4628i 1.34682 + 0.728669i
\(643\) 28.2104 + 11.6851i 1.11251 + 0.460817i 0.861802 0.507245i \(-0.169336\pi\)
0.250709 + 0.968062i \(0.419336\pi\)
\(644\) 0.0798097 0.381057i 0.00314494 0.0150157i
\(645\) 42.4270 17.5739i 1.67056 0.691970i
\(646\) 14.8380 12.0522i 0.583792 0.474188i
\(647\) −13.9589 13.9589i −0.548781 0.548781i 0.377307 0.926088i \(-0.376850\pi\)
−0.926088 + 0.377307i \(0.876850\pi\)
\(648\) 15.5442 1.29331i 0.610634 0.0508061i
\(649\) 1.11104 + 1.11104i 0.0436123 + 0.0436123i
\(650\) 28.4560 + 50.3536i 1.11614 + 1.97503i
\(651\) 0.508187 + 0.210498i 0.0199174 + 0.00825006i
\(652\) 21.8052 4.10862i 0.853957 0.160906i
\(653\) −3.10496 + 1.28612i −0.121507 + 0.0503297i −0.442608 0.896715i \(-0.645947\pi\)
0.321102 + 0.947045i \(0.395947\pi\)
\(654\) 4.41971 + 2.39118i 0.172824 + 0.0935026i
\(655\) −52.4870 52.4870i −2.05084 2.05084i
\(656\) −2.53573 + 5.78795i −0.0990035 + 0.225982i
\(657\) 5.65240 + 5.65240i 0.220521 + 0.220521i
\(658\) −0.491456 1.65009i −0.0191589 0.0643273i
\(659\) −8.54734 20.6351i −0.332957 0.803830i −0.998355 0.0573404i \(-0.981738\pi\)
0.665398 0.746489i \(-0.268262\pi\)
\(660\) 0.271562 + 1.44123i 0.0105705 + 0.0560998i
\(661\) −1.83372 4.42699i −0.0713234 0.172190i 0.884198 0.467113i \(-0.154706\pi\)
−0.955521 + 0.294923i \(0.904706\pi\)
\(662\) −1.98214 + 19.1331i −0.0770381 + 0.743628i
\(663\) −14.4025 20.2764i −0.559346 0.787471i
\(664\) −29.8557 9.55333i −1.15863 0.370741i
\(665\) 1.92458i 0.0746321i
\(666\) 10.5709 8.58627i 0.409614 0.332711i
\(667\) 1.01848 + 0.421869i 0.0394358 + 0.0163348i
\(668\) 2.73511 1.78781i 0.105824 0.0691725i
\(669\) −9.00815 + 21.7476i −0.348275 + 0.840811i
\(670\) 15.5353 28.7144i 0.600180 1.10933i
\(671\) −0.323123 0.323123i −0.0124740 0.0124740i
\(672\) 1.19528 + 0.678268i 0.0461088 + 0.0261647i
\(673\) 13.4817i 0.519680i −0.965652 0.259840i \(-0.916330\pi\)
0.965652 0.259840i \(-0.0836699\pi\)
\(674\) 5.83743 + 3.15821i 0.224849 + 0.121650i
\(675\) −24.5300 59.2207i −0.944161 2.27941i
\(676\) −22.2732 13.4129i −0.856660 0.515881i
\(677\) −3.00640 1.24529i −0.115545 0.0478605i 0.324162 0.946002i \(-0.394918\pi\)
−0.439707 + 0.898141i \(0.644918\pi\)
\(678\) −0.179687 + 1.73447i −0.00690084 + 0.0666120i
\(679\) 1.22211 1.22211i 0.0469002 0.0469002i
\(680\) −48.3254 + 24.8958i −1.85320 + 0.954711i
\(681\) 20.5320 0.786787
\(682\) −0.310715 + 0.252380i −0.0118979 + 0.00966412i
\(683\) −41.3661 + 17.1344i −1.58283 + 0.655629i −0.988859 0.148858i \(-0.952440\pi\)
−0.593970 + 0.804487i \(0.702440\pi\)
\(684\) −2.86959 + 4.20206i −0.109722 + 0.160670i
\(685\) −42.9866 + 17.8056i −1.64243 + 0.680318i
\(686\) 1.57438 2.90998i 0.0601101 0.111104i
\(687\) 10.9169 10.9169i 0.416505 0.416505i
\(688\) 21.6923 + 22.5876i 0.827010 + 0.861146i
\(689\) 8.84430 + 1.49806i 0.336941 + 0.0570714i
\(690\) 8.48173 + 4.58885i 0.322894 + 0.174694i
\(691\) 0.000934320 0.00225565i 3.55432e−5 8.58089e-5i −0.923862 0.382726i \(-0.874985\pi\)
0.923897 + 0.382641i \(0.124985\pi\)
\(692\) 9.63477 14.1086i 0.366259 0.536328i
\(693\) −0.0173064 0.00716853i −0.000657414 0.000272310i
\(694\) −31.7638 + 25.8003i −1.20574 + 0.979365i
\(695\) 4.28408i 0.162504i
\(696\) −2.51404 + 2.97035i −0.0952944 + 0.112591i
\(697\) −7.51053 −0.284482
\(698\) −12.8899 15.8692i −0.487889 0.600659i
\(699\) 15.1504 + 6.27552i 0.573042 + 0.237362i
\(700\) 0.778697 3.71794i 0.0294320 0.140525i
\(701\) 11.2131 4.64462i 0.423513 0.175425i −0.160739 0.986997i \(-0.551388\pi\)
0.584252 + 0.811572i \(0.301388\pi\)
\(702\) 22.6978 + 17.7515i 0.856674 + 0.669986i
\(703\) 30.5965i 1.15397i
\(704\) −0.848055 + 0.530178i −0.0319623 + 0.0199818i
\(705\) 42.6468 1.60617
\(706\) 8.56579 + 28.7602i 0.322378 + 1.08240i
\(707\) −1.73337 0.717984i −0.0651899 0.0270026i
\(708\) −7.47635 + 35.6963i −0.280978 + 1.34155i
\(709\) −30.7731 + 12.7466i −1.15571 + 0.478709i −0.876443 0.481505i \(-0.840090\pi\)
−0.279263 + 0.960215i \(0.590090\pi\)
\(710\) −7.33057 + 70.7600i −0.275111 + 2.65558i
\(711\) −9.10106 + 9.10106i −0.341317 + 0.341317i
\(712\) −1.48680 17.8697i −0.0557201 0.669695i
\(713\) 2.63215i 0.0985748i
\(714\) −0.168320 + 1.62475i −0.00629923 + 0.0608048i
\(715\) −0.968709 + 1.54344i −0.0362276 + 0.0577214i
\(716\) −4.81579 3.28871i −0.179974 0.122905i
\(717\) −0.982227 0.406852i −0.0366819 0.0151942i
\(718\) −4.56624 + 8.43994i −0.170411 + 0.314976i
\(719\) 39.5495i 1.47495i 0.675376 + 0.737474i \(0.263982\pi\)
−0.675376 + 0.737474i \(0.736018\pi\)
\(720\) 10.4368 10.0230i 0.388955 0.373537i
\(721\) −0.995515 + 0.995515i −0.0370749 + 0.0370749i
\(722\) −4.40672 14.7958i −0.164001 0.550644i
\(723\) −19.6791 8.15136i −0.731874 0.303152i
\(724\) −5.68318 30.1617i −0.211214 1.12095i
\(725\) 9.93726 + 4.11615i 0.369061 + 0.152870i
\(726\) 17.4948 14.2102i 0.649294 0.527392i
\(727\) −2.37508 + 2.37508i −0.0880869 + 0.0880869i −0.749777 0.661690i \(-0.769839\pi\)
0.661690 + 0.749777i \(0.269839\pi\)
\(728\) 0.517536 + 1.62728i 0.0191812 + 0.0603111i
\(729\) −20.8827 20.8827i −0.773432 0.773432i
\(730\) −50.7996 5.26272i −1.88018 0.194782i
\(731\) −14.2442 + 34.3887i −0.526843 + 1.27191i
\(732\) 2.17434 10.3815i 0.0803657 0.383712i
\(733\) 5.27301 12.7302i 0.194763 0.470200i −0.796084 0.605186i \(-0.793099\pi\)
0.990848 + 0.134986i \(0.0430989\pi\)
\(734\) −8.96256 4.84899i −0.330814 0.178979i
\(735\) 28.9166 + 28.9166i 1.06660 + 1.06660i
\(736\) −0.809781 + 6.52635i −0.0298489 + 0.240565i
\(737\) 0.713907 0.0262971
\(738\) 1.91602 0.570660i 0.0705298 0.0210063i
\(739\) 14.5255 35.0677i 0.534329 1.28998i −0.394302 0.918981i \(-0.629014\pi\)
0.928631 0.371004i \(-0.120986\pi\)
\(740\) −17.8365 + 85.1614i −0.655681 + 3.13059i
\(741\) 14.4990 3.31710i 0.532633 0.121857i
\(742\) −0.371439 0.457294i −0.0136360 0.0167878i
\(743\) 11.2363 0.412219 0.206109 0.978529i \(-0.433920\pi\)
0.206109 + 0.978529i \(0.433920\pi\)
\(744\) −8.84946 2.83168i −0.324437 0.103814i
\(745\) −5.80149 5.80149i −0.212550 0.212550i
\(746\) 35.1609 28.5596i 1.28733 1.04564i
\(747\) 3.79524 + 9.16252i 0.138861 + 0.335239i
\(748\) −0.981662 0.670378i −0.0358931 0.0245114i
\(749\) 1.21166 2.92521i 0.0442731 0.106885i
\(750\) 46.2768 + 25.0370i 1.68979 + 0.914222i
\(751\) 3.24205i 0.118304i −0.998249 0.0591520i \(-0.981160\pi\)
0.998249 0.0591520i \(-0.0188396\pi\)
\(752\) 10.5841 + 27.0887i 0.385962 + 0.987824i
\(753\) −41.8095 −1.52362
\(754\) −4.79942 + 0.586899i −0.174784 + 0.0213736i
\(755\) 23.4863 + 56.7008i 0.854752 + 2.06355i
\(756\) −0.350422 1.85975i −0.0127447 0.0676386i
\(757\) 9.49906 22.9328i 0.345249 0.833505i −0.651918 0.758289i \(-0.726035\pi\)
0.997167 0.0752157i \(-0.0239645\pi\)
\(758\) 20.0826 + 2.08050i 0.729431 + 0.0755673i
\(759\) 0.210876i 0.00765431i
\(760\) −2.69556 32.3977i −0.0977783 1.17519i
\(761\) 6.33846 0.229769 0.114884 0.993379i \(-0.463350\pi\)
0.114884 + 0.993379i \(0.463350\pi\)
\(762\) −28.8397 2.98773i −1.04475 0.108234i
\(763\) 0.156926 0.378854i 0.00568111 0.0137154i
\(764\) 21.5704 14.0996i 0.780391 0.510105i
\(765\) 15.8895 + 6.58164i 0.574485 + 0.237960i
\(766\) 5.69054 1.69484i 0.205608 0.0612372i
\(767\) −36.9441 + 26.2416i −1.33397 + 0.947530i
\(768\) −21.0708 9.74362i −0.760329 0.351593i
\(769\) 5.25446 + 5.25446i 0.189481 + 0.189481i 0.795472 0.605991i \(-0.207223\pi\)
−0.605991 + 0.795472i \(0.707223\pi\)
\(770\) 0.114701 0.0341619i 0.00413352 0.00123111i
\(771\) −0.827533 1.99784i −0.0298029 0.0719505i
\(772\) −30.0155 6.28654i −1.08028 0.226257i
\(773\) −4.27408 10.3185i −0.153728 0.371132i 0.828188 0.560451i \(-0.189372\pi\)
−0.981916 + 0.189319i \(0.939372\pi\)
\(774\) 1.02098 9.85524i 0.0366983 0.354239i
\(775\) 25.6817i 0.922514i
\(776\) −18.8609 + 22.2842i −0.677066 + 0.799957i
\(777\) 1.84869 + 1.84869i 0.0663216 + 0.0663216i
\(778\) 40.9199 33.2374i 1.46705 1.19162i
\(779\) 1.71883 4.14963i 0.0615835 0.148676i
\(780\) −42.2897 + 0.780416i −1.51421 + 0.0279434i
\(781\) −1.43719 + 0.595302i −0.0514266 + 0.0213016i
\(782\) −7.49121 + 2.23115i −0.267885 + 0.0797857i
\(783\) 5.35867 0.191503
\(784\) −11.1909 + 25.5440i −0.399676 + 0.912285i
\(785\) 8.79371 8.79371i 0.313861 0.313861i
\(786\) 36.1079 10.7542i 1.28793 0.383590i
\(787\) 8.07902 + 3.34644i 0.287986 + 0.119288i 0.522000 0.852946i \(-0.325186\pi\)
−0.234014 + 0.972233i \(0.575186\pi\)
\(788\) 2.42779 3.55511i 0.0864864 0.126646i
\(789\) 16.2410 39.2091i 0.578193 1.39588i
\(790\) 8.47363 81.7936i 0.301478 2.91009i
\(791\) 0.142298 0.00505952
\(792\) 0.301369 + 0.0964333i 0.0107087 + 0.00342661i
\(793\) 10.7444 7.63181i 0.381544 0.271014i
\(794\) 2.40868 1.95646i 0.0854808 0.0694322i
\(795\) 13.4821 5.58445i 0.478159 0.198060i
\(796\) 1.82755 8.72576i 0.0647758 0.309276i
\(797\) 48.3650 20.0334i 1.71318 0.709621i 0.713214 0.700946i \(-0.247239\pi\)
0.999962 0.00867511i \(-0.00276141\pi\)
\(798\) −0.859166 0.464832i −0.0304141 0.0164549i
\(799\) −24.4424 + 24.4424i −0.864710 + 0.864710i
\(800\) −7.90098 + 63.6771i −0.279342 + 2.25133i
\(801\) −4.01148 + 4.01148i −0.141739 + 0.141739i
\(802\) −0.771973 2.59194i −0.0272593 0.0915247i
\(803\) −0.427375 1.03178i −0.0150818 0.0364106i
\(804\) 9.06645 + 13.8704i 0.319749 + 0.489172i
\(805\) 0.301153 0.727047i 0.0106142 0.0256250i
\(806\) −5.67996 10.0508i −0.200068 0.354025i
\(807\) 6.92468 6.92468i 0.243760 0.243760i
\(808\) 30.1845 + 9.65854i 1.06189 + 0.339786i
\(809\) −22.9976 + 22.9976i −0.808554 + 0.808554i −0.984415 0.175861i \(-0.943729\pi\)
0.175861 + 0.984415i \(0.443729\pi\)
\(810\) 31.3606 + 3.24888i 1.10190 + 0.114154i
\(811\) −17.7792 42.9227i −0.624311 1.50722i −0.846595 0.532238i \(-0.821351\pi\)
0.222284 0.974982i \(-0.428649\pi\)
\(812\) 0.262243 + 0.179086i 0.00920293 + 0.00628469i
\(813\) −10.7721 + 26.0061i −0.377793 + 0.912074i
\(814\) −1.82348 + 0.543097i −0.0639130 + 0.0190356i
\(815\) 44.8509 1.57106
\(816\) 0.557825 27.5862i 0.0195278 0.965711i
\(817\) −15.7401 15.7401i −0.550677 0.550677i
\(818\) 15.6375 28.9033i 0.546751 1.01058i
\(819\) 0.287193 0.457585i 0.0100353 0.0159893i
\(820\) −7.20319 + 10.5479i −0.251546 + 0.368350i
\(821\) 29.6693 12.2894i 1.03546 0.428903i 0.200782 0.979636i \(-0.435652\pi\)
0.834682 + 0.550732i \(0.185652\pi\)
\(822\) 2.43355 23.4904i 0.0848799 0.819323i
\(823\) −11.8152 + 11.8152i −0.411852 + 0.411852i −0.882383 0.470531i \(-0.844062\pi\)
0.470531 + 0.882383i \(0.344062\pi\)
\(824\) 15.3638 18.1525i 0.535225 0.632371i
\(825\) 2.05750i 0.0716329i
\(826\) 2.96033 + 0.306683i 0.103003 + 0.0106709i
\(827\) −11.4642 27.6770i −0.398649 0.962424i −0.987987 0.154537i \(-0.950611\pi\)
0.589338 0.807887i \(-0.299389\pi\)
\(828\) 1.74157 1.13838i 0.0605237 0.0395616i
\(829\) 43.1698 17.8815i 1.49935 0.621050i 0.526021 0.850472i \(-0.323683\pi\)
0.973327 + 0.229421i \(0.0736834\pi\)
\(830\) −55.7287 30.1508i −1.93437 1.04655i
\(831\) 38.2360 1.32639
\(832\) −10.9912 26.6682i −0.381051 0.924554i
\(833\) −33.1463 −1.14845
\(834\) −1.91249 1.03471i −0.0662240 0.0358290i
\(835\) 6.10207 2.52756i 0.211171 0.0874698i
\(836\) 0.595048 0.388955i 0.0205802 0.0134523i
\(837\) 4.89632 + 11.8208i 0.169241 + 0.408585i
\(838\) −8.59349 0.890265i −0.296857 0.0307537i
\(839\) 24.5761i 0.848461i −0.905554 0.424230i \(-0.860545\pi\)
0.905554 0.424230i \(-0.139455\pi\)
\(840\) 2.12040 + 1.79466i 0.0731606 + 0.0619215i
\(841\) 19.8703 19.8703i 0.685182 0.685182i
\(842\) 2.51934 24.3186i 0.0868223 0.838073i
\(843\) 42.7959 17.7266i 1.47397 0.610538i
\(844\) 15.5822 22.8176i 0.536361 0.785415i
\(845\) −39.2225 34.9793i −1.34930 1.20333i
\(846\) 4.37837 8.09270i 0.150532 0.278233i
\(847\) −1.30056 1.30056i −0.0446876 0.0446876i
\(848\) 6.89316 + 7.17769i 0.236712 + 0.246483i
\(849\) −25.7926 −0.885200
\(850\) −73.0912 + 21.7692i −2.50701 + 0.746676i
\(851\) −4.78765 + 11.5584i −0.164119 + 0.396217i
\(852\) −29.8180 20.3627i −1.02155 0.697615i
\(853\) −5.94133 14.3436i −0.203427 0.491116i 0.788935 0.614477i \(-0.210633\pi\)
−0.992362 + 0.123360i \(0.960633\pi\)
\(854\) −0.860948 0.0891922i −0.0294610 0.00305209i
\(855\) −7.27281 + 7.27281i −0.248725 + 0.248725i
\(856\) −16.2996 + 50.9389i −0.557110 + 1.74106i
\(857\) −11.7757 + 11.7757i −0.402251 + 0.402251i −0.879026 0.476774i \(-0.841806\pi\)
0.476774 + 0.879026i \(0.341806\pi\)
\(858\) −0.455052 0.805226i −0.0155352 0.0274900i
\(859\) −7.95322 + 19.2008i −0.271360 + 0.655122i −0.999542 0.0302622i \(-0.990366\pi\)
0.728182 + 0.685384i \(0.240366\pi\)
\(860\) 34.6347 + 52.9863i 1.18103 + 1.80682i
\(861\) 0.146873 + 0.354582i 0.00500541 + 0.0120841i
\(862\) 2.71007 + 9.09922i 0.0923054 + 0.309921i
\(863\) 40.6507 40.6507i 1.38377 1.38377i 0.545949 0.837818i \(-0.316169\pi\)
0.837818 0.545949i \(-0.183831\pi\)
\(864\) 8.50364 + 30.8156i 0.289300 + 1.04837i
\(865\) 24.4187 24.4187i 0.830262 0.830262i
\(866\) 43.9744 + 23.7914i 1.49431 + 0.808464i
\(867\) 7.51014 3.11080i 0.255058 0.105648i
\(868\) −0.155432 + 0.742120i −0.00527570 + 0.0251892i
\(869\) 1.66129 0.688128i 0.0563553 0.0233431i
\(870\) −6.10555 + 4.95926i −0.206997 + 0.168135i
\(871\) −3.43846 + 20.3002i −0.116508 + 0.687845i
\(872\) −2.11102 + 6.59728i −0.0714882 + 0.223412i
\(873\) 9.23647 0.312607
\(874\) 0.481684 4.64956i 0.0162932 0.157274i
\(875\) 1.64311 3.96681i 0.0555471 0.134103i
\(876\) 14.6187 21.4067i 0.493919 0.723266i
\(877\) 28.1496 + 11.6600i 0.950545 + 0.393729i 0.803436 0.595392i \(-0.203003\pi\)
0.147109 + 0.989120i \(0.453003\pi\)
\(878\) 40.5578 12.0796i 1.36876 0.407665i
\(879\) −5.92861 + 5.92861i −0.199967 + 0.199967i
\(880\) −1.88298 + 0.735718i −0.0634753 + 0.0248011i
\(881\) −5.99203 −0.201877 −0.100938 0.994893i \(-0.532184\pi\)
−0.100938 + 0.994893i \(0.532184\pi\)
\(882\) 8.45599 2.51849i 0.284728 0.0848021i
\(883\) 40.2702 16.6805i 1.35520 0.561342i 0.417464 0.908693i \(-0.362919\pi\)
0.937735 + 0.347351i \(0.112919\pi\)
\(884\) 23.7905 24.6850i 0.800160 0.830247i
\(885\) −28.2112 + 68.1077i −0.948308 + 2.28942i
\(886\) −20.8562 + 16.9405i −0.700678 + 0.569129i
\(887\) −25.5472 25.5472i −0.857791 0.857791i 0.133287 0.991078i \(-0.457447\pi\)
−0.991078 + 0.133287i \(0.957447\pi\)
\(888\) −33.7095 28.5310i −1.13122 0.957438i
\(889\) 2.36604i 0.0793543i
\(890\) 3.73493 36.0522i 0.125195 1.20847i
\(891\) 0.263836 + 0.636955i 0.00883882 + 0.0213388i
\(892\) −31.7586 6.65163i −1.06336 0.222713i
\(893\) −7.91082 19.0984i −0.264725 0.639104i
\(894\) 3.99108 1.18869i 0.133482 0.0397556i
\(895\) −8.33503 8.33503i −0.278609 0.278609i
\(896\) −0.613702 + 1.79225i −0.0205024 + 0.0598748i
\(897\) −5.99631 1.01566i −0.200211 0.0339119i
\(898\) 20.2770 6.03921i 0.676652 0.201531i
\(899\) −1.98353 0.821603i −0.0661543 0.0274020i
\(900\) 16.9924 11.1071i 0.566412 0.370238i
\(901\) −4.52640 + 10.9277i −0.150796 + 0.364054i
\(902\) −0.277818 0.0287813i −0.00925032 0.000958311i
\(903\) 1.90209 0.0632976
\(904\) −2.39539 + 0.199301i −0.0796694 + 0.00662867i
\(905\) 62.0393i 2.06225i
\(906\) −30.9847 3.20994i −1.02940 0.106643i
\(907\) 3.10397 7.49364i 0.103066 0.248822i −0.863932 0.503609i \(-0.832005\pi\)
0.966997 + 0.254787i \(0.0820052\pi\)
\(908\) 5.24058 + 27.8127i 0.173915 + 0.922997i
\(909\) −3.83703 9.26342i −0.127266 0.307248i
\(910\) 0.418960 + 3.42608i 0.0138884 + 0.113573i
\(911\) −52.0385 −1.72411 −0.862056 0.506814i \(-0.830823\pi\)
−0.862056 + 0.506814i \(0.830823\pi\)
\(912\) 15.1139 + 6.62148i 0.500472 + 0.219259i
\(913\) 1.38555i 0.0458549i
\(914\) 10.5398 + 5.70231i 0.348625 + 0.188616i
\(915\) 8.20461 19.8077i 0.271236 0.654822i
\(916\) 17.5745 + 12.0016i 0.580677 + 0.396545i
\(917\) −1.17655 2.84044i −0.0388530 0.0937996i
\(918\) −29.4920 + 23.9550i −0.973381 + 0.790633i
\(919\) −6.59859 6.59859i −0.217667 0.217667i 0.589847 0.807515i \(-0.299188\pi\)
−0.807515 + 0.589847i \(0.799188\pi\)
\(920\) −4.05120 + 12.6606i −0.133564 + 0.417409i
\(921\) −34.4306 −1.13453
\(922\) −18.9836 23.3715i −0.625191 0.769698i
\(923\) −10.0055 43.7340i −0.329336 1.43952i
\(924\) −0.0124525 + 0.0594552i −0.000409656 + 0.00195593i
\(925\) −46.7128 + 112.775i −1.53591 + 3.70801i
\(926\) −35.2898 + 10.5106i −1.15970 + 0.345398i
\(927\) −7.52392 −0.247118
\(928\) −4.66534 2.64738i −0.153147 0.0869044i
\(929\) 21.4042 + 21.4042i 0.702248 + 0.702248i 0.964893 0.262644i \(-0.0845946\pi\)
−0.262644 + 0.964893i \(0.584595\pi\)
\(930\) −16.5184 8.93693i −0.541661 0.293053i
\(931\) 7.58572 18.3136i 0.248612 0.600202i
\(932\) −4.63385 + 22.1246i −0.151787 + 0.724716i
\(933\) −12.5993 + 30.4173i −0.412481 + 0.995818i
\(934\) −51.5187 5.33721i −1.68574 0.174639i
\(935\) −1.69903 1.69903i −0.0555643 0.0555643i
\(936\) −4.19362 + 8.10506i −0.137073 + 0.264922i
\(937\) −12.8168 + 12.8168i −0.418706 + 0.418706i −0.884758 0.466052i \(-0.845676\pi\)
0.466052 + 0.884758i \(0.345676\pi\)
\(938\) 1.04962 0.852557i 0.0342712 0.0278370i
\(939\) 6.45472 + 2.67363i 0.210642 + 0.0872507i
\(940\) 10.8852 + 57.7696i 0.355035 + 1.88424i
\(941\) −49.8677 20.6559i −1.62564 0.673362i −0.630907 0.775859i \(-0.717317\pi\)
−0.994733 + 0.102496i \(0.967317\pi\)
\(942\) 1.80177 + 6.04955i 0.0587049 + 0.197105i
\(943\) −1.29864 + 1.29864i −0.0422896 + 0.0422896i
\(944\) −50.2627 1.01637i −1.63591 0.0330800i
\(945\) 3.82531i 0.124437i
\(946\) −0.658682 + 1.21747i −0.0214156 + 0.0395832i
\(947\) 24.4546 + 10.1294i 0.794666 + 0.329162i 0.742818 0.669493i \(-0.233489\pi\)
0.0518483 + 0.998655i \(0.483489\pi\)
\(948\) 34.4675 + 23.5379i 1.11945 + 0.764475i
\(949\) 31.3972 7.18310i 1.01920 0.233173i
\(950\) 4.69975 45.3655i 0.152480 1.47185i
\(951\) 38.1389i 1.23674i
\(952\) −2.24386 + 0.186694i −0.0727238 + 0.00605078i
\(953\) −6.86834 + 6.86834i −0.222487 + 0.222487i −0.809545 0.587058i \(-0.800286\pi\)
0.587058 + 0.809545i \(0.300286\pi\)
\(954\) 0.324437 3.13170i 0.0105040 0.101393i
\(955\) 48.1240 19.9336i 1.55725 0.645036i
\(956\) 0.300420 1.43437i 0.00971627 0.0463910i
\(957\) −0.158911 0.0658231i −0.00513686 0.00212776i
\(958\) 4.99367 + 16.7666i 0.161338 + 0.541703i
\(959\) −1.92718 −0.0622317
\(960\) −38.2076 27.2408i −1.23314 0.879193i
\(961\) 25.8738i 0.834639i
\(962\) −6.66052 54.4670i −0.214744 1.75609i
\(963\) 15.6328 6.47533i 0.503761 0.208665i
\(964\) 6.01897 28.7380i 0.193858 0.925588i
\(965\) −57.2689 23.7215i −1.84355 0.763623i
\(966\) 0.251831 + 0.310039i 0.00810252 + 0.00997534i
\(967\) −39.4567 −1.26884 −0.634422 0.772987i \(-0.718762\pi\)
−0.634422 + 0.772987i \(0.718762\pi\)
\(968\) 23.7146 + 20.0715i 0.762218 + 0.645124i
\(969\) 19.6121i 0.630030i
\(970\) −45.8051 + 37.2054i −1.47071 + 1.19459i
\(971\) −17.5788 7.28136i −0.564129 0.233670i 0.0823474 0.996604i \(-0.473758\pi\)
−0.646477 + 0.762934i \(0.723758\pi\)
\(972\) 10.0968 14.7852i 0.323856 0.474235i
\(973\) −0.0679049 + 0.163937i −0.00217693 + 0.00525557i
\(974\) −31.1011 16.8265i −0.996542 0.539157i
\(975\) −58.5056 9.90973i −1.87368 0.317365i
\(976\) 14.6178 + 0.295589i 0.467905 + 0.00946157i
\(977\) −23.0721 + 23.0721i −0.738142 + 0.738142i −0.972218 0.234076i \(-0.924793\pi\)
0.234076 + 0.972218i \(0.424793\pi\)
\(978\) −10.8326 + 20.0222i −0.346387 + 0.640239i
\(979\) 0.732246 0.303306i 0.0234027 0.00969371i
\(980\) −31.7899 + 46.5512i −1.01549 + 1.48702i
\(981\) 2.02466 0.838642i 0.0646425 0.0267758i
\(982\) 24.2003 19.6568i 0.772263 0.627274i
\(983\) −18.0009 −0.574140 −0.287070 0.957910i \(-0.592681\pi\)
−0.287070 + 0.957910i \(0.592681\pi\)
\(984\) −2.96903 5.76320i −0.0946493 0.183724i
\(985\) 6.15308 6.15308i 0.196054 0.196054i
\(986\) 0.656978 6.34164i 0.0209225 0.201959i
\(987\) 1.63194 + 0.675973i 0.0519454 + 0.0215165i
\(988\) 8.19407 + 18.7937i 0.260688 + 0.597908i
\(989\) 3.48316 + 8.40909i 0.110758 + 0.267394i
\(990\) 0.562537 + 0.304348i 0.0178786 + 0.00967282i
\(991\) 43.1924i 1.37205i 0.727577 + 0.686026i \(0.240646\pi\)
−0.727577 + 0.686026i \(0.759354\pi\)
\(992\) 1.57707 12.7103i 0.0500722 0.403552i
\(993\) −13.9545 13.9545i −0.442833 0.442833i
\(994\) −1.40210 + 2.59155i −0.0444718 + 0.0821988i
\(995\) 6.89606 16.6486i 0.218620 0.527795i
\(996\) 26.9196 17.5961i 0.852981 0.557554i
\(997\) −29.6069 12.2636i −0.937660 0.388392i −0.139081 0.990281i \(-0.544415\pi\)
−0.798579 + 0.601889i \(0.794415\pi\)
\(998\) −9.19037 + 7.46493i −0.290916 + 0.236298i
\(999\) 60.8138i 1.92406i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.bd.a.411.10 yes 216
13.5 odd 4 416.2.bi.a.187.19 yes 216
32.19 odd 8 416.2.bi.a.307.19 yes 216
416.83 even 8 inner 416.2.bd.a.83.10 216
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.bd.a.83.10 216 416.83 even 8 inner
416.2.bd.a.411.10 yes 216 1.1 even 1 trivial
416.2.bi.a.187.19 yes 216 13.5 odd 4
416.2.bi.a.307.19 yes 216 32.19 odd 8