L(s) = 1 | − 1.46i·3-s + (1.87 − 1.87i)5-s + (−0.675 + 0.675i)7-s + 0.865·9-s + (0.202 − 0.202i)11-s + (0.675 − 3.54i)13-s + (−2.74 − 2.74i)15-s + 0.539i·17-s + (1.66 + 1.66i)19-s + (0.987 + 0.987i)21-s − 4.67·23-s − 2.05i·25-s − 5.64i·27-s − 4.27·29-s + (−5.66 − 5.66i)31-s + ⋯ |
L(s) = 1 | − 0.843i·3-s + (0.840 − 0.840i)5-s + (−0.255 + 0.255i)7-s + 0.288·9-s + (0.0610 − 0.0610i)11-s + (0.187 − 0.982i)13-s + (−0.708 − 0.708i)15-s + 0.130i·17-s + (0.381 + 0.381i)19-s + (0.215 + 0.215i)21-s − 0.975·23-s − 0.411i·25-s − 1.08i·27-s − 0.793·29-s + (−1.01 − 1.01i)31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.105+0.994i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.105+0.994i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.105+0.994i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.105+0.994i)
|
Particular Values
L(1) |
≈ |
1.16345−1.04683i |
L(21) |
≈ |
1.16345−1.04683i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−0.675+3.54i)T |
good | 3 | 1+1.46iT−3T2 |
| 5 | 1+(−1.87+1.87i)T−5iT2 |
| 7 | 1+(0.675−0.675i)T−7iT2 |
| 11 | 1+(−0.202+0.202i)T−11iT2 |
| 17 | 1−0.539iT−17T2 |
| 19 | 1+(−1.66−1.66i)T+19iT2 |
| 23 | 1+4.67T+23T2 |
| 29 | 1+4.27T+29T2 |
| 31 | 1+(5.66+5.66i)T+31iT2 |
| 37 | 1+(−4.80−4.80i)T+37iT2 |
| 41 | 1+(−2.21+2.21i)T−41iT2 |
| 43 | 1−12.5T+43T2 |
| 47 | 1+(−1.08+1.08i)T−47iT2 |
| 53 | 1−3.75T+53T2 |
| 59 | 1+(3.41−3.41i)T−59iT2 |
| 61 | 1+12.6T+61T2 |
| 67 | 1+(−9.28−9.28i)T+67iT2 |
| 71 | 1+(−9.35−9.35i)T+71iT2 |
| 73 | 1+(0.865+0.865i)T+73iT2 |
| 79 | 1−13.0iT−79T2 |
| 83 | 1+(3.12+3.12i)T+83iT2 |
| 89 | 1+(−6.21−6.21i)T+89iT2 |
| 97 | 1+(7.67−7.67i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.03224177334233226873087137298, −9.893675527494367502486952634909, −9.277122760457355233903054772938, −8.130256295032696526488744842991, −7.39003014870538152324338170923, −6.03464451819148946773445799309, −5.57368512298982810965494114922, −4.06042218282149418101858970566, −2.36147677493962928224413752350, −1.12830976700908972340298573837,
2.02763062295960104066197859786, 3.47843798605697108462341812610, 4.46303085378377621533296059061, 5.73492316597641801199723614566, 6.68801935898461916320702187490, 7.55190177506152196743057163873, 9.239643231876698838438507005825, 9.517325926831623922685703245907, 10.56900839178756947667521755153, 11.00998775233045967003268331150