Properties

Label 416.2.k.f
Level 416416
Weight 22
Character orbit 416.k
Analytic conductor 3.3223.322
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(31,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 416=2513 416 = 2^{5} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 416.k (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.321776724093.32177672409
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: Q[x]/(x8+)\mathbb{Q}[x]/(x^{8} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+17x6+84x4+100x2+16 x^{8} + 17x^{6} + 84x^{4} + 100x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ4q3β6q5+(β6β2)q7+(β5+β3β23)q9+(β2β11)q11+(β6β4+β1)q13++(2β6+β5+β4++9)q99+O(q100) q - \beta_{4} q^{3} - \beta_{6} q^{5} + (\beta_{6} - \beta_{2}) q^{7} + ( - \beta_{5} + \beta_{3} - \beta_{2} - 3) q^{9} + ( - \beta_{2} - \beta_1 - 1) q^{11} + ( - \beta_{6} - \beta_{4} + \cdots - \beta_1) q^{13}+ \cdots + (2 \beta_{6} + \beta_{5} + \beta_{4} + \cdots + 9) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+2q720q96q112q13+20q156q194q21+16q23+4q2926q31+16q338q3924q41+44q43+8q4514q4744q51+28q57++66q99+O(q100) 8 q + 2 q^{7} - 20 q^{9} - 6 q^{11} - 2 q^{13} + 20 q^{15} - 6 q^{19} - 4 q^{21} + 16 q^{23} + 4 q^{29} - 26 q^{31} + 16 q^{33} - 8 q^{39} - 24 q^{41} + 44 q^{43} + 8 q^{45} - 14 q^{47} - 44 q^{51} + 28 q^{57}+ \cdots + 66 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+17x6+84x4+100x2+16 x^{8} + 17x^{6} + 84x^{4} + 100x^{2} + 16 : Copy content Toggle raw display

β1\beta_{1}== (ν7+15ν5+62ν3+48ν)/16 ( \nu^{7} + 15\nu^{5} + 62\nu^{3} + 48\nu ) / 16 Copy content Toggle raw display
β2\beta_{2}== (ν6+11ν4+26ν2+8ν+8)/8 ( \nu^{6} + 11\nu^{4} + 26\nu^{2} + 8\nu + 8 ) / 8 Copy content Toggle raw display
β3\beta_{3}== (ν611ν426ν2+8ν8)/8 ( -\nu^{6} - 11\nu^{4} - 26\nu^{2} + 8\nu - 8 ) / 8 Copy content Toggle raw display
β4\beta_{4}== (ν7+19ν5+106ν3+136ν)/16 ( \nu^{7} + 19\nu^{5} + 106\nu^{3} + 136\nu ) / 16 Copy content Toggle raw display
β5\beta_{5}== (ν4+9ν2+8)/2 ( \nu^{4} + 9\nu^{2} + 8 ) / 2 Copy content Toggle raw display
β6\beta_{6}== (ν7+ν619ν5+11ν498ν3+18ν280ν24)/16 ( -\nu^{7} + \nu^{6} - 19\nu^{5} + 11\nu^{4} - 98\nu^{3} + 18\nu^{2} - 80\nu - 24 ) / 16 Copy content Toggle raw display
β7\beta_{7}== (ν7ν619ν511ν498ν318ν280ν+24)/16 ( -\nu^{7} - \nu^{6} - 19\nu^{5} - 11\nu^{4} - 98\nu^{3} - 18\nu^{2} - 80\nu + 24 ) / 16 Copy content Toggle raw display
ν\nu== (β3+β2)/2 ( \beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (2β72β6β3+β28)/2 ( 2\beta_{7} - 2\beta_{6} - \beta_{3} + \beta_{2} - 8 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (2β7+2β6+4β47β37β2)/2 ( 2\beta_{7} + 2\beta_{6} + 4\beta_{4} - 7\beta_{3} - 7\beta_{2} ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (18β7+18β6+4β5+9β39β2+56)/2 ( -18\beta_{7} + 18\beta_{6} + 4\beta_{5} + 9\beta_{3} - 9\beta_{2} + 56 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (22β722β636β4+55β3+55β28β1)/2 ( -22\beta_{7} - 22\beta_{6} - 36\beta_{4} + 55\beta_{3} + 55\beta_{2} - 8\beta_1 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (146β7146β644β581β3+81β2424)/2 ( 146\beta_{7} - 146\beta_{6} - 44\beta_{5} - 81\beta_{3} + 81\beta_{2} - 424 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (206β7+206β6+292β4439β3439β2+152β1)/2 ( 206\beta_{7} + 206\beta_{6} + 292\beta_{4} - 439\beta_{3} - 439\beta_{2} + 152\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/416Z)×\left(\mathbb{Z}/416\mathbb{Z}\right)^\times.

nn 261261 287287 353353
χ(n)\chi(n) 11 1-1 β1\beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
31.1
2.65328i
1.20241i
2.88540i
0.434529i
0.434529i
2.88540i
1.20241i
2.65328i
0 2.89949i 0 −2.84658 + 2.84658i 0 0.193303 0.193303i 0 −5.40706 0
31.2 0 1.46091i 0 1.87831 1.87831i 0 −0.675897 + 0.675897i 0 0.865736 0
31.3 0 1.19225i 0 −0.720056 + 0.720056i 0 3.60545 3.60545i 0 1.57854 0
31.4 0 3.16816i 0 1.68833 1.68833i 0 −2.12286 + 2.12286i 0 −7.03721 0
255.1 0 3.16816i 0 1.68833 + 1.68833i 0 −2.12286 2.12286i 0 −7.03721 0
255.2 0 1.19225i 0 −0.720056 0.720056i 0 3.60545 + 3.60545i 0 1.57854 0
255.3 0 1.46091i 0 1.87831 + 1.87831i 0 −0.675897 0.675897i 0 0.865736 0
255.4 0 2.89949i 0 −2.84658 2.84658i 0 0.193303 + 0.193303i 0 −5.40706 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
52.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.2.k.f yes 8
4.b odd 2 1 416.2.k.e 8
8.b even 2 1 832.2.k.i 8
8.d odd 2 1 832.2.k.g 8
13.d odd 4 1 416.2.k.e 8
52.f even 4 1 inner 416.2.k.f yes 8
104.j odd 4 1 832.2.k.g 8
104.m even 4 1 832.2.k.i 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.k.e 8 4.b odd 2 1
416.2.k.e 8 13.d odd 4 1
416.2.k.f yes 8 1.a even 1 1 trivial
416.2.k.f yes 8 52.f even 4 1 inner
832.2.k.g 8 8.d odd 2 1
832.2.k.g 8 104.j odd 4 1
832.2.k.i 8 8.b even 2 1
832.2.k.i 8 104.m even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(416,[χ])S_{2}^{\mathrm{new}}(416, [\chi]):

T38+22T36+153T34+356T32+256 T_{3}^{8} + 22T_{3}^{6} + 153T_{3}^{4} + 356T_{3}^{2} + 256 Copy content Toggle raw display
T782T77+2T76+48T75+281T74+246T73+98T7256T7+16 T_{7}^{8} - 2T_{7}^{7} + 2T_{7}^{6} + 48T_{7}^{5} + 281T_{7}^{4} + 246T_{7}^{3} + 98T_{7}^{2} - 56T_{7} + 16 Copy content Toggle raw display
T118+6T117+18T11624T115+84T114+312T113+648T112288T11+64 T_{11}^{8} + 6T_{11}^{7} + 18T_{11}^{6} - 24T_{11}^{5} + 84T_{11}^{4} + 312T_{11}^{3} + 648T_{11}^{2} - 288T_{11} + 64 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8+22T6++256 T^{8} + 22 T^{6} + \cdots + 256 Copy content Toggle raw display
55 T816T5++676 T^{8} - 16 T^{5} + \cdots + 676 Copy content Toggle raw display
77 T82T7++16 T^{8} - 2 T^{7} + \cdots + 16 Copy content Toggle raw display
1111 T8+6T7++64 T^{8} + 6 T^{7} + \cdots + 64 Copy content Toggle raw display
1313 T8+2T7++28561 T^{8} + 2 T^{7} + \cdots + 28561 Copy content Toggle raw display
1717 T8+38T6++64 T^{8} + 38 T^{6} + \cdots + 64 Copy content Toggle raw display
1919 T8+6T7++256 T^{8} + 6 T^{7} + \cdots + 256 Copy content Toggle raw display
2323 (T48T3+256)2 (T^{4} - 8 T^{3} + \cdots - 256)^{2} Copy content Toggle raw display
2929 (T42T3++464)2 (T^{4} - 2 T^{3} + \cdots + 464)^{2} Copy content Toggle raw display
3131 T8+26T7++43264 T^{8} + 26 T^{7} + \cdots + 43264 Copy content Toggle raw display
3737 T8+8T5++669124 T^{8} + 8 T^{5} + \cdots + 669124 Copy content Toggle raw display
4141 T8+24T7++652864 T^{8} + 24 T^{7} + \cdots + 652864 Copy content Toggle raw display
4343 (T422T3+1424)2 (T^{4} - 22 T^{3} + \cdots - 1424)^{2} Copy content Toggle raw display
4747 T8+14T7++16 T^{8} + 14 T^{7} + \cdots + 16 Copy content Toggle raw display
5353 (T430T2++104)2 (T^{4} - 30 T^{2} + \cdots + 104)^{2} Copy content Toggle raw display
5959 T822T7++1048576 T^{8} - 22 T^{7} + \cdots + 1048576 Copy content Toggle raw display
6161 (T4+12T3+4112)2 (T^{4} + 12 T^{3} + \cdots - 4112)^{2} Copy content Toggle raw display
6767 T8+2T7++43983424 T^{8} + 2 T^{7} + \cdots + 43983424 Copy content Toggle raw display
7171 T814T7++204304 T^{8} - 14 T^{7} + \cdots + 204304 Copy content Toggle raw display
7373 T820T7++43264 T^{8} - 20 T^{7} + \cdots + 43264 Copy content Toggle raw display
7979 T8+208T6++256 T^{8} + 208 T^{6} + \cdots + 256 Copy content Toggle raw display
8383 T86T7++10816 T^{8} - 6 T^{7} + \cdots + 10816 Copy content Toggle raw display
8989 T88T7++7744 T^{8} - 8 T^{7} + \cdots + 7744 Copy content Toggle raw display
9797 T8+8T7++35344 T^{8} + 8 T^{7} + \cdots + 35344 Copy content Toggle raw display
show more
show less