gp: [N,k,chi] = [416,2,Mod(31,416)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(416, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 0, 3]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("416.31");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,0,0,0,0,2,0,-20,0,-6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 + 17 x 6 + 84 x 4 + 100 x 2 + 16 x^{8} + 17x^{6} + 84x^{4} + 100x^{2} + 16 x 8 + 1 7 x 6 + 8 4 x 4 + 1 0 0 x 2 + 1 6
x^8 + 17*x^6 + 84*x^4 + 100*x^2 + 16
:
β 1 \beta_{1} β 1 = = =
( ν 7 + 15 ν 5 + 62 ν 3 + 48 ν ) / 16 ( \nu^{7} + 15\nu^{5} + 62\nu^{3} + 48\nu ) / 16 ( ν 7 + 1 5 ν 5 + 6 2 ν 3 + 4 8 ν ) / 1 6
(v^7 + 15*v^5 + 62*v^3 + 48*v) / 16
β 2 \beta_{2} β 2 = = =
( ν 6 + 11 ν 4 + 26 ν 2 + 8 ν + 8 ) / 8 ( \nu^{6} + 11\nu^{4} + 26\nu^{2} + 8\nu + 8 ) / 8 ( ν 6 + 1 1 ν 4 + 2 6 ν 2 + 8 ν + 8 ) / 8
(v^6 + 11*v^4 + 26*v^2 + 8*v + 8) / 8
β 3 \beta_{3} β 3 = = =
( − ν 6 − 11 ν 4 − 26 ν 2 + 8 ν − 8 ) / 8 ( -\nu^{6} - 11\nu^{4} - 26\nu^{2} + 8\nu - 8 ) / 8 ( − ν 6 − 1 1 ν 4 − 2 6 ν 2 + 8 ν − 8 ) / 8
(-v^6 - 11*v^4 - 26*v^2 + 8*v - 8) / 8
β 4 \beta_{4} β 4 = = =
( ν 7 + 19 ν 5 + 106 ν 3 + 136 ν ) / 16 ( \nu^{7} + 19\nu^{5} + 106\nu^{3} + 136\nu ) / 16 ( ν 7 + 1 9 ν 5 + 1 0 6 ν 3 + 1 3 6 ν ) / 1 6
(v^7 + 19*v^5 + 106*v^3 + 136*v) / 16
β 5 \beta_{5} β 5 = = =
( ν 4 + 9 ν 2 + 8 ) / 2 ( \nu^{4} + 9\nu^{2} + 8 ) / 2 ( ν 4 + 9 ν 2 + 8 ) / 2
(v^4 + 9*v^2 + 8) / 2
β 6 \beta_{6} β 6 = = =
( − ν 7 + ν 6 − 19 ν 5 + 11 ν 4 − 98 ν 3 + 18 ν 2 − 80 ν − 24 ) / 16 ( -\nu^{7} + \nu^{6} - 19\nu^{5} + 11\nu^{4} - 98\nu^{3} + 18\nu^{2} - 80\nu - 24 ) / 16 ( − ν 7 + ν 6 − 1 9 ν 5 + 1 1 ν 4 − 9 8 ν 3 + 1 8 ν 2 − 8 0 ν − 2 4 ) / 1 6
(-v^7 + v^6 - 19*v^5 + 11*v^4 - 98*v^3 + 18*v^2 - 80*v - 24) / 16
β 7 \beta_{7} β 7 = = =
( − ν 7 − ν 6 − 19 ν 5 − 11 ν 4 − 98 ν 3 − 18 ν 2 − 80 ν + 24 ) / 16 ( -\nu^{7} - \nu^{6} - 19\nu^{5} - 11\nu^{4} - 98\nu^{3} - 18\nu^{2} - 80\nu + 24 ) / 16 ( − ν 7 − ν 6 − 1 9 ν 5 − 1 1 ν 4 − 9 8 ν 3 − 1 8 ν 2 − 8 0 ν + 2 4 ) / 1 6
(-v^7 - v^6 - 19*v^5 - 11*v^4 - 98*v^3 - 18*v^2 - 80*v + 24) / 16
ν \nu ν = = =
( β 3 + β 2 ) / 2 ( \beta_{3} + \beta_{2} ) / 2 ( β 3 + β 2 ) / 2
(b3 + b2) / 2
ν 2 \nu^{2} ν 2 = = =
( 2 β 7 − 2 β 6 − β 3 + β 2 − 8 ) / 2 ( 2\beta_{7} - 2\beta_{6} - \beta_{3} + \beta_{2} - 8 ) / 2 ( 2 β 7 − 2 β 6 − β 3 + β 2 − 8 ) / 2
(2*b7 - 2*b6 - b3 + b2 - 8) / 2
ν 3 \nu^{3} ν 3 = = =
( 2 β 7 + 2 β 6 + 4 β 4 − 7 β 3 − 7 β 2 ) / 2 ( 2\beta_{7} + 2\beta_{6} + 4\beta_{4} - 7\beta_{3} - 7\beta_{2} ) / 2 ( 2 β 7 + 2 β 6 + 4 β 4 − 7 β 3 − 7 β 2 ) / 2
(2*b7 + 2*b6 + 4*b4 - 7*b3 - 7*b2) / 2
ν 4 \nu^{4} ν 4 = = =
( − 18 β 7 + 18 β 6 + 4 β 5 + 9 β 3 − 9 β 2 + 56 ) / 2 ( -18\beta_{7} + 18\beta_{6} + 4\beta_{5} + 9\beta_{3} - 9\beta_{2} + 56 ) / 2 ( − 1 8 β 7 + 1 8 β 6 + 4 β 5 + 9 β 3 − 9 β 2 + 5 6 ) / 2
(-18*b7 + 18*b6 + 4*b5 + 9*b3 - 9*b2 + 56) / 2
ν 5 \nu^{5} ν 5 = = =
( − 22 β 7 − 22 β 6 − 36 β 4 + 55 β 3 + 55 β 2 − 8 β 1 ) / 2 ( -22\beta_{7} - 22\beta_{6} - 36\beta_{4} + 55\beta_{3} + 55\beta_{2} - 8\beta_1 ) / 2 ( − 2 2 β 7 − 2 2 β 6 − 3 6 β 4 + 5 5 β 3 + 5 5 β 2 − 8 β 1 ) / 2
(-22*b7 - 22*b6 - 36*b4 + 55*b3 + 55*b2 - 8*b1) / 2
ν 6 \nu^{6} ν 6 = = =
( 146 β 7 − 146 β 6 − 44 β 5 − 81 β 3 + 81 β 2 − 424 ) / 2 ( 146\beta_{7} - 146\beta_{6} - 44\beta_{5} - 81\beta_{3} + 81\beta_{2} - 424 ) / 2 ( 1 4 6 β 7 − 1 4 6 β 6 − 4 4 β 5 − 8 1 β 3 + 8 1 β 2 − 4 2 4 ) / 2
(146*b7 - 146*b6 - 44*b5 - 81*b3 + 81*b2 - 424) / 2
ν 7 \nu^{7} ν 7 = = =
( 206 β 7 + 206 β 6 + 292 β 4 − 439 β 3 − 439 β 2 + 152 β 1 ) / 2 ( 206\beta_{7} + 206\beta_{6} + 292\beta_{4} - 439\beta_{3} - 439\beta_{2} + 152\beta_1 ) / 2 ( 2 0 6 β 7 + 2 0 6 β 6 + 2 9 2 β 4 − 4 3 9 β 3 − 4 3 9 β 2 + 1 5 2 β 1 ) / 2
(206*b7 + 206*b6 + 292*b4 - 439*b3 - 439*b2 + 152*b1) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 416 Z ) × \left(\mathbb{Z}/416\mathbb{Z}\right)^\times ( Z / 4 1 6 Z ) × .
n n n
261 261 2 6 1
287 287 2 8 7
353 353 3 5 3
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
β 1 \beta_{1} β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 416 , [ χ ] ) S_{2}^{\mathrm{new}}(416, [\chi]) S 2 n e w ( 4 1 6 , [ χ ] ) :
T 3 8 + 22 T 3 6 + 153 T 3 4 + 356 T 3 2 + 256 T_{3}^{8} + 22T_{3}^{6} + 153T_{3}^{4} + 356T_{3}^{2} + 256 T 3 8 + 2 2 T 3 6 + 1 5 3 T 3 4 + 3 5 6 T 3 2 + 2 5 6
T3^8 + 22*T3^6 + 153*T3^4 + 356*T3^2 + 256
T 7 8 − 2 T 7 7 + 2 T 7 6 + 48 T 7 5 + 281 T 7 4 + 246 T 7 3 + 98 T 7 2 − 56 T 7 + 16 T_{7}^{8} - 2T_{7}^{7} + 2T_{7}^{6} + 48T_{7}^{5} + 281T_{7}^{4} + 246T_{7}^{3} + 98T_{7}^{2} - 56T_{7} + 16 T 7 8 − 2 T 7 7 + 2 T 7 6 + 4 8 T 7 5 + 2 8 1 T 7 4 + 2 4 6 T 7 3 + 9 8 T 7 2 − 5 6 T 7 + 1 6
T7^8 - 2*T7^7 + 2*T7^6 + 48*T7^5 + 281*T7^4 + 246*T7^3 + 98*T7^2 - 56*T7 + 16
T 11 8 + 6 T 11 7 + 18 T 11 6 − 24 T 11 5 + 84 T 11 4 + 312 T 11 3 + 648 T 11 2 − 288 T 11 + 64 T_{11}^{8} + 6T_{11}^{7} + 18T_{11}^{6} - 24T_{11}^{5} + 84T_{11}^{4} + 312T_{11}^{3} + 648T_{11}^{2} - 288T_{11} + 64 T 1 1 8 + 6 T 1 1 7 + 1 8 T 1 1 6 − 2 4 T 1 1 5 + 8 4 T 1 1 4 + 3 1 2 T 1 1 3 + 6 4 8 T 1 1 2 − 2 8 8 T 1 1 + 6 4
T11^8 + 6*T11^7 + 18*T11^6 - 24*T11^5 + 84*T11^4 + 312*T11^3 + 648*T11^2 - 288*T11 + 64
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
T 8 + 22 T 6 + ⋯ + 256 T^{8} + 22 T^{6} + \cdots + 256 T 8 + 2 2 T 6 + ⋯ + 2 5 6
T^8 + 22*T^6 + 153*T^4 + 356*T^2 + 256
5 5 5
T 8 − 16 T 5 + ⋯ + 676 T^{8} - 16 T^{5} + \cdots + 676 T 8 − 1 6 T 5 + ⋯ + 6 7 6
T^8 - 16*T^5 + 173*T^4 - 240*T^3 + 128*T^2 + 416*T + 676
7 7 7
T 8 − 2 T 7 + ⋯ + 16 T^{8} - 2 T^{7} + \cdots + 16 T 8 − 2 T 7 + ⋯ + 1 6
T^8 - 2*T^7 + 2*T^6 + 48*T^5 + 281*T^4 + 246*T^3 + 98*T^2 - 56*T + 16
11 11 1 1
T 8 + 6 T 7 + ⋯ + 64 T^{8} + 6 T^{7} + \cdots + 64 T 8 + 6 T 7 + ⋯ + 6 4
T^8 + 6*T^7 + 18*T^6 - 24*T^5 + 84*T^4 + 312*T^3 + 648*T^2 - 288*T + 64
13 13 1 3
T 8 + 2 T 7 + ⋯ + 28561 T^{8} + 2 T^{7} + \cdots + 28561 T 8 + 2 T 7 + ⋯ + 2 8 5 6 1
T^8 + 2*T^7 + 18*T^6 + 106*T^5 + 146*T^4 + 1378*T^3 + 3042*T^2 + 4394*T + 28561
17 17 1 7
T 8 + 38 T 6 + ⋯ + 64 T^{8} + 38 T^{6} + \cdots + 64 T 8 + 3 8 T 6 + ⋯ + 6 4
T^8 + 38*T^6 + 313*T^4 + 308*T^2 + 64
19 19 1 9
T 8 + 6 T 7 + ⋯ + 256 T^{8} + 6 T^{7} + \cdots + 256 T 8 + 6 T 7 + ⋯ + 2 5 6
T^8 + 6*T^7 + 18*T^6 - 88*T^5 + 224*T^4 + 32*T^3 + 32*T^2 - 128*T + 256
23 23 2 3
( T 4 − 8 T 3 + ⋯ − 256 ) 2 (T^{4} - 8 T^{3} + \cdots - 256)^{2} ( T 4 − 8 T 3 + ⋯ − 2 5 6 ) 2
(T^4 - 8*T^3 - 10*T^2 + 176*T - 256)^2
29 29 2 9
( T 4 − 2 T 3 + ⋯ + 464 ) 2 (T^{4} - 2 T^{3} + \cdots + 464)^{2} ( T 4 − 2 T 3 + ⋯ + 4 6 4 ) 2
(T^4 - 2*T^3 - 70*T^2 - 76*T + 464)^2
31 31 3 1
T 8 + 26 T 7 + ⋯ + 43264 T^{8} + 26 T^{7} + \cdots + 43264 T 8 + 2 6 T 7 + ⋯ + 4 3 2 6 4
T^8 + 26*T^7 + 338*T^6 + 2504*T^5 + 11232*T^4 + 26208*T^3 + 20000*T^2 - 41600*T + 43264
37 37 3 7
T 8 + 8 T 5 + ⋯ + 669124 T^{8} + 8 T^{5} + \cdots + 669124 T 8 + 8 T 5 + ⋯ + 6 6 9 1 2 4
T^8 + 8*T^5 + 2333*T^4 + 504*T^3 + 32*T^2 - 6544*T + 669124
41 41 4 1
T 8 + 24 T 7 + ⋯ + 652864 T^{8} + 24 T^{7} + \cdots + 652864 T 8 + 2 4 T 7 + ⋯ + 6 5 2 8 6 4
T^8 + 24*T^7 + 288*T^6 + 1792*T^5 + 5972*T^4 + 5664*T^3 + 21632*T^2 + 168064*T + 652864
43 43 4 3
( T 4 − 22 T 3 + ⋯ − 1424 ) 2 (T^{4} - 22 T^{3} + \cdots - 1424)^{2} ( T 4 − 2 2 T 3 + ⋯ − 1 4 2 4 ) 2
(T^4 - 22*T^3 + 97*T^2 + 384*T - 1424)^2
47 47 4 7
T 8 + 14 T 7 + ⋯ + 16 T^{8} + 14 T^{7} + \cdots + 16 T 8 + 1 4 T 7 + ⋯ + 1 6
T^8 + 14*T^7 + 98*T^6 - 104*T^5 + 73*T^4 + 142*T^3 + 242*T^2 - 88*T + 16
53 53 5 3
( T 4 − 30 T 2 + ⋯ + 104 ) 2 (T^{4} - 30 T^{2} + \cdots + 104)^{2} ( T 4 − 3 0 T 2 + ⋯ + 1 0 4 ) 2
(T^4 - 30*T^2 + 32*T + 104)^2
59 59 5 9
T 8 − 22 T 7 + ⋯ + 1048576 T^{8} - 22 T^{7} + \cdots + 1048576 T 8 − 2 2 T 7 + ⋯ + 1 0 4 8 5 7 6
T^8 - 22*T^7 + 242*T^6 - 952*T^5 + 2448*T^4 - 12288*T^3 + 131072*T^2 - 524288*T + 1048576
61 61 6 1
( T 4 + 12 T 3 + ⋯ − 4112 ) 2 (T^{4} + 12 T^{3} + \cdots - 4112)^{2} ( T 4 + 1 2 T 3 + ⋯ − 4 1 1 2 ) 2
(T^4 + 12*T^3 - 128*T^2 - 1840*T - 4112)^2
67 67 6 7
T 8 + 2 T 7 + ⋯ + 43983424 T^{8} + 2 T^{7} + \cdots + 43983424 T 8 + 2 T 7 + ⋯ + 4 3 9 8 3 4 2 4
T^8 + 2*T^7 + 2*T^6 + 24*T^5 + 29172*T^4 + 76552*T^3 + 95048*T^2 - 2891552*T + 43983424
71 71 7 1
T 8 − 14 T 7 + ⋯ + 204304 T^{8} - 14 T^{7} + \cdots + 204304 T 8 − 1 4 T 7 + ⋯ + 2 0 4 3 0 4
T^8 - 14*T^7 + 98*T^6 + 432*T^5 + 6233*T^4 - 49398*T^3 + 174050*T^2 - 266680*T + 204304
73 73 7 3
T 8 − 20 T 7 + ⋯ + 43264 T^{8} - 20 T^{7} + \cdots + 43264 T 8 − 2 0 T 7 + ⋯ + 4 3 2 6 4
T^8 - 20*T^7 + 200*T^6 - 664*T^5 - 92*T^4 + 9632*T^3 + 46208*T^2 + 63232*T + 43264
79 79 7 9
T 8 + 208 T 6 + ⋯ + 256 T^{8} + 208 T^{6} + \cdots + 256 T 8 + 2 0 8 T 6 + ⋯ + 2 5 6
T^8 + 208*T^6 + 6356*T^4 + 8912*T^2 + 256
83 83 8 3
T 8 − 6 T 7 + ⋯ + 10816 T^{8} - 6 T^{7} + \cdots + 10816 T 8 − 6 T 7 + ⋯ + 1 0 8 1 6
T^8 - 6*T^7 + 18*T^6 + 536*T^5 + 4148*T^4 + 9864*T^3 + 9800*T^2 - 14560*T + 10816
89 89 8 9
T 8 − 8 T 7 + ⋯ + 7744 T^{8} - 8 T^{7} + \cdots + 7744 T 8 − 8 T 7 + ⋯ + 7 7 4 4
T^8 - 8*T^7 + 32*T^6 + 224*T^5 + 724*T^4 + 224*T^3 + 128*T^2 + 1408*T + 7744
97 97 9 7
T 8 + 8 T 7 + ⋯ + 35344 T^{8} + 8 T^{7} + \cdots + 35344 T 8 + 8 T 7 + ⋯ + 3 5 3 4 4
T^8 + 8*T^7 + 32*T^6 - 480*T^5 + 2760*T^4 - 3296*T^3 + 512*T^2 + 6016*T + 35344
show more
show less