Properties

Label 2-416-1.1-c3-0-0
Degree $2$
Conductor $416$
Sign $1$
Analytic cond. $24.5447$
Root an. cond. $4.95427$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.53·3-s − 20.8·5-s + 16.7·7-s − 6.40·9-s − 72.1·11-s − 13·13-s + 94.4·15-s − 21.2·17-s − 66.7·19-s − 76.2·21-s − 149.·23-s + 307.·25-s + 151.·27-s − 81.0·29-s − 177.·31-s + 327.·33-s − 349.·35-s + 353.·37-s + 58.9·39-s + 284.·41-s + 31.8·43-s + 133.·45-s + 112.·47-s − 60.8·49-s + 96.2·51-s + 211.·53-s + 1.50e3·55-s + ⋯
L(s)  = 1  − 0.873·3-s − 1.86·5-s + 0.906·7-s − 0.237·9-s − 1.97·11-s − 0.277·13-s + 1.62·15-s − 0.302·17-s − 0.805·19-s − 0.792·21-s − 1.35·23-s + 2.46·25-s + 1.08·27-s − 0.518·29-s − 1.02·31-s + 1.72·33-s − 1.68·35-s + 1.56·37-s + 0.242·39-s + 1.08·41-s + 0.112·43-s + 0.441·45-s + 0.347·47-s − 0.177·49-s + 0.264·51-s + 0.548·53-s + 3.68·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(416\)    =    \(2^{5} \cdot 13\)
Sign: $1$
Analytic conductor: \(24.5447\)
Root analytic conductor: \(4.95427\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 416,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.2996853885\)
\(L(\frac12)\) \(\approx\) \(0.2996853885\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + 13T \)
good3 \( 1 + 4.53T + 27T^{2} \)
5 \( 1 + 20.8T + 125T^{2} \)
7 \( 1 - 16.7T + 343T^{2} \)
11 \( 1 + 72.1T + 1.33e3T^{2} \)
17 \( 1 + 21.2T + 4.91e3T^{2} \)
19 \( 1 + 66.7T + 6.85e3T^{2} \)
23 \( 1 + 149.T + 1.21e4T^{2} \)
29 \( 1 + 81.0T + 2.43e4T^{2} \)
31 \( 1 + 177.T + 2.97e4T^{2} \)
37 \( 1 - 353.T + 5.06e4T^{2} \)
41 \( 1 - 284.T + 6.89e4T^{2} \)
43 \( 1 - 31.8T + 7.95e4T^{2} \)
47 \( 1 - 112.T + 1.03e5T^{2} \)
53 \( 1 - 211.T + 1.48e5T^{2} \)
59 \( 1 - 439.T + 2.05e5T^{2} \)
61 \( 1 + 227.T + 2.26e5T^{2} \)
67 \( 1 - 723.T + 3.00e5T^{2} \)
71 \( 1 + 1.00e3T + 3.57e5T^{2} \)
73 \( 1 + 15.8T + 3.89e5T^{2} \)
79 \( 1 + 972.T + 4.93e5T^{2} \)
83 \( 1 + 155.T + 5.71e5T^{2} \)
89 \( 1 + 517.T + 7.04e5T^{2} \)
97 \( 1 - 1.59e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.12292003677402108923233324674, −10.32574826074189033302778138425, −8.589698991829085163528727467016, −7.913860149635067133960156269906, −7.36674052367949654123194237368, −5.84778493771687643946400343738, −4.89758208120329195167767685419, −4.09914408337403873325395980399, −2.55806409216120429423647926168, −0.34756446319607860798650849152, 0.34756446319607860798650849152, 2.55806409216120429423647926168, 4.09914408337403873325395980399, 4.89758208120329195167767685419, 5.84778493771687643946400343738, 7.36674052367949654123194237368, 7.913860149635067133960156269906, 8.589698991829085163528727467016, 10.32574826074189033302778138425, 11.12292003677402108923233324674

Graph of the $Z$-function along the critical line