L(s) = 1 | − 4.53·3-s − 20.8·5-s + 16.7·7-s − 6.40·9-s − 72.1·11-s − 13·13-s + 94.4·15-s − 21.2·17-s − 66.7·19-s − 76.2·21-s − 149.·23-s + 307.·25-s + 151.·27-s − 81.0·29-s − 177.·31-s + 327.·33-s − 349.·35-s + 353.·37-s + 58.9·39-s + 284.·41-s + 31.8·43-s + 133.·45-s + 112.·47-s − 60.8·49-s + 96.2·51-s + 211.·53-s + 1.50e3·55-s + ⋯ |
L(s) = 1 | − 0.873·3-s − 1.86·5-s + 0.906·7-s − 0.237·9-s − 1.97·11-s − 0.277·13-s + 1.62·15-s − 0.302·17-s − 0.805·19-s − 0.792·21-s − 1.35·23-s + 2.46·25-s + 1.08·27-s − 0.518·29-s − 1.02·31-s + 1.72·33-s − 1.68·35-s + 1.56·37-s + 0.242·39-s + 1.08·41-s + 0.112·43-s + 0.441·45-s + 0.347·47-s − 0.177·49-s + 0.264·51-s + 0.548·53-s + 3.68·55-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(416s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.2996853885 |
L(21) |
≈ |
0.2996853885 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+13T |
good | 3 | 1+4.53T+27T2 |
| 5 | 1+20.8T+125T2 |
| 7 | 1−16.7T+343T2 |
| 11 | 1+72.1T+1.33e3T2 |
| 17 | 1+21.2T+4.91e3T2 |
| 19 | 1+66.7T+6.85e3T2 |
| 23 | 1+149.T+1.21e4T2 |
| 29 | 1+81.0T+2.43e4T2 |
| 31 | 1+177.T+2.97e4T2 |
| 37 | 1−353.T+5.06e4T2 |
| 41 | 1−284.T+6.89e4T2 |
| 43 | 1−31.8T+7.95e4T2 |
| 47 | 1−112.T+1.03e5T2 |
| 53 | 1−211.T+1.48e5T2 |
| 59 | 1−439.T+2.05e5T2 |
| 61 | 1+227.T+2.26e5T2 |
| 67 | 1−723.T+3.00e5T2 |
| 71 | 1+1.00e3T+3.57e5T2 |
| 73 | 1+15.8T+3.89e5T2 |
| 79 | 1+972.T+4.93e5T2 |
| 83 | 1+155.T+5.71e5T2 |
| 89 | 1+517.T+7.04e5T2 |
| 97 | 1−1.59e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.12292003677402108923233324674, −10.32574826074189033302778138425, −8.589698991829085163528727467016, −7.913860149635067133960156269906, −7.36674052367949654123194237368, −5.84778493771687643946400343738, −4.89758208120329195167767685419, −4.09914408337403873325395980399, −2.55806409216120429423647926168, −0.34756446319607860798650849152,
0.34756446319607860798650849152, 2.55806409216120429423647926168, 4.09914408337403873325395980399, 4.89758208120329195167767685419, 5.84778493771687643946400343738, 7.36674052367949654123194237368, 7.913860149635067133960156269906, 8.589698991829085163528727467016, 10.32574826074189033302778138425, 11.12292003677402108923233324674