Properties

Label 416.4.a.j
Level 416416
Weight 44
Character orbit 416.a
Self dual yes
Analytic conductor 24.54524.545
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,4,Mod(1,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 416=2513 416 = 2^{5} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 416.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 24.544794562424.5447945624
Analytic rank: 00
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x63x5101x4+207x3+751x2855x+112 x^{6} - 3x^{5} - 101x^{4} + 207x^{3} + 751x^{2} - 855x + 112 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 28 2^{8}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ3q3+(β13)q5+β4q7+(β22β1+20)q9+(β53β3)q1113q13+(2β55β3)q15+(2β2β1+15)q17++(12β57β427β3)q99+O(q100) q - \beta_{3} q^{3} + ( - \beta_1 - 3) q^{5} + \beta_{4} q^{7} + (\beta_{2} - 2 \beta_1 + 20) q^{9} + ( - \beta_{5} - 3 \beta_{3}) q^{11} - 13 q^{13} + (2 \beta_{5} - 5 \beta_{3}) q^{15} + ( - 2 \beta_{2} - \beta_1 + 15) q^{17}+ \cdots + (12 \beta_{5} - 7 \beta_{4} - 27 \beta_{3}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q16q5+122q978q13+96q1768q21+318q25+436q29+928q33+744q37+1436q41+1700q45+1146q49284q53+3192q57124q61+208q65++4724q97+O(q100) 6 q - 16 q^{5} + 122 q^{9} - 78 q^{13} + 96 q^{17} - 68 q^{21} + 318 q^{25} + 436 q^{29} + 928 q^{33} + 744 q^{37} + 1436 q^{41} + 1700 q^{45} + 1146 q^{49} - 284 q^{53} + 3192 q^{57} - 124 q^{61} + 208 q^{65}+ \cdots + 4724 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x63x5101x4+207x3+751x2855x+112 x^{6} - 3x^{5} - 101x^{4} + 207x^{3} + 751x^{2} - 855x + 112 : Copy content Toggle raw display

β1\beta_{1}== (5ν4+10ν3+478ν2483ν1612)/134 ( -5\nu^{4} + 10\nu^{3} + 478\nu^{2} - 483\nu - 1612 ) / 134 Copy content Toggle raw display
β2\beta_{2}== (3ν46ν3394ν2+397ν+4612)/134 ( 3\nu^{4} - 6\nu^{3} - 394\nu^{2} + 397\nu + 4612 ) / 134 Copy content Toggle raw display
β3\beta_{3}== (62ν5+155ν4+6294ν39596ν247707ν+25458)/1742 ( -62\nu^{5} + 155\nu^{4} + 6294\nu^{3} - 9596\nu^{2} - 47707\nu + 25458 ) / 1742 Copy content Toggle raw display
β4\beta_{4}== (62ν5+155ν4+6294ν39596ν240739ν+21974)/1742 ( -62\nu^{5} + 155\nu^{4} + 6294\nu^{3} - 9596\nu^{2} - 40739\nu + 21974 ) / 1742 Copy content Toggle raw display
β5\beta_{5}== (90ν5225ν49586ν3+14604ν2+110161ν57522)/1742 ( 90\nu^{5} - 225\nu^{4} - 9586\nu^{3} + 14604\nu^{2} + 110161\nu - 57522 ) / 1742 Copy content Toggle raw display
ν\nu== (β4β3+2)/4 ( \beta_{4} - \beta_{3} + 2 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β4β35β23β1+138)/4 ( \beta_{4} - \beta_{3} - 5\beta_{2} - 3\beta _1 + 138 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (31β5+185β4230β315β29β1+412)/8 ( -31\beta_{5} + 185\beta_{4} - 230\beta_{3} - 15\beta_{2} - 9\beta _1 + 412 ) / 8 Copy content Toggle raw display
ν4\nu^{4}== (31β5+184β4229β3493β2403β1+12122)/4 ( -31\beta_{5} + 184\beta_{4} - 229\beta_{3} - 493\beta_{2} - 403\beta _1 + 12122 ) / 4 Copy content Toggle raw display
ν5\nu^{5}== (1651β5+8926β411435β31220β21000β1+29962)/4 ( -1651\beta_{5} + 8926\beta_{4} - 11435\beta_{3} - 1220\beta_{2} - 1000\beta _1 + 29962 ) / 4 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0.152104
3.56475
−9.25891
10.2589
−2.56475
0.847896
0 −10.3340 0 9.49534 0 8.94239 0 79.7910 0
1.2 0 −4.53772 0 −20.8058 0 16.7967 0 −6.40912 0
1.3 0 −3.82336 0 3.31043 0 −35.2123 0 −12.3819 0
1.4 0 3.82336 0 3.31043 0 35.2123 0 −12.3819 0
1.5 0 4.53772 0 −20.8058 0 −16.7967 0 −6.40912 0
1.6 0 10.3340 0 9.49534 0 −8.94239 0 79.7910 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
1313 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.4.a.j 6
4.b odd 2 1 inner 416.4.a.j 6
8.b even 2 1 832.4.a.bi 6
8.d odd 2 1 832.4.a.bi 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.4.a.j 6 1.a even 1 1 trivial
416.4.a.j 6 4.b odd 2 1 inner
832.4.a.bi 6 8.b even 2 1
832.4.a.bi 6 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T36142T34+4061T3232144 T_{3}^{6} - 142T_{3}^{4} + 4061T_{3}^{2} - 32144 acting on S4new(Γ0(416))S_{4}^{\mathrm{new}}(\Gamma_0(416)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T6142T4+32144 T^{6} - 142 T^{4} + \cdots - 32144 Copy content Toggle raw display
55 (T3+8T2++654)2 (T^{3} + 8 T^{2} + \cdots + 654)^{2} Copy content Toggle raw display
77 T61602T4+27973316 T^{6} - 1602 T^{4} + \cdots - 27973316 Copy content Toggle raw display
1111 T65484T4+68016704 T^{6} - 5484 T^{4} + \cdots - 68016704 Copy content Toggle raw display
1313 (T+13)6 (T + 13)^{6} Copy content Toggle raw display
1717 (T348T2+99414)2 (T^{3} - 48 T^{2} + \cdots - 99414)^{2} Copy content Toggle raw display
1919 T6+3134758976 T^{6} + \cdots - 3134758976 Copy content Toggle raw display
2323 T6+306970886144 T^{6} + \cdots - 306970886144 Copy content Toggle raw display
2929 (T3218T2++1440232)2 (T^{3} - 218 T^{2} + \cdots + 1440232)^{2} Copy content Toggle raw display
3131 T6+3716023320576 T^{6} + \cdots - 3716023320576 Copy content Toggle raw display
3737 (T3372T2++10002726)2 (T^{3} - 372 T^{2} + \cdots + 10002726)^{2} Copy content Toggle raw display
4141 (T3718T2+12682752)2 (T^{3} - 718 T^{2} + \cdots - 12682752)^{2} Copy content Toggle raw display
4343 T6+6973565239296 T^{6} + \cdots - 6973565239296 Copy content Toggle raw display
4747 T6+112256330631044 T^{6} + \cdots - 112256330631044 Copy content Toggle raw display
5353 (T3+142T2++30322624)2 (T^{3} + 142 T^{2} + \cdots + 30322624)^{2} Copy content Toggle raw display
5959 T6+16 ⁣ ⁣04 T^{6} + \cdots - 16\!\cdots\!04 Copy content Toggle raw display
6161 (T3+62T2+4259328)2 (T^{3} + 62 T^{2} + \cdots - 4259328)^{2} Copy content Toggle raw display
6767 T6+97 ⁣ ⁣16 T^{6} + \cdots - 97\!\cdots\!16 Copy content Toggle raw display
7171 T6+11 ⁣ ⁣96 T^{6} + \cdots - 11\!\cdots\!96 Copy content Toggle raw display
7373 (T3602T2+5585048)2 (T^{3} - 602 T^{2} + \cdots - 5585048)^{2} Copy content Toggle raw display
7979 T6+17 ⁣ ⁣96 T^{6} + \cdots - 17\!\cdots\!96 Copy content Toggle raw display
8383 T6+45 ⁣ ⁣36 T^{6} + \cdots - 45\!\cdots\!36 Copy content Toggle raw display
8989 (T32198T2++909803736)2 (T^{3} - 2198 T^{2} + \cdots + 909803736)^{2} Copy content Toggle raw display
9797 (T32362T2+183907864)2 (T^{3} - 2362 T^{2} + \cdots - 183907864)^{2} Copy content Toggle raw display
show more
show less