L(s) = 1 | + (−4.25 − 7.37i)3-s − 9.83·5-s + (−12.0 + 20.8i)7-s + (−22.7 + 39.4i)9-s + (14.2 + 24.5i)11-s + (−13 − 45.0i)13-s + (41.8 + 72.4i)15-s + (16.5 − 28.7i)17-s + (3.54 − 6.13i)19-s + 205.·21-s + (98.6 + 170. i)23-s − 28.3·25-s + 157.·27-s + (−11.3 − 19.6i)29-s − 48.3·31-s + ⋯ |
L(s) = 1 | + (−0.819 − 1.41i)3-s − 0.879·5-s + (−0.651 + 1.12i)7-s + (−0.842 + 1.45i)9-s + (0.389 + 0.674i)11-s + (−0.277 − 0.960i)13-s + (0.720 + 1.24i)15-s + (0.236 − 0.409i)17-s + (0.0427 − 0.0740i)19-s + 2.13·21-s + (0.894 + 1.54i)23-s − 0.226·25-s + 1.12·27-s + (−0.0725 − 0.125i)29-s − 0.280·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 + 0.852i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.7785938802\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7785938802\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (13 + 45.0i)T \) |
good | 3 | \( 1 + (4.25 + 7.37i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 + 9.83T + 125T^{2} \) |
| 7 | \( 1 + (12.0 - 20.8i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (-14.2 - 24.5i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (-16.5 + 28.7i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-3.54 + 6.13i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-98.6 - 170. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (11.3 + 19.6i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + 48.3T + 2.97e4T^{2} \) |
| 37 | \( 1 + (7.58 + 13.1i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (237. + 411. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-120. + 208. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + 214.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 719.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-71.6 + 124. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (258. - 448. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (308. + 534. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (131. - 228. i)T + (-1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 - 1.05e3T + 3.89e5T^{2} \) |
| 79 | \( 1 - 1.25e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 224.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (635. + 1.10e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (398. - 689. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.01221484907962099997463386450, −9.707210359031379128481366337696, −8.641527818305051535226346715958, −7.48776463648528268705690500215, −7.10410522347820295739423686204, −5.88124959958777562870168700374, −5.22096385699861503563605393229, −3.41176518770997373352972770374, −2.06548669051693363237331724743, −0.54587146524662132648326596620,
0.61802569025816099976861180147, 3.37144041456580217387998442741, 4.08804058762572754142172369288, 4.80176837604238711604571138242, 6.19965827432163144349277213051, 6.99962333911680142738080591749, 8.338897299498019244999422892129, 9.394569378592593233637952054818, 10.16436523937633626800816881218, 10.94147054069170432788316955122