L(s) = 1 | + (−4.25 − 7.37i)3-s − 9.83·5-s + (−12.0 + 20.8i)7-s + (−22.7 + 39.4i)9-s + (14.2 + 24.5i)11-s + (−13 − 45.0i)13-s + (41.8 + 72.4i)15-s + (16.5 − 28.7i)17-s + (3.54 − 6.13i)19-s + 205.·21-s + (98.6 + 170. i)23-s − 28.3·25-s + 157.·27-s + (−11.3 − 19.6i)29-s − 48.3·31-s + ⋯ |
L(s) = 1 | + (−0.819 − 1.41i)3-s − 0.879·5-s + (−0.651 + 1.12i)7-s + (−0.842 + 1.45i)9-s + (0.389 + 0.674i)11-s + (−0.277 − 0.960i)13-s + (0.720 + 1.24i)15-s + (0.236 − 0.409i)17-s + (0.0427 − 0.0740i)19-s + 2.13·21-s + (0.894 + 1.54i)23-s − 0.226·25-s + 1.12·27-s + (−0.0725 − 0.125i)29-s − 0.280·31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.522+0.852i)Λ(4−s)
Λ(s)=(=(416s/2ΓC(s+3/2)L(s)(0.522+0.852i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.522+0.852i
|
Analytic conductor: |
24.5447 |
Root analytic conductor: |
4.95427 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :3/2), 0.522+0.852i)
|
Particular Values
L(2) |
≈ |
0.7785938802 |
L(21) |
≈ |
0.7785938802 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(13+45.0i)T |
good | 3 | 1+(4.25+7.37i)T+(−13.5+23.3i)T2 |
| 5 | 1+9.83T+125T2 |
| 7 | 1+(12.0−20.8i)T+(−171.5−297.i)T2 |
| 11 | 1+(−14.2−24.5i)T+(−665.5+1.15e3i)T2 |
| 17 | 1+(−16.5+28.7i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(−3.54+6.13i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(−98.6−170.i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(11.3+19.6i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+48.3T+2.97e4T2 |
| 37 | 1+(7.58+13.1i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1+(237.+411.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(−120.+208.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+214.T+1.03e5T2 |
| 53 | 1−719.T+1.48e5T2 |
| 59 | 1+(−71.6+124.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(258.−448.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(308.+534.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+(131.−228.i)T+(−1.78e5−3.09e5i)T2 |
| 73 | 1−1.05e3T+3.89e5T2 |
| 79 | 1−1.25e3T+4.93e5T2 |
| 83 | 1+224.T+5.71e5T2 |
| 89 | 1+(635.+1.10e3i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1+(398.−689.i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.01221484907962099997463386450, −9.707210359031379128481366337696, −8.641527818305051535226346715958, −7.48776463648528268705690500215, −7.10410522347820295739423686204, −5.88124959958777562870168700374, −5.22096385699861503563605393229, −3.41176518770997373352972770374, −2.06548669051693363237331724743, −0.54587146524662132648326596620,
0.61802569025816099976861180147, 3.37144041456580217387998442741, 4.08804058762572754142172369288, 4.80176837604238711604571138242, 6.19965827432163144349277213051, 6.99962333911680142738080591749, 8.338897299498019244999422892129, 9.394569378592593233637952054818, 10.16436523937633626800816881218, 10.94147054069170432788316955122