Properties

Label 416.4.i.d
Level $416$
Weight $4$
Character orbit 416.i
Analytic conductor $24.545$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,4,Mod(289,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 416.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.5447945624\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 74x^{6} + 5367x^{4} + 8066x^{2} + 11881 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{3} + (\beta_{2} + 2) q^{5} + ( - \beta_{3} + 2 \beta_1) q^{7} + (3 \beta_{6} + 10 \beta_{4} - 10) q^{9} + (2 \beta_{7} - 5 \beta_{5}) q^{11} + ( - 52 \beta_{4} + 13) q^{13} + ( - \beta_{7} - 9 \beta_{5}) q^{15}+ \cdots + (61 \beta_{7} + 101 \beta_{5} + \cdots + 101 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{5} - 40 q^{9} - 104 q^{13} + 180 q^{17} + 696 q^{21} + 152 q^{25} + 4 q^{29} + 636 q^{33} - 108 q^{37} - 716 q^{41} + 1600 q^{45} - 1096 q^{49} + 4528 q^{53} - 104 q^{57} + 580 q^{61} - 208 q^{65}+ \cdots - 156 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 74x^{6} + 5367x^{4} + 8066x^{2} + 11881 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{6} + 190513 ) / 16101 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} + 367624\nu ) / 16101 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -74\nu^{6} - 5367\nu^{4} - 397158\nu^{2} - 11881 ) / 585003 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -74\nu^{7} - 5367\nu^{5} - 397158\nu^{3} - 596884\nu ) / 585003 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 2629\nu^{6} + 198579\nu^{4} + 14109843\nu^{2} + 21205514 ) / 1755009 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 5071\nu^{7} + 375690\nu^{5} + 27216057\nu^{3} + 40902686\nu ) / 1755009 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -3\beta_{6} - 37\beta_{4} + 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -3\beta_{7} - 70\beta_{5} + 3\beta_{3} - 70\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 222\beta_{6} + 2629\beta_{4} - 2629 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 222\beta_{7} + 5071\beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -16101\beta_{2} + 190513 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -16101\beta_{3} + 367624\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(-1 + \beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
−4.25724 + 7.37376i
−0.613091 + 1.06190i
0.613091 1.06190i
4.25724 7.37376i
−4.25724 7.37376i
−0.613091 1.06190i
0.613091 + 1.06190i
4.25724 + 7.37376i
0 −4.25724 7.37376i 0 −9.83216 0 −12.0572 + 20.8837i 0 −22.7482 + 39.4011i 0
289.2 0 −0.613091 1.06190i 0 13.8322 0 12.7720 22.1218i 0 12.7482 22.0806i 0
289.3 0 0.613091 + 1.06190i 0 13.8322 0 −12.7720 + 22.1218i 0 12.7482 22.0806i 0
289.4 0 4.25724 + 7.37376i 0 −9.83216 0 12.0572 20.8837i 0 −22.7482 + 39.4011i 0
321.1 0 −4.25724 + 7.37376i 0 −9.83216 0 −12.0572 20.8837i 0 −22.7482 39.4011i 0
321.2 0 −0.613091 + 1.06190i 0 13.8322 0 12.7720 + 22.1218i 0 12.7482 + 22.0806i 0
321.3 0 0.613091 1.06190i 0 13.8322 0 −12.7720 22.1218i 0 12.7482 + 22.0806i 0
321.4 0 4.25724 7.37376i 0 −9.83216 0 12.0572 + 20.8837i 0 −22.7482 39.4011i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
13.c even 3 1 inner
52.j odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.4.i.d 8
4.b odd 2 1 inner 416.4.i.d 8
13.c even 3 1 inner 416.4.i.d 8
52.j odd 6 1 inner 416.4.i.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.4.i.d 8 1.a even 1 1 trivial
416.4.i.d 8 4.b odd 2 1 inner
416.4.i.d 8 13.c even 3 1 inner
416.4.i.d 8 52.j odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 74T_{3}^{6} + 5367T_{3}^{4} + 8066T_{3}^{2} + 11881 \) acting on \(S_{4}^{\mathrm{new}}(416, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 74 T^{6} + \cdots + 11881 \) Copy content Toggle raw display
$5$ \( (T^{2} - 4 T - 136)^{4} \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots + 143966366041 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 9691696696201 \) Copy content Toggle raw display
$13$ \( (T^{2} + 26 T + 2197)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} - 90 T^{3} + \cdots + 3553225)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 1548343801 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 16\!\cdots\!25 \) Copy content Toggle raw display
$29$ \( (T^{4} - 2 T^{3} + \cdots + 312481)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 90624 T^{2} + 206377984)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 54 T^{3} + \cdots + 346921)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 358 T^{3} + \cdots + 3075700681)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 14\!\cdots\!61 \) Copy content Toggle raw display
$47$ \( (T^{4} - 259704 T^{2} + 9804141904)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 1132 T + 296696)^{4} \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 2077994325625 \) Copy content Toggle raw display
$61$ \( (T^{4} - 290 T^{3} + \cdots + 174736540225)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 1677100110841 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 90\!\cdots\!01 \) Copy content Toggle raw display
$73$ \( (T^{2} - 564 T - 511976)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 2436698733904)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 242656 T^{2} + 9680483584)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots + 1158036406641)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 78 T^{3} + \cdots + 327091342561)^{2} \) Copy content Toggle raw display
show more
show less