Properties

Label 2-416-104.51-c6-0-37
Degree $2$
Conductor $416$
Sign $1$
Analytic cond. $95.7024$
Root an. cond. $9.78276$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.33·3-s + 214.·5-s − 571.·7-s − 675.·9-s − 2.19e3·13-s − 1.57e3·15-s − 9.63e3·17-s + 4.19e3·21-s + 3.05e4·25-s + 1.03e4·27-s + 2.78e4·31-s − 1.22e5·35-s + 7.99e4·37-s + 1.61e4·39-s + 4.24e4·43-s − 1.45e5·45-s + 2.05e5·47-s + 2.09e5·49-s + 7.07e4·51-s + 3.86e5·63-s − 4.72e5·65-s − 7.14e5·71-s − 2.24e5·75-s + 4.16e5·81-s − 2.07e6·85-s + 1.25e6·91-s − 2.04e5·93-s + ⋯
L(s)  = 1  − 0.271·3-s + 1.71·5-s − 1.66·7-s − 0.926·9-s − 13-s − 0.467·15-s − 1.96·17-s + 0.453·21-s + 1.95·25-s + 0.523·27-s + 0.934·31-s − 2.86·35-s + 1.57·37-s + 0.271·39-s + 0.533·43-s − 1.59·45-s + 1.97·47-s + 1.78·49-s + 0.533·51-s + 1.54·63-s − 1.71·65-s − 1.99·71-s − 0.531·75-s + 0.783·81-s − 3.37·85-s + 1.66·91-s − 0.253·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(416\)    =    \(2^{5} \cdot 13\)
Sign: $1$
Analytic conductor: \(95.7024\)
Root analytic conductor: \(9.78276\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{416} (207, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 416,\ (\ :3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(1.388130455\)
\(L(\frac12)\) \(\approx\) \(1.388130455\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + 2.19e3T \)
good3 \( 1 + 7.33T + 729T^{2} \)
5 \( 1 - 214.T + 1.56e4T^{2} \)
7 \( 1 + 571.T + 1.17e5T^{2} \)
11 \( 1 - 1.77e6T^{2} \)
17 \( 1 + 9.63e3T + 2.41e7T^{2} \)
19 \( 1 - 4.70e7T^{2} \)
23 \( 1 - 1.48e8T^{2} \)
29 \( 1 - 5.94e8T^{2} \)
31 \( 1 - 2.78e4T + 8.87e8T^{2} \)
37 \( 1 - 7.99e4T + 2.56e9T^{2} \)
41 \( 1 - 4.75e9T^{2} \)
43 \( 1 - 4.24e4T + 6.32e9T^{2} \)
47 \( 1 - 2.05e5T + 1.07e10T^{2} \)
53 \( 1 - 2.21e10T^{2} \)
59 \( 1 - 4.21e10T^{2} \)
61 \( 1 - 5.15e10T^{2} \)
67 \( 1 - 9.04e10T^{2} \)
71 \( 1 + 7.14e5T + 1.28e11T^{2} \)
73 \( 1 - 1.51e11T^{2} \)
79 \( 1 - 2.43e11T^{2} \)
83 \( 1 - 3.26e11T^{2} \)
89 \( 1 - 4.96e11T^{2} \)
97 \( 1 - 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07992138620381170639806027579, −9.377494799437826969123263268867, −8.819526307071400331354765961406, −7.06160332394129968315041982068, −6.23686324897468646551939786324, −5.80498711493180292741602862185, −4.53841345467309530569612245774, −2.79555366710034490608897012609, −2.33681847047763002359006457511, −0.54402052549489841218121144042, 0.54402052549489841218121144042, 2.33681847047763002359006457511, 2.79555366710034490608897012609, 4.53841345467309530569612245774, 5.80498711493180292741602862185, 6.23686324897468646551939786324, 7.06160332394129968315041982068, 8.819526307071400331354765961406, 9.377494799437826969123263268867, 10.07992138620381170639806027579

Graph of the $Z$-function along the critical line