L(s) = 1 | − 7.33·3-s + 214.·5-s − 571.·7-s − 675.·9-s − 2.19e3·13-s − 1.57e3·15-s − 9.63e3·17-s + 4.19e3·21-s + 3.05e4·25-s + 1.03e4·27-s + 2.78e4·31-s − 1.22e5·35-s + 7.99e4·37-s + 1.61e4·39-s + 4.24e4·43-s − 1.45e5·45-s + 2.05e5·47-s + 2.09e5·49-s + 7.07e4·51-s + 3.86e5·63-s − 4.72e5·65-s − 7.14e5·71-s − 2.24e5·75-s + 4.16e5·81-s − 2.07e6·85-s + 1.25e6·91-s − 2.04e5·93-s + ⋯ |
L(s) = 1 | − 0.271·3-s + 1.71·5-s − 1.66·7-s − 0.926·9-s − 13-s − 0.467·15-s − 1.96·17-s + 0.453·21-s + 1.95·25-s + 0.523·27-s + 0.934·31-s − 2.86·35-s + 1.57·37-s + 0.271·39-s + 0.533·43-s − 1.59·45-s + 1.97·47-s + 1.78·49-s + 0.533·51-s + 1.54·63-s − 1.71·65-s − 1.99·71-s − 0.531·75-s + 0.783·81-s − 3.37·85-s + 1.66·91-s − 0.253·93-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)Λ(7−s)
Λ(s)=(=(416s/2ΓC(s+3)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
1
|
Analytic conductor: |
95.7024 |
Root analytic conductor: |
9.78276 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(207,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :3), 1)
|
Particular Values
L(27) |
≈ |
1.388130455 |
L(21) |
≈ |
1.388130455 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+2.19e3T |
good | 3 | 1+7.33T+729T2 |
| 5 | 1−214.T+1.56e4T2 |
| 7 | 1+571.T+1.17e5T2 |
| 11 | 1−1.77e6T2 |
| 17 | 1+9.63e3T+2.41e7T2 |
| 19 | 1−4.70e7T2 |
| 23 | 1−1.48e8T2 |
| 29 | 1−5.94e8T2 |
| 31 | 1−2.78e4T+8.87e8T2 |
| 37 | 1−7.99e4T+2.56e9T2 |
| 41 | 1−4.75e9T2 |
| 43 | 1−4.24e4T+6.32e9T2 |
| 47 | 1−2.05e5T+1.07e10T2 |
| 53 | 1−2.21e10T2 |
| 59 | 1−4.21e10T2 |
| 61 | 1−5.15e10T2 |
| 67 | 1−9.04e10T2 |
| 71 | 1+7.14e5T+1.28e11T2 |
| 73 | 1−1.51e11T2 |
| 79 | 1−2.43e11T2 |
| 83 | 1−3.26e11T2 |
| 89 | 1−4.96e11T2 |
| 97 | 1−8.32e11T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.07992138620381170639806027579, −9.377494799437826969123263268867, −8.819526307071400331354765961406, −7.06160332394129968315041982068, −6.23686324897468646551939786324, −5.80498711493180292741602862185, −4.53841345467309530569612245774, −2.79555366710034490608897012609, −2.33681847047763002359006457511, −0.54402052549489841218121144042,
0.54402052549489841218121144042, 2.33681847047763002359006457511, 2.79555366710034490608897012609, 4.53841345467309530569612245774, 5.80498711493180292741602862185, 6.23686324897468646551939786324, 7.06160332394129968315041982068, 8.819526307071400331354765961406, 9.377494799437826969123263268867, 10.07992138620381170639806027579