Properties

Label 416.7.h.d
Level $416$
Weight $7$
Character orbit 416.h
Self dual yes
Analytic conductor $95.702$
Analytic rank $0$
Dimension $2$
CM discriminant -104
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,7,Mod(207,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.207");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 416.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(95.7024987859\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{78}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 78 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{78}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 25) q^{3} + (6 \beta + 109) q^{5} + ( - 15 \beta - 307) q^{7} + ( - 50 \beta + 208) q^{9} - 2197 q^{13} + ( - 41 \beta - 853) q^{15} + ( - 456 \beta - 1585) q^{17} + (68 \beta + 2995) q^{21}+ \cdots + (27830 \beta - 695750) q^{93}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 50 q^{3} + 218 q^{5} - 614 q^{7} + 416 q^{9} - 4394 q^{13} - 1706 q^{15} - 3170 q^{17} + 5990 q^{21} + 14976 q^{25} - 5150 q^{27} + 55660 q^{31} - 123086 q^{35} - 13894 q^{37} + 109850 q^{39} - 111490 q^{43}+ \cdots - 1391500 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
207.1
−8.83176
8.83176
0 −42.6635 0 3.01887 0 −42.0472 0 1091.18 0
207.2 0 −7.33648 0 214.981 0 −571.953 0 −675.176 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.h odd 2 1 CM by \(\Q(\sqrt{-26}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.7.h.d 2
4.b odd 2 1 104.7.h.d yes 2
8.b even 2 1 104.7.h.c 2
8.d odd 2 1 416.7.h.c 2
13.b even 2 1 416.7.h.c 2
52.b odd 2 1 104.7.h.c 2
104.e even 2 1 104.7.h.d yes 2
104.h odd 2 1 CM 416.7.h.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.7.h.c 2 8.b even 2 1
104.7.h.c 2 52.b odd 2 1
104.7.h.d yes 2 4.b odd 2 1
104.7.h.d yes 2 104.e even 2 1
416.7.h.c 2 8.d odd 2 1
416.7.h.c 2 13.b even 2 1
416.7.h.d 2 1.a even 1 1 trivial
416.7.h.d 2 104.h odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{7}^{\mathrm{new}}(416, [\chi])\):

\( T_{3}^{2} + 50T_{3} + 313 \) Copy content Toggle raw display
\( T_{5}^{2} - 218T_{5} + 649 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 50T + 313 \) Copy content Toggle raw display
$5$ \( T^{2} - 218T + 649 \) Copy content Toggle raw display
$7$ \( T^{2} + 614T + 24049 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( (T + 2197)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 3170 T - 62363807 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 27830)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 7504135991 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 6534069047 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 15811515071 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 283183211663 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less