L(s) = 1 | + (0.309 + 0.951i)2-s + (1.61 + 1.17i)3-s + (−0.809 + 0.587i)4-s + (0.5 − 1.53i)5-s + (−0.618 + 1.90i)6-s + (3.92 − 2.85i)7-s + (−0.809 − 0.587i)8-s + (0.309 + 0.951i)9-s + 1.61·10-s + (−0.809 + 3.21i)11-s − 1.99·12-s + (0.763 + 2.35i)13-s + (3.92 + 2.85i)14-s + (2.61 − 1.90i)15-s + (0.309 − 0.951i)16-s + (1.04 − 3.21i)17-s + ⋯ |
L(s) = 1 | + (0.218 + 0.672i)2-s + (0.934 + 0.678i)3-s + (−0.404 + 0.293i)4-s + (0.223 − 0.688i)5-s + (−0.252 + 0.776i)6-s + (1.48 − 1.07i)7-s + (−0.286 − 0.207i)8-s + (0.103 + 0.317i)9-s + 0.511·10-s + (−0.243 + 0.969i)11-s − 0.577·12-s + (0.211 + 0.652i)13-s + (1.04 + 0.762i)14-s + (0.675 − 0.491i)15-s + (0.0772 − 0.237i)16-s + (0.253 − 0.780i)17-s + ⋯ |
Λ(s)=(=(418s/2ΓC(s)L(s)(0.569−0.821i)Λ(2−s)
Λ(s)=(=(418s/2ΓC(s+1/2)L(s)(0.569−0.821i)Λ(1−s)
Degree: |
2 |
Conductor: |
418
= 2⋅11⋅19
|
Sign: |
0.569−0.821i
|
Analytic conductor: |
3.33774 |
Root analytic conductor: |
1.82695 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ418(115,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 418, ( :1/2), 0.569−0.821i)
|
Particular Values
L(1) |
≈ |
1.97641+1.03455i |
L(21) |
≈ |
1.97641+1.03455i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.309−0.951i)T |
| 11 | 1+(0.809−3.21i)T |
| 19 | 1+(0.809+0.587i)T |
good | 3 | 1+(−1.61−1.17i)T+(0.927+2.85i)T2 |
| 5 | 1+(−0.5+1.53i)T+(−4.04−2.93i)T2 |
| 7 | 1+(−3.92+2.85i)T+(2.16−6.65i)T2 |
| 13 | 1+(−0.763−2.35i)T+(−10.5+7.64i)T2 |
| 17 | 1+(−1.04+3.21i)T+(−13.7−9.99i)T2 |
| 23 | 1+7.85T+23T2 |
| 29 | 1+(8.47−6.15i)T+(8.96−27.5i)T2 |
| 31 | 1+(−0.618−1.90i)T+(−25.0+18.2i)T2 |
| 37 | 1+(3.23−2.35i)T+(11.4−35.1i)T2 |
| 41 | 1+(−3.85−2.80i)T+(12.6+38.9i)T2 |
| 43 | 1+9.09T+43T2 |
| 47 | 1+(1.11+0.812i)T+(14.5+44.6i)T2 |
| 53 | 1+(1.47+4.53i)T+(−42.8+31.1i)T2 |
| 59 | 1+(−2.85+2.07i)T+(18.2−56.1i)T2 |
| 61 | 1+(2.95−9.09i)T+(−49.3−35.8i)T2 |
| 67 | 1−2.76T+67T2 |
| 71 | 1+(−1.52+4.70i)T+(−57.4−41.7i)T2 |
| 73 | 1+(−11.3+8.22i)T+(22.5−69.4i)T2 |
| 79 | 1+(−1.14−3.52i)T+(−63.9+46.4i)T2 |
| 83 | 1+(4.26−13.1i)T+(−67.1−48.7i)T2 |
| 89 | 1−11.2T+89T2 |
| 97 | 1+(2.85+8.78i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.30838981935419160146676968256, −10.15221709446304125201640623812, −9.379243878701528732883628623813, −8.506918219679847992967217364815, −7.79033381213849726021429186433, −6.90799334665341064683220874788, −5.18921194857340329270528575339, −4.55977361686521505240658822173, −3.71011300161005432616438855563, −1.76828937003339794255804046403,
1.82940283674798730342952289288, 2.51051114997803138718570421131, 3.72469303087348185420765368918, 5.35201652597748484991408689131, 6.12086743482653085557087210220, 7.963888366366607151651566328179, 8.093781975588859108324934516506, 9.089695198523938625530104405380, 10.40521783690185483826907296948, 11.11667657109272319502761295426