L(s) = 1 | + (0.309 + 0.951i)2-s + (1.61 + 1.17i)3-s + (−0.809 + 0.587i)4-s + (0.5 − 1.53i)5-s + (−0.618 + 1.90i)6-s + (3.92 − 2.85i)7-s + (−0.809 − 0.587i)8-s + (0.309 + 0.951i)9-s + 1.61·10-s + (−0.809 + 3.21i)11-s − 1.99·12-s + (0.763 + 2.35i)13-s + (3.92 + 2.85i)14-s + (2.61 − 1.90i)15-s + (0.309 − 0.951i)16-s + (1.04 − 3.21i)17-s + ⋯ |
L(s) = 1 | + (0.218 + 0.672i)2-s + (0.934 + 0.678i)3-s + (−0.404 + 0.293i)4-s + (0.223 − 0.688i)5-s + (−0.252 + 0.776i)6-s + (1.48 − 1.07i)7-s + (−0.286 − 0.207i)8-s + (0.103 + 0.317i)9-s + 0.511·10-s + (−0.243 + 0.969i)11-s − 0.577·12-s + (0.211 + 0.652i)13-s + (1.04 + 0.762i)14-s + (0.675 − 0.491i)15-s + (0.0772 − 0.237i)16-s + (0.253 − 0.780i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 418 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 - 0.821i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 418 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.569 - 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.97641 + 1.03455i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.97641 + 1.03455i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 + (0.809 - 3.21i)T \) |
| 19 | \( 1 + (0.809 + 0.587i)T \) |
good | 3 | \( 1 + (-1.61 - 1.17i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + (-0.5 + 1.53i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (-3.92 + 2.85i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-0.763 - 2.35i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-1.04 + 3.21i)T + (-13.7 - 9.99i)T^{2} \) |
| 23 | \( 1 + 7.85T + 23T^{2} \) |
| 29 | \( 1 + (8.47 - 6.15i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.618 - 1.90i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (3.23 - 2.35i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-3.85 - 2.80i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 9.09T + 43T^{2} \) |
| 47 | \( 1 + (1.11 + 0.812i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (1.47 + 4.53i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-2.85 + 2.07i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (2.95 - 9.09i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 2.76T + 67T^{2} \) |
| 71 | \( 1 + (-1.52 + 4.70i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-11.3 + 8.22i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-1.14 - 3.52i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (4.26 - 13.1i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - 11.2T + 89T^{2} \) |
| 97 | \( 1 + (2.85 + 8.78i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.30838981935419160146676968256, −10.15221709446304125201640623812, −9.379243878701528732883628623813, −8.506918219679847992967217364815, −7.79033381213849726021429186433, −6.90799334665341064683220874788, −5.18921194857340329270528575339, −4.55977361686521505240658822173, −3.71011300161005432616438855563, −1.76828937003339794255804046403,
1.82940283674798730342952289288, 2.51051114997803138718570421131, 3.72469303087348185420765368918, 5.35201652597748484991408689131, 6.12086743482653085557087210220, 7.963888366366607151651566328179, 8.093781975588859108324934516506, 9.089695198523938625530104405380, 10.40521783690185483826907296948, 11.11667657109272319502761295426