Properties

Label 418.2.f.d
Level 418418
Weight 22
Character orbit 418.f
Analytic conductor 3.3383.338
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [418,2,Mod(115,418)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(418, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("418.115"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 418=21119 418 = 2 \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 418.f (of order 55, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.337746804493.33774680449
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ10\zeta_{10}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ103ζ102+1)q22ζ102q3ζ103q4+(ζ102ζ10+1)q5+2ζ10q6+(3ζ10+3)q7+ζ102q8++(2ζ103ζ102)q99+O(q100) q + (\zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 1) q^{2} - 2 \zeta_{10}^{2} q^{3} - \zeta_{10}^{3} q^{4} + (\zeta_{10}^{2} - \zeta_{10} + 1) q^{5} + 2 \zeta_{10} q^{6} + ( - 3 \zeta_{10} + 3) q^{7} + \zeta_{10}^{2} q^{8} + \cdots + ( - 2 \zeta_{10}^{3} - \zeta_{10} - 2) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4qq2+2q3q4+2q5+2q6+9q7q8q9+2q10q118q12+12q13+9q14+6q15q167q17q18q19+2q20+12q21+11q99+O(q100) 4 q - q^{2} + 2 q^{3} - q^{4} + 2 q^{5} + 2 q^{6} + 9 q^{7} - q^{8} - q^{9} + 2 q^{10} - q^{11} - 8 q^{12} + 12 q^{13} + 9 q^{14} + 6 q^{15} - q^{16} - 7 q^{17} - q^{18} - q^{19} + 2 q^{20} + 12 q^{21}+ \cdots - 11 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/418Z)×\left(\mathbb{Z}/418\mathbb{Z}\right)^\times.

nn 287287 343343
χ(n)\chi(n) 11 ζ103-\zeta_{10}^{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
115.1
−0.309017 + 0.951057i
0.809017 0.587785i
−0.309017 0.951057i
0.809017 + 0.587785i
0.309017 + 0.951057i 1.61803 + 1.17557i −0.809017 + 0.587785i 0.500000 1.53884i −0.618034 + 1.90211i 3.92705 2.85317i −0.809017 0.587785i 0.309017 + 0.951057i 1.61803
191.1 −0.809017 0.587785i −0.618034 + 1.90211i 0.309017 + 0.951057i 0.500000 0.363271i 1.61803 1.17557i 0.572949 + 1.76336i 0.309017 0.951057i −0.809017 0.587785i −0.618034
229.1 0.309017 0.951057i 1.61803 1.17557i −0.809017 0.587785i 0.500000 + 1.53884i −0.618034 1.90211i 3.92705 + 2.85317i −0.809017 + 0.587785i 0.309017 0.951057i 1.61803
267.1 −0.809017 + 0.587785i −0.618034 1.90211i 0.309017 0.951057i 0.500000 + 0.363271i 1.61803 + 1.17557i 0.572949 1.76336i 0.309017 + 0.951057i −0.809017 + 0.587785i −0.618034
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 418.2.f.d 4
11.c even 5 1 inner 418.2.f.d 4
11.c even 5 1 4598.2.a.bb 2
11.d odd 10 1 4598.2.a.t 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
418.2.f.d 4 1.a even 1 1 trivial
418.2.f.d 4 11.c even 5 1 inner
4598.2.a.t 2 11.d odd 10 1
4598.2.a.bb 2 11.c even 5 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T342T33+4T328T3+16 T_{3}^{4} - 2T_{3}^{3} + 4T_{3}^{2} - 8T_{3} + 16 acting on S2new(418,[χ])S_{2}^{\mathrm{new}}(418, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+T3+T2++1 T^{4} + T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
33 T42T3++16 T^{4} - 2 T^{3} + \cdots + 16 Copy content Toggle raw display
55 T42T3++1 T^{4} - 2 T^{3} + \cdots + 1 Copy content Toggle raw display
77 T49T3++81 T^{4} - 9 T^{3} + \cdots + 81 Copy content Toggle raw display
1111 T4+T3++121 T^{4} + T^{3} + \cdots + 121 Copy content Toggle raw display
1313 T412T3++256 T^{4} - 12 T^{3} + \cdots + 256 Copy content Toggle raw display
1717 T4+7T3++361 T^{4} + 7 T^{3} + \cdots + 361 Copy content Toggle raw display
1919 T4+T3+T2++1 T^{4} + T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
2323 (T2+9T+9)2 (T^{2} + 9 T + 9)^{2} Copy content Toggle raw display
2929 T4+16T3++256 T^{4} + 16 T^{3} + \cdots + 256 Copy content Toggle raw display
3131 T4+2T3++16 T^{4} + 2 T^{3} + \cdots + 16 Copy content Toggle raw display
3737 T4+4T3++256 T^{4} + 4 T^{3} + \cdots + 256 Copy content Toggle raw display
4141 T42T3++1936 T^{4} - 2 T^{3} + \cdots + 1936 Copy content Toggle raw display
4343 (T2+7T19)2 (T^{2} + 7 T - 19)^{2} Copy content Toggle raw display
4747 T4+10T2++25 T^{4} + 10 T^{2} + \cdots + 25 Copy content Toggle raw display
5353 T412T3++1936 T^{4} - 12 T^{3} + \cdots + 1936 Copy content Toggle raw display
5959 T4+2T3++1936 T^{4} + 2 T^{3} + \cdots + 1936 Copy content Toggle raw display
6161 T4+23T3++10201 T^{4} + 23 T^{3} + \cdots + 10201 Copy content Toggle raw display
6767 (T210T+20)2 (T^{2} - 10 T + 20)^{2} Copy content Toggle raw display
7171 T424T3++4096 T^{4} - 24 T^{3} + \cdots + 4096 Copy content Toggle raw display
7373 T414T3++38416 T^{4} - 14 T^{3} + \cdots + 38416 Copy content Toggle raw display
7979 T418T3++1296 T^{4} - 18 T^{3} + \cdots + 1296 Copy content Toggle raw display
8383 T4+26T3++22201 T^{4} + 26 T^{3} + \cdots + 22201 Copy content Toggle raw display
8989 (T218T+76)2 (T^{2} - 18 T + 76)^{2} Copy content Toggle raw display
9797 T42T3++1936 T^{4} - 2 T^{3} + \cdots + 1936 Copy content Toggle raw display
show more
show less