gp: [N,k,chi] = [418,2,Mod(115,418)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(418, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([4, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("418.115");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,-1,2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 10 \zeta_{10} ζ 1 0 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 418 Z ) × \left(\mathbb{Z}/418\mathbb{Z}\right)^\times ( Z / 4 1 8 Z ) × .
n n n
287 287 2 8 7
343 343 3 4 3
χ ( n ) \chi(n) χ ( n )
1 1 1
− ζ 10 3 -\zeta_{10}^{3} − ζ 1 0 3
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 4 − 2 T 3 3 + 4 T 3 2 − 8 T 3 + 16 T_{3}^{4} - 2T_{3}^{3} + 4T_{3}^{2} - 8T_{3} + 16 T 3 4 − 2 T 3 3 + 4 T 3 2 − 8 T 3 + 1 6
T3^4 - 2*T3^3 + 4*T3^2 - 8*T3 + 16
acting on S 2 n e w ( 418 , [ χ ] ) S_{2}^{\mathrm{new}}(418, [\chi]) S 2 n e w ( 4 1 8 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + T 3 + T 2 + ⋯ + 1 T^{4} + T^{3} + T^{2} + \cdots + 1 T 4 + T 3 + T 2 + ⋯ + 1
T^4 + T^3 + T^2 + T + 1
3 3 3
T 4 − 2 T 3 + ⋯ + 16 T^{4} - 2 T^{3} + \cdots + 16 T 4 − 2 T 3 + ⋯ + 1 6
T^4 - 2*T^3 + 4*T^2 - 8*T + 16
5 5 5
T 4 − 2 T 3 + ⋯ + 1 T^{4} - 2 T^{3} + \cdots + 1 T 4 − 2 T 3 + ⋯ + 1
T^4 - 2*T^3 + 4*T^2 - 3*T + 1
7 7 7
T 4 − 9 T 3 + ⋯ + 81 T^{4} - 9 T^{3} + \cdots + 81 T 4 − 9 T 3 + ⋯ + 8 1
T^4 - 9*T^3 + 36*T^2 - 54*T + 81
11 11 1 1
T 4 + T 3 + ⋯ + 121 T^{4} + T^{3} + \cdots + 121 T 4 + T 3 + ⋯ + 1 2 1
T^4 + T^3 + 21*T^2 + 11*T + 121
13 13 1 3
T 4 − 12 T 3 + ⋯ + 256 T^{4} - 12 T^{3} + \cdots + 256 T 4 − 1 2 T 3 + ⋯ + 2 5 6
T^4 - 12*T^3 + 64*T^2 - 128*T + 256
17 17 1 7
T 4 + 7 T 3 + ⋯ + 361 T^{4} + 7 T^{3} + \cdots + 361 T 4 + 7 T 3 + ⋯ + 3 6 1
T^4 + 7*T^3 + 24*T^2 + 38*T + 361
19 19 1 9
T 4 + T 3 + T 2 + ⋯ + 1 T^{4} + T^{3} + T^{2} + \cdots + 1 T 4 + T 3 + T 2 + ⋯ + 1
T^4 + T^3 + T^2 + T + 1
23 23 2 3
( T 2 + 9 T + 9 ) 2 (T^{2} + 9 T + 9)^{2} ( T 2 + 9 T + 9 ) 2
(T^2 + 9*T + 9)^2
29 29 2 9
T 4 + 16 T 3 + ⋯ + 256 T^{4} + 16 T^{3} + \cdots + 256 T 4 + 1 6 T 3 + ⋯ + 2 5 6
T^4 + 16*T^3 + 96*T^2 - 64*T + 256
31 31 3 1
T 4 + 2 T 3 + ⋯ + 16 T^{4} + 2 T^{3} + \cdots + 16 T 4 + 2 T 3 + ⋯ + 1 6
T^4 + 2*T^3 + 4*T^2 + 8*T + 16
37 37 3 7
T 4 + 4 T 3 + ⋯ + 256 T^{4} + 4 T^{3} + \cdots + 256 T 4 + 4 T 3 + ⋯ + 2 5 6
T^4 + 4*T^3 + 16*T^2 + 64*T + 256
41 41 4 1
T 4 − 2 T 3 + ⋯ + 1936 T^{4} - 2 T^{3} + \cdots + 1936 T 4 − 2 T 3 + ⋯ + 1 9 3 6
T^4 - 2*T^3 + 64*T^2 - 528*T + 1936
43 43 4 3
( T 2 + 7 T − 19 ) 2 (T^{2} + 7 T - 19)^{2} ( T 2 + 7 T − 1 9 ) 2
(T^2 + 7*T - 19)^2
47 47 4 7
T 4 + 10 T 2 + ⋯ + 25 T^{4} + 10 T^{2} + \cdots + 25 T 4 + 1 0 T 2 + ⋯ + 2 5
T^4 + 10*T^2 + 25*T + 25
53 53 5 3
T 4 − 12 T 3 + ⋯ + 1936 T^{4} - 12 T^{3} + \cdots + 1936 T 4 − 1 2 T 3 + ⋯ + 1 9 3 6
T^4 - 12*T^3 + 64*T^2 - 88*T + 1936
59 59 5 9
T 4 + 2 T 3 + ⋯ + 1936 T^{4} + 2 T^{3} + \cdots + 1936 T 4 + 2 T 3 + ⋯ + 1 9 3 6
T^4 + 2*T^3 + 124*T^2 - 792*T + 1936
61 61 6 1
T 4 + 23 T 3 + ⋯ + 10201 T^{4} + 23 T^{3} + \cdots + 10201 T 4 + 2 3 T 3 + ⋯ + 1 0 2 0 1
T^4 + 23*T^3 + 304*T^2 + 2222*T + 10201
67 67 6 7
( T 2 − 10 T + 20 ) 2 (T^{2} - 10 T + 20)^{2} ( T 2 − 1 0 T + 2 0 ) 2
(T^2 - 10*T + 20)^2
71 71 7 1
T 4 − 24 T 3 + ⋯ + 4096 T^{4} - 24 T^{3} + \cdots + 4096 T 4 − 2 4 T 3 + ⋯ + 4 0 9 6
T^4 - 24*T^3 + 256*T^2 - 1024*T + 4096
73 73 7 3
T 4 − 14 T 3 + ⋯ + 38416 T^{4} - 14 T^{3} + \cdots + 38416 T 4 − 1 4 T 3 + ⋯ + 3 8 4 1 6
T^4 - 14*T^3 + 196*T^2 - 2744*T + 38416
79 79 7 9
T 4 − 18 T 3 + ⋯ + 1296 T^{4} - 18 T^{3} + \cdots + 1296 T 4 − 1 8 T 3 + ⋯ + 1 2 9 6
T^4 - 18*T^3 + 144*T^2 - 432*T + 1296
83 83 8 3
T 4 + 26 T 3 + ⋯ + 22201 T^{4} + 26 T^{3} + \cdots + 22201 T 4 + 2 6 T 3 + ⋯ + 2 2 2 0 1
T^4 + 26*T^3 + 456*T^2 + 4321*T + 22201
89 89 8 9
( T 2 − 18 T + 76 ) 2 (T^{2} - 18 T + 76)^{2} ( T 2 − 1 8 T + 7 6 ) 2
(T^2 - 18*T + 76)^2
97 97 9 7
T 4 − 2 T 3 + ⋯ + 1936 T^{4} - 2 T^{3} + \cdots + 1936 T 4 − 2 T 3 + ⋯ + 1 9 3 6
T^4 - 2*T^3 + 64*T^2 - 528*T + 1936
show more
show less