L(s) = 1 | + 0.517·2-s − 1.41·3-s − 1.73·4-s + 5-s − 0.732·6-s + 0.732·7-s − 1.93·8-s − 0.999·9-s + 0.517·10-s − 5.27·11-s + 2.44·12-s + 1.46·13-s + 0.378·14-s − 1.41·15-s + 2.46·16-s + 6.31·17-s − 0.517·18-s + 4.24·19-s − 1.73·20-s − 1.03·21-s − 2.73·22-s − 8.19·23-s + 2.73·24-s + 25-s + 0.757·26-s + 5.65·27-s − 1.26·28-s + ⋯ |
L(s) = 1 | + 0.366·2-s − 0.816·3-s − 0.866·4-s + 0.447·5-s − 0.298·6-s + 0.276·7-s − 0.683·8-s − 0.333·9-s + 0.163·10-s − 1.59·11-s + 0.707·12-s + 0.406·13-s + 0.101·14-s − 0.365·15-s + 0.616·16-s + 1.53·17-s − 0.122·18-s + 0.973·19-s − 0.387·20-s − 0.225·21-s − 0.582·22-s − 1.70·23-s + 0.557·24-s + 0.200·25-s + 0.148·26-s + 1.08·27-s − 0.239·28-s + ⋯ |
Λ(s)=(=(4205s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4205s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−T |
| 29 | 1 |
good | 2 | 1−0.517T+2T2 |
| 3 | 1+1.41T+3T2 |
| 7 | 1−0.732T+7T2 |
| 11 | 1+5.27T+11T2 |
| 13 | 1−1.46T+13T2 |
| 17 | 1−6.31T+17T2 |
| 19 | 1−4.24T+19T2 |
| 23 | 1+8.19T+23T2 |
| 31 | 1−4.24T+31T2 |
| 37 | 1−4.24T+37T2 |
| 41 | 1+8.76T+41T2 |
| 43 | 1−4.24T+43T2 |
| 47 | 1−8.38T+47T2 |
| 53 | 1+53T2 |
| 59 | 1−6T+59T2 |
| 61 | 1+3.10T+61T2 |
| 67 | 1+11.1T+67T2 |
| 71 | 1+6T+71T2 |
| 73 | 1+1.13T+73T2 |
| 79 | 1+15.8T+79T2 |
| 83 | 1−2.19T+83T2 |
| 89 | 1−2.07T+89T2 |
| 97 | 1+7.34T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.079138062372543684168792319056, −7.42710605202480751322336586539, −6.03437566868495528297008573110, −5.75943892175074466638455777451, −5.20250379698199247263715194308, −4.51308711054977261724012577154, −3.40661485173807791591545838114, −2.65548337108864378230450963148, −1.15983514543131789642637339590, 0,
1.15983514543131789642637339590, 2.65548337108864378230450963148, 3.40661485173807791591545838114, 4.51308711054977261724012577154, 5.20250379698199247263715194308, 5.75943892175074466638455777451, 6.03437566868495528297008573110, 7.42710605202480751322336586539, 8.079138062372543684168792319056