Properties

Label 2-4205-1.1-c1-0-158
Degree $2$
Conductor $4205$
Sign $-1$
Analytic cond. $33.5770$
Root an. cond. $5.79457$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.517·2-s − 1.41·3-s − 1.73·4-s + 5-s − 0.732·6-s + 0.732·7-s − 1.93·8-s − 0.999·9-s + 0.517·10-s − 5.27·11-s + 2.44·12-s + 1.46·13-s + 0.378·14-s − 1.41·15-s + 2.46·16-s + 6.31·17-s − 0.517·18-s + 4.24·19-s − 1.73·20-s − 1.03·21-s − 2.73·22-s − 8.19·23-s + 2.73·24-s + 25-s + 0.757·26-s + 5.65·27-s − 1.26·28-s + ⋯
L(s)  = 1  + 0.366·2-s − 0.816·3-s − 0.866·4-s + 0.447·5-s − 0.298·6-s + 0.276·7-s − 0.683·8-s − 0.333·9-s + 0.163·10-s − 1.59·11-s + 0.707·12-s + 0.406·13-s + 0.101·14-s − 0.365·15-s + 0.616·16-s + 1.53·17-s − 0.122·18-s + 0.973·19-s − 0.387·20-s − 0.225·21-s − 0.582·22-s − 1.70·23-s + 0.557·24-s + 0.200·25-s + 0.148·26-s + 1.08·27-s − 0.239·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4205\)    =    \(5 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(33.5770\)
Root analytic conductor: \(5.79457\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4205,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
29 \( 1 \)
good2 \( 1 - 0.517T + 2T^{2} \)
3 \( 1 + 1.41T + 3T^{2} \)
7 \( 1 - 0.732T + 7T^{2} \)
11 \( 1 + 5.27T + 11T^{2} \)
13 \( 1 - 1.46T + 13T^{2} \)
17 \( 1 - 6.31T + 17T^{2} \)
19 \( 1 - 4.24T + 19T^{2} \)
23 \( 1 + 8.19T + 23T^{2} \)
31 \( 1 - 4.24T + 31T^{2} \)
37 \( 1 - 4.24T + 37T^{2} \)
41 \( 1 + 8.76T + 41T^{2} \)
43 \( 1 - 4.24T + 43T^{2} \)
47 \( 1 - 8.38T + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 + 3.10T + 61T^{2} \)
67 \( 1 + 11.1T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 1.13T + 73T^{2} \)
79 \( 1 + 15.8T + 79T^{2} \)
83 \( 1 - 2.19T + 83T^{2} \)
89 \( 1 - 2.07T + 89T^{2} \)
97 \( 1 + 7.34T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.079138062372543684168792319056, −7.42710605202480751322336586539, −6.03437566868495528297008573110, −5.75943892175074466638455777451, −5.20250379698199247263715194308, −4.51308711054977261724012577154, −3.40661485173807791591545838114, −2.65548337108864378230450963148, −1.15983514543131789642637339590, 0, 1.15983514543131789642637339590, 2.65548337108864378230450963148, 3.40661485173807791591545838114, 4.51308711054977261724012577154, 5.20250379698199247263715194308, 5.75943892175074466638455777451, 6.03437566868495528297008573110, 7.42710605202480751322336586539, 8.079138062372543684168792319056

Graph of the $Z$-function along the critical line