Properties

Label 4205.2.a.g.1.3
Level $4205$
Weight $2$
Character 4205.1
Self dual yes
Analytic conductor $33.577$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4205,2,Mod(1,4205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4205.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4205 = 5 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.5770940499\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.517638\) of defining polynomial
Character \(\chi\) \(=\) 4205.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.517638 q^{2} -1.41421 q^{3} -1.73205 q^{4} +1.00000 q^{5} -0.732051 q^{6} +0.732051 q^{7} -1.93185 q^{8} -1.00000 q^{9} +0.517638 q^{10} -5.27792 q^{11} +2.44949 q^{12} +1.46410 q^{13} +0.378937 q^{14} -1.41421 q^{15} +2.46410 q^{16} +6.31319 q^{17} -0.517638 q^{18} +4.24264 q^{19} -1.73205 q^{20} -1.03528 q^{21} -2.73205 q^{22} -8.19615 q^{23} +2.73205 q^{24} +1.00000 q^{25} +0.757875 q^{26} +5.65685 q^{27} -1.26795 q^{28} -0.732051 q^{30} +4.24264 q^{31} +5.13922 q^{32} +7.46410 q^{33} +3.26795 q^{34} +0.732051 q^{35} +1.73205 q^{36} +4.24264 q^{37} +2.19615 q^{38} -2.07055 q^{39} -1.93185 q^{40} -8.76268 q^{41} -0.535898 q^{42} +4.24264 q^{43} +9.14162 q^{44} -1.00000 q^{45} -4.24264 q^{46} +8.38375 q^{47} -3.48477 q^{48} -6.46410 q^{49} +0.517638 q^{50} -8.92820 q^{51} -2.53590 q^{52} +2.92820 q^{54} -5.27792 q^{55} -1.41421 q^{56} -6.00000 q^{57} +6.00000 q^{59} +2.44949 q^{60} -3.10583 q^{61} +2.19615 q^{62} -0.732051 q^{63} -2.26795 q^{64} +1.46410 q^{65} +3.86370 q^{66} -11.1244 q^{67} -10.9348 q^{68} +11.5911 q^{69} +0.378937 q^{70} -6.00000 q^{71} +1.93185 q^{72} -1.13681 q^{73} +2.19615 q^{74} -1.41421 q^{75} -7.34847 q^{76} -3.86370 q^{77} -1.07180 q^{78} -15.8338 q^{79} +2.46410 q^{80} -5.00000 q^{81} -4.53590 q^{82} +2.19615 q^{83} +1.79315 q^{84} +6.31319 q^{85} +2.19615 q^{86} +10.1962 q^{88} +2.07055 q^{89} -0.517638 q^{90} +1.07180 q^{91} +14.1962 q^{92} -6.00000 q^{93} +4.33975 q^{94} +4.24264 q^{95} -7.26795 q^{96} -7.34847 q^{97} -3.34607 q^{98} +5.27792 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + 4 q^{6} - 4 q^{7} - 4 q^{9} - 8 q^{13} - 4 q^{16} - 4 q^{22} - 12 q^{23} + 4 q^{24} + 4 q^{25} - 12 q^{28} + 4 q^{30} + 16 q^{33} + 20 q^{34} - 4 q^{35} - 12 q^{38} - 16 q^{42} - 4 q^{45}+ \cdots - 36 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.517638 0.366025 0.183013 0.983111i \(-0.441415\pi\)
0.183013 + 0.983111i \(0.441415\pi\)
\(3\) −1.41421 −0.816497 −0.408248 0.912871i \(-0.633860\pi\)
−0.408248 + 0.912871i \(0.633860\pi\)
\(4\) −1.73205 −0.866025
\(5\) 1.00000 0.447214
\(6\) −0.732051 −0.298858
\(7\) 0.732051 0.276689 0.138345 0.990384i \(-0.455822\pi\)
0.138345 + 0.990384i \(0.455822\pi\)
\(8\) −1.93185 −0.683013
\(9\) −1.00000 −0.333333
\(10\) 0.517638 0.163692
\(11\) −5.27792 −1.59135 −0.795676 0.605723i \(-0.792884\pi\)
−0.795676 + 0.605723i \(0.792884\pi\)
\(12\) 2.44949 0.707107
\(13\) 1.46410 0.406069 0.203034 0.979172i \(-0.434920\pi\)
0.203034 + 0.979172i \(0.434920\pi\)
\(14\) 0.378937 0.101275
\(15\) −1.41421 −0.365148
\(16\) 2.46410 0.616025
\(17\) 6.31319 1.53117 0.765587 0.643332i \(-0.222449\pi\)
0.765587 + 0.643332i \(0.222449\pi\)
\(18\) −0.517638 −0.122008
\(19\) 4.24264 0.973329 0.486664 0.873589i \(-0.338214\pi\)
0.486664 + 0.873589i \(0.338214\pi\)
\(20\) −1.73205 −0.387298
\(21\) −1.03528 −0.225916
\(22\) −2.73205 −0.582475
\(23\) −8.19615 −1.70902 −0.854508 0.519438i \(-0.826141\pi\)
−0.854508 + 0.519438i \(0.826141\pi\)
\(24\) 2.73205 0.557678
\(25\) 1.00000 0.200000
\(26\) 0.757875 0.148631
\(27\) 5.65685 1.08866
\(28\) −1.26795 −0.239620
\(29\) 0 0
\(30\) −0.732051 −0.133654
\(31\) 4.24264 0.762001 0.381000 0.924575i \(-0.375580\pi\)
0.381000 + 0.924575i \(0.375580\pi\)
\(32\) 5.13922 0.908494
\(33\) 7.46410 1.29933
\(34\) 3.26795 0.560449
\(35\) 0.732051 0.123739
\(36\) 1.73205 0.288675
\(37\) 4.24264 0.697486 0.348743 0.937218i \(-0.386609\pi\)
0.348743 + 0.937218i \(0.386609\pi\)
\(38\) 2.19615 0.356263
\(39\) −2.07055 −0.331554
\(40\) −1.93185 −0.305453
\(41\) −8.76268 −1.36850 −0.684251 0.729247i \(-0.739871\pi\)
−0.684251 + 0.729247i \(0.739871\pi\)
\(42\) −0.535898 −0.0826909
\(43\) 4.24264 0.646997 0.323498 0.946229i \(-0.395141\pi\)
0.323498 + 0.946229i \(0.395141\pi\)
\(44\) 9.14162 1.37815
\(45\) −1.00000 −0.149071
\(46\) −4.24264 −0.625543
\(47\) 8.38375 1.22289 0.611447 0.791285i \(-0.290588\pi\)
0.611447 + 0.791285i \(0.290588\pi\)
\(48\) −3.48477 −0.502983
\(49\) −6.46410 −0.923443
\(50\) 0.517638 0.0732051
\(51\) −8.92820 −1.25020
\(52\) −2.53590 −0.351666
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 2.92820 0.398478
\(55\) −5.27792 −0.711674
\(56\) −1.41421 −0.188982
\(57\) −6.00000 −0.794719
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 2.44949 0.316228
\(61\) −3.10583 −0.397661 −0.198830 0.980034i \(-0.563714\pi\)
−0.198830 + 0.980034i \(0.563714\pi\)
\(62\) 2.19615 0.278912
\(63\) −0.732051 −0.0922297
\(64\) −2.26795 −0.283494
\(65\) 1.46410 0.181599
\(66\) 3.86370 0.475589
\(67\) −11.1244 −1.35906 −0.679528 0.733649i \(-0.737815\pi\)
−0.679528 + 0.733649i \(0.737815\pi\)
\(68\) −10.9348 −1.32604
\(69\) 11.5911 1.39541
\(70\) 0.378937 0.0452917
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 1.93185 0.227671
\(73\) −1.13681 −0.133054 −0.0665269 0.997785i \(-0.521192\pi\)
−0.0665269 + 0.997785i \(0.521192\pi\)
\(74\) 2.19615 0.255298
\(75\) −1.41421 −0.163299
\(76\) −7.34847 −0.842927
\(77\) −3.86370 −0.440310
\(78\) −1.07180 −0.121357
\(79\) −15.8338 −1.78144 −0.890718 0.454556i \(-0.849798\pi\)
−0.890718 + 0.454556i \(0.849798\pi\)
\(80\) 2.46410 0.275495
\(81\) −5.00000 −0.555556
\(82\) −4.53590 −0.500906
\(83\) 2.19615 0.241059 0.120530 0.992710i \(-0.461541\pi\)
0.120530 + 0.992710i \(0.461541\pi\)
\(84\) 1.79315 0.195649
\(85\) 6.31319 0.684762
\(86\) 2.19615 0.236817
\(87\) 0 0
\(88\) 10.1962 1.08691
\(89\) 2.07055 0.219478 0.109739 0.993960i \(-0.464998\pi\)
0.109739 + 0.993960i \(0.464998\pi\)
\(90\) −0.517638 −0.0545638
\(91\) 1.07180 0.112355
\(92\) 14.1962 1.48005
\(93\) −6.00000 −0.622171
\(94\) 4.33975 0.447611
\(95\) 4.24264 0.435286
\(96\) −7.26795 −0.741782
\(97\) −7.34847 −0.746124 −0.373062 0.927806i \(-0.621692\pi\)
−0.373062 + 0.927806i \(0.621692\pi\)
\(98\) −3.34607 −0.338004
\(99\) 5.27792 0.530451
\(100\) −1.73205 −0.173205
\(101\) −4.14110 −0.412055 −0.206028 0.978546i \(-0.566054\pi\)
−0.206028 + 0.978546i \(0.566054\pi\)
\(102\) −4.62158 −0.457604
\(103\) −0.196152 −0.0193275 −0.00966374 0.999953i \(-0.503076\pi\)
−0.00966374 + 0.999953i \(0.503076\pi\)
\(104\) −2.82843 −0.277350
\(105\) −1.03528 −0.101033
\(106\) 0 0
\(107\) 2.19615 0.212310 0.106155 0.994350i \(-0.466146\pi\)
0.106155 + 0.994350i \(0.466146\pi\)
\(108\) −9.79796 −0.942809
\(109\) 1.46410 0.140236 0.0701178 0.997539i \(-0.477662\pi\)
0.0701178 + 0.997539i \(0.477662\pi\)
\(110\) −2.73205 −0.260491
\(111\) −6.00000 −0.569495
\(112\) 1.80385 0.170448
\(113\) 13.7632 1.29473 0.647366 0.762179i \(-0.275870\pi\)
0.647366 + 0.762179i \(0.275870\pi\)
\(114\) −3.10583 −0.290887
\(115\) −8.19615 −0.764295
\(116\) 0 0
\(117\) −1.46410 −0.135356
\(118\) 3.10583 0.285915
\(119\) 4.62158 0.423659
\(120\) 2.73205 0.249401
\(121\) 16.8564 1.53240
\(122\) −1.60770 −0.145554
\(123\) 12.3923 1.11738
\(124\) −7.34847 −0.659912
\(125\) 1.00000 0.0894427
\(126\) −0.378937 −0.0337584
\(127\) −12.7279 −1.12942 −0.564710 0.825289i \(-0.691012\pi\)
−0.564710 + 0.825289i \(0.691012\pi\)
\(128\) −11.4524 −1.01226
\(129\) −6.00000 −0.528271
\(130\) 0.757875 0.0664700
\(131\) 2.17209 0.189776 0.0948881 0.995488i \(-0.469751\pi\)
0.0948881 + 0.995488i \(0.469751\pi\)
\(132\) −12.9282 −1.12526
\(133\) 3.10583 0.269309
\(134\) −5.75839 −0.497449
\(135\) 5.65685 0.486864
\(136\) −12.1962 −1.04581
\(137\) 9.89949 0.845771 0.422885 0.906183i \(-0.361017\pi\)
0.422885 + 0.906183i \(0.361017\pi\)
\(138\) 6.00000 0.510754
\(139\) −13.4641 −1.14201 −0.571005 0.820947i \(-0.693446\pi\)
−0.571005 + 0.820947i \(0.693446\pi\)
\(140\) −1.26795 −0.107161
\(141\) −11.8564 −0.998490
\(142\) −3.10583 −0.260635
\(143\) −7.72741 −0.646198
\(144\) −2.46410 −0.205342
\(145\) 0 0
\(146\) −0.588457 −0.0487011
\(147\) 9.14162 0.753988
\(148\) −7.34847 −0.604040
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) −0.732051 −0.0597717
\(151\) −18.3923 −1.49674 −0.748372 0.663279i \(-0.769164\pi\)
−0.748372 + 0.663279i \(0.769164\pi\)
\(152\) −8.19615 −0.664796
\(153\) −6.31319 −0.510391
\(154\) −2.00000 −0.161165
\(155\) 4.24264 0.340777
\(156\) 3.58630 0.287134
\(157\) 7.34847 0.586472 0.293236 0.956040i \(-0.405268\pi\)
0.293236 + 0.956040i \(0.405268\pi\)
\(158\) −8.19615 −0.652051
\(159\) 0 0
\(160\) 5.13922 0.406291
\(161\) −6.00000 −0.472866
\(162\) −2.58819 −0.203347
\(163\) 4.24264 0.332309 0.166155 0.986100i \(-0.446865\pi\)
0.166155 + 0.986100i \(0.446865\pi\)
\(164\) 15.1774 1.18516
\(165\) 7.46410 0.581080
\(166\) 1.13681 0.0882337
\(167\) −3.80385 −0.294351 −0.147175 0.989110i \(-0.547018\pi\)
−0.147175 + 0.989110i \(0.547018\pi\)
\(168\) 2.00000 0.154303
\(169\) −10.8564 −0.835108
\(170\) 3.26795 0.250640
\(171\) −4.24264 −0.324443
\(172\) −7.34847 −0.560316
\(173\) −20.7846 −1.58022 −0.790112 0.612962i \(-0.789978\pi\)
−0.790112 + 0.612962i \(0.789978\pi\)
\(174\) 0 0
\(175\) 0.732051 0.0553378
\(176\) −13.0053 −0.980313
\(177\) −8.48528 −0.637793
\(178\) 1.07180 0.0803346
\(179\) −16.3923 −1.22522 −0.612609 0.790386i \(-0.709880\pi\)
−0.612609 + 0.790386i \(0.709880\pi\)
\(180\) 1.73205 0.129099
\(181\) −5.85641 −0.435303 −0.217652 0.976027i \(-0.569840\pi\)
−0.217652 + 0.976027i \(0.569840\pi\)
\(182\) 0.554803 0.0411247
\(183\) 4.39230 0.324689
\(184\) 15.8338 1.16728
\(185\) 4.24264 0.311925
\(186\) −3.10583 −0.227730
\(187\) −33.3205 −2.43664
\(188\) −14.5211 −1.05906
\(189\) 4.14110 0.301221
\(190\) 2.19615 0.159326
\(191\) 19.2170 1.39049 0.695246 0.718772i \(-0.255295\pi\)
0.695246 + 0.718772i \(0.255295\pi\)
\(192\) 3.20736 0.231472
\(193\) −12.7279 −0.916176 −0.458088 0.888907i \(-0.651466\pi\)
−0.458088 + 0.888907i \(0.651466\pi\)
\(194\) −3.80385 −0.273100
\(195\) −2.07055 −0.148275
\(196\) 11.1962 0.799725
\(197\) −1.60770 −0.114544 −0.0572718 0.998359i \(-0.518240\pi\)
−0.0572718 + 0.998359i \(0.518240\pi\)
\(198\) 2.73205 0.194158
\(199\) −19.4641 −1.37977 −0.689887 0.723917i \(-0.742340\pi\)
−0.689887 + 0.723917i \(0.742340\pi\)
\(200\) −1.93185 −0.136603
\(201\) 15.7322 1.10966
\(202\) −2.14359 −0.150823
\(203\) 0 0
\(204\) 15.4641 1.08270
\(205\) −8.76268 −0.612012
\(206\) −0.101536 −0.00707435
\(207\) 8.19615 0.569672
\(208\) 3.60770 0.250149
\(209\) −22.3923 −1.54891
\(210\) −0.535898 −0.0369805
\(211\) −22.0454 −1.51767 −0.758834 0.651284i \(-0.774231\pi\)
−0.758834 + 0.651284i \(0.774231\pi\)
\(212\) 0 0
\(213\) 8.48528 0.581402
\(214\) 1.13681 0.0777109
\(215\) 4.24264 0.289346
\(216\) −10.9282 −0.743570
\(217\) 3.10583 0.210837
\(218\) 0.757875 0.0513298
\(219\) 1.60770 0.108638
\(220\) 9.14162 0.616328
\(221\) 9.24316 0.621762
\(222\) −3.10583 −0.208450
\(223\) −9.66025 −0.646898 −0.323449 0.946246i \(-0.604842\pi\)
−0.323449 + 0.946246i \(0.604842\pi\)
\(224\) 3.76217 0.251370
\(225\) −1.00000 −0.0666667
\(226\) 7.12436 0.473905
\(227\) −15.8038 −1.04894 −0.524469 0.851429i \(-0.675736\pi\)
−0.524469 + 0.851429i \(0.675736\pi\)
\(228\) 10.3923 0.688247
\(229\) −25.4558 −1.68217 −0.841085 0.540903i \(-0.818082\pi\)
−0.841085 + 0.540903i \(0.818082\pi\)
\(230\) −4.24264 −0.279751
\(231\) 5.46410 0.359511
\(232\) 0 0
\(233\) 22.3923 1.46697 0.733484 0.679706i \(-0.237893\pi\)
0.733484 + 0.679706i \(0.237893\pi\)
\(234\) −0.757875 −0.0495438
\(235\) 8.38375 0.546895
\(236\) −10.3923 −0.676481
\(237\) 22.3923 1.45454
\(238\) 2.39230 0.155070
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) −3.48477 −0.224941
\(241\) −8.92820 −0.575116 −0.287558 0.957763i \(-0.592843\pi\)
−0.287558 + 0.957763i \(0.592843\pi\)
\(242\) 8.72552 0.560898
\(243\) −9.89949 −0.635053
\(244\) 5.37945 0.344384
\(245\) −6.46410 −0.412976
\(246\) 6.41473 0.408988
\(247\) 6.21166 0.395238
\(248\) −8.19615 −0.520456
\(249\) −3.10583 −0.196824
\(250\) 0.517638 0.0327383
\(251\) −13.7632 −0.868725 −0.434363 0.900738i \(-0.643026\pi\)
−0.434363 + 0.900738i \(0.643026\pi\)
\(252\) 1.26795 0.0798733
\(253\) 43.2586 2.71965
\(254\) −6.58846 −0.413397
\(255\) −8.92820 −0.559106
\(256\) −1.39230 −0.0870191
\(257\) 12.0000 0.748539 0.374270 0.927320i \(-0.377893\pi\)
0.374270 + 0.927320i \(0.377893\pi\)
\(258\) −3.10583 −0.193360
\(259\) 3.10583 0.192987
\(260\) −2.53590 −0.157270
\(261\) 0 0
\(262\) 1.12436 0.0694629
\(263\) −4.79744 −0.295823 −0.147912 0.989001i \(-0.547255\pi\)
−0.147912 + 0.989001i \(0.547255\pi\)
\(264\) −14.4195 −0.887461
\(265\) 0 0
\(266\) 1.60770 0.0985741
\(267\) −2.92820 −0.179203
\(268\) 19.2679 1.17698
\(269\) 32.7028 1.99392 0.996962 0.0778925i \(-0.0248191\pi\)
0.996962 + 0.0778925i \(0.0248191\pi\)
\(270\) 2.92820 0.178205
\(271\) −9.62209 −0.584501 −0.292250 0.956342i \(-0.594404\pi\)
−0.292250 + 0.956342i \(0.594404\pi\)
\(272\) 15.5563 0.943242
\(273\) −1.51575 −0.0917373
\(274\) 5.12436 0.309574
\(275\) −5.27792 −0.318270
\(276\) −20.0764 −1.20846
\(277\) 2.92820 0.175939 0.0879693 0.996123i \(-0.471962\pi\)
0.0879693 + 0.996123i \(0.471962\pi\)
\(278\) −6.96953 −0.418005
\(279\) −4.24264 −0.254000
\(280\) −1.41421 −0.0845154
\(281\) −4.39230 −0.262023 −0.131011 0.991381i \(-0.541822\pi\)
−0.131011 + 0.991381i \(0.541822\pi\)
\(282\) −6.13733 −0.365473
\(283\) 20.9808 1.24718 0.623588 0.781753i \(-0.285674\pi\)
0.623588 + 0.781753i \(0.285674\pi\)
\(284\) 10.3923 0.616670
\(285\) −6.00000 −0.355409
\(286\) −4.00000 −0.236525
\(287\) −6.41473 −0.378649
\(288\) −5.13922 −0.302831
\(289\) 22.8564 1.34449
\(290\) 0 0
\(291\) 10.3923 0.609208
\(292\) 1.96902 0.115228
\(293\) 11.6926 0.683092 0.341546 0.939865i \(-0.389050\pi\)
0.341546 + 0.939865i \(0.389050\pi\)
\(294\) 4.73205 0.275979
\(295\) 6.00000 0.349334
\(296\) −8.19615 −0.476392
\(297\) −29.8564 −1.73244
\(298\) 9.31749 0.539747
\(299\) −12.0000 −0.693978
\(300\) 2.44949 0.141421
\(301\) 3.10583 0.179017
\(302\) −9.52056 −0.547847
\(303\) 5.85641 0.336442
\(304\) 10.4543 0.599595
\(305\) −3.10583 −0.177839
\(306\) −3.26795 −0.186816
\(307\) −25.1512 −1.43546 −0.717728 0.696323i \(-0.754818\pi\)
−0.717728 + 0.696323i \(0.754818\pi\)
\(308\) 6.69213 0.381320
\(309\) 0.277401 0.0157808
\(310\) 2.19615 0.124733
\(311\) 0.101536 0.00575758 0.00287879 0.999996i \(-0.499084\pi\)
0.00287879 + 0.999996i \(0.499084\pi\)
\(312\) 4.00000 0.226455
\(313\) −25.4641 −1.43932 −0.719658 0.694329i \(-0.755701\pi\)
−0.719658 + 0.694329i \(0.755701\pi\)
\(314\) 3.80385 0.214664
\(315\) −0.732051 −0.0412464
\(316\) 27.4249 1.54277
\(317\) −21.0101 −1.18005 −0.590023 0.807386i \(-0.700881\pi\)
−0.590023 + 0.807386i \(0.700881\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −2.26795 −0.126782
\(321\) −3.10583 −0.173350
\(322\) −3.10583 −0.173081
\(323\) 26.7846 1.49034
\(324\) 8.66025 0.481125
\(325\) 1.46410 0.0812137
\(326\) 2.19615 0.121634
\(327\) −2.07055 −0.114502
\(328\) 16.9282 0.934704
\(329\) 6.13733 0.338362
\(330\) 3.86370 0.212690
\(331\) 18.9396 1.04101 0.520507 0.853858i \(-0.325743\pi\)
0.520507 + 0.853858i \(0.325743\pi\)
\(332\) −3.80385 −0.208763
\(333\) −4.24264 −0.232495
\(334\) −1.96902 −0.107740
\(335\) −11.1244 −0.607788
\(336\) −2.55103 −0.139170
\(337\) −18.1074 −0.986372 −0.493186 0.869924i \(-0.664168\pi\)
−0.493186 + 0.869924i \(0.664168\pi\)
\(338\) −5.61969 −0.305671
\(339\) −19.4641 −1.05714
\(340\) −10.9348 −0.593021
\(341\) −22.3923 −1.21261
\(342\) −2.19615 −0.118754
\(343\) −9.85641 −0.532196
\(344\) −8.19615 −0.441907
\(345\) 11.5911 0.624044
\(346\) −10.7589 −0.578402
\(347\) −26.1962 −1.40628 −0.703142 0.711050i \(-0.748220\pi\)
−0.703142 + 0.711050i \(0.748220\pi\)
\(348\) 0 0
\(349\) 18.3923 0.984518 0.492259 0.870449i \(-0.336171\pi\)
0.492259 + 0.870449i \(0.336171\pi\)
\(350\) 0.378937 0.0202551
\(351\) 8.28221 0.442072
\(352\) −27.1244 −1.44573
\(353\) −32.7846 −1.74495 −0.872474 0.488660i \(-0.837486\pi\)
−0.872474 + 0.488660i \(0.837486\pi\)
\(354\) −4.39230 −0.233448
\(355\) −6.00000 −0.318447
\(356\) −3.58630 −0.190074
\(357\) −6.53590 −0.345916
\(358\) −8.48528 −0.448461
\(359\) −7.07107 −0.373197 −0.186598 0.982436i \(-0.559746\pi\)
−0.186598 + 0.982436i \(0.559746\pi\)
\(360\) 1.93185 0.101818
\(361\) −1.00000 −0.0526316
\(362\) −3.03150 −0.159332
\(363\) −23.8386 −1.25120
\(364\) −1.85641 −0.0973021
\(365\) −1.13681 −0.0595035
\(366\) 2.27362 0.118844
\(367\) 1.96902 0.102782 0.0513909 0.998679i \(-0.483635\pi\)
0.0513909 + 0.998679i \(0.483635\pi\)
\(368\) −20.1962 −1.05280
\(369\) 8.76268 0.456167
\(370\) 2.19615 0.114173
\(371\) 0 0
\(372\) 10.3923 0.538816
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) −17.2480 −0.891871
\(375\) −1.41421 −0.0730297
\(376\) −16.1962 −0.835253
\(377\) 0 0
\(378\) 2.14359 0.110255
\(379\) −15.8338 −0.813325 −0.406663 0.913578i \(-0.633308\pi\)
−0.406663 + 0.913578i \(0.633308\pi\)
\(380\) −7.34847 −0.376969
\(381\) 18.0000 0.922168
\(382\) 9.94744 0.508955
\(383\) 2.19615 0.112218 0.0561091 0.998425i \(-0.482131\pi\)
0.0561091 + 0.998425i \(0.482131\pi\)
\(384\) 16.1962 0.826506
\(385\) −3.86370 −0.196913
\(386\) −6.58846 −0.335344
\(387\) −4.24264 −0.215666
\(388\) 12.7279 0.646162
\(389\) 32.7028 1.65810 0.829048 0.559177i \(-0.188883\pi\)
0.829048 + 0.559177i \(0.188883\pi\)
\(390\) −1.07180 −0.0542725
\(391\) −51.7439 −2.61680
\(392\) 12.4877 0.630723
\(393\) −3.07180 −0.154952
\(394\) −0.832204 −0.0419258
\(395\) −15.8338 −0.796682
\(396\) −9.14162 −0.459384
\(397\) 30.3923 1.52535 0.762673 0.646784i \(-0.223887\pi\)
0.762673 + 0.646784i \(0.223887\pi\)
\(398\) −10.0754 −0.505032
\(399\) −4.39230 −0.219890
\(400\) 2.46410 0.123205
\(401\) 8.78461 0.438682 0.219341 0.975648i \(-0.429609\pi\)
0.219341 + 0.975648i \(0.429609\pi\)
\(402\) 8.14359 0.406166
\(403\) 6.21166 0.309425
\(404\) 7.17260 0.356850
\(405\) −5.00000 −0.248452
\(406\) 0 0
\(407\) −22.3923 −1.10995
\(408\) 17.2480 0.853901
\(409\) 17.8028 0.880290 0.440145 0.897927i \(-0.354927\pi\)
0.440145 + 0.897927i \(0.354927\pi\)
\(410\) −4.53590 −0.224012
\(411\) −14.0000 −0.690569
\(412\) 0.339746 0.0167381
\(413\) 4.39230 0.216131
\(414\) 4.24264 0.208514
\(415\) 2.19615 0.107805
\(416\) 7.52433 0.368911
\(417\) 19.0411 0.932447
\(418\) −11.5911 −0.566940
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 1.79315 0.0874968
\(421\) −17.8028 −0.867654 −0.433827 0.900996i \(-0.642837\pi\)
−0.433827 + 0.900996i \(0.642837\pi\)
\(422\) −11.4115 −0.555505
\(423\) −8.38375 −0.407632
\(424\) 0 0
\(425\) 6.31319 0.306235
\(426\) 4.39230 0.212808
\(427\) −2.27362 −0.110028
\(428\) −3.80385 −0.183866
\(429\) 10.9282 0.527619
\(430\) 2.19615 0.105908
\(431\) 4.39230 0.211570 0.105785 0.994389i \(-0.466264\pi\)
0.105785 + 0.994389i \(0.466264\pi\)
\(432\) 13.9391 0.670644
\(433\) 12.7279 0.611665 0.305832 0.952085i \(-0.401065\pi\)
0.305832 + 0.952085i \(0.401065\pi\)
\(434\) 1.60770 0.0771718
\(435\) 0 0
\(436\) −2.53590 −0.121448
\(437\) −34.7733 −1.66343
\(438\) 0.832204 0.0397643
\(439\) −8.92820 −0.426120 −0.213060 0.977039i \(-0.568343\pi\)
−0.213060 + 0.977039i \(0.568343\pi\)
\(440\) 10.1962 0.486082
\(441\) 6.46410 0.307814
\(442\) 4.78461 0.227581
\(443\) −14.7985 −0.703097 −0.351548 0.936170i \(-0.614345\pi\)
−0.351548 + 0.936170i \(0.614345\pi\)
\(444\) 10.3923 0.493197
\(445\) 2.07055 0.0981536
\(446\) −5.00052 −0.236781
\(447\) −25.4558 −1.20402
\(448\) −1.66025 −0.0784396
\(449\) 30.6322 1.44562 0.722812 0.691045i \(-0.242849\pi\)
0.722812 + 0.691045i \(0.242849\pi\)
\(450\) −0.517638 −0.0244017
\(451\) 46.2487 2.17777
\(452\) −23.8386 −1.12127
\(453\) 26.0106 1.22209
\(454\) −8.18067 −0.383938
\(455\) 1.07180 0.0502466
\(456\) 11.5911 0.542803
\(457\) −26.9282 −1.25965 −0.629824 0.776738i \(-0.716873\pi\)
−0.629824 + 0.776738i \(0.716873\pi\)
\(458\) −13.1769 −0.615717
\(459\) 35.7128 1.66693
\(460\) 14.1962 0.661899
\(461\) −22.6274 −1.05386 −0.526932 0.849907i \(-0.676658\pi\)
−0.526932 + 0.849907i \(0.676658\pi\)
\(462\) 2.82843 0.131590
\(463\) 21.6603 1.00664 0.503319 0.864101i \(-0.332112\pi\)
0.503319 + 0.864101i \(0.332112\pi\)
\(464\) 0 0
\(465\) −6.00000 −0.278243
\(466\) 11.5911 0.536948
\(467\) −21.7680 −1.00730 −0.503652 0.863907i \(-0.668010\pi\)
−0.503652 + 0.863907i \(0.668010\pi\)
\(468\) 2.53590 0.117222
\(469\) −8.14359 −0.376036
\(470\) 4.33975 0.200178
\(471\) −10.3923 −0.478852
\(472\) −11.5911 −0.533524
\(473\) −22.3923 −1.02960
\(474\) 11.5911 0.532397
\(475\) 4.24264 0.194666
\(476\) −8.00481 −0.366900
\(477\) 0 0
\(478\) 3.10583 0.142057
\(479\) −4.52004 −0.206526 −0.103263 0.994654i \(-0.532928\pi\)
−0.103263 + 0.994654i \(0.532928\pi\)
\(480\) −7.26795 −0.331735
\(481\) 6.21166 0.283227
\(482\) −4.62158 −0.210507
\(483\) 8.48528 0.386094
\(484\) −29.1962 −1.32710
\(485\) −7.34847 −0.333677
\(486\) −5.12436 −0.232445
\(487\) −22.5885 −1.02358 −0.511790 0.859110i \(-0.671018\pi\)
−0.511790 + 0.859110i \(0.671018\pi\)
\(488\) 6.00000 0.271607
\(489\) −6.00000 −0.271329
\(490\) −3.34607 −0.151160
\(491\) −1.41421 −0.0638226 −0.0319113 0.999491i \(-0.510159\pi\)
−0.0319113 + 0.999491i \(0.510159\pi\)
\(492\) −21.4641 −0.967676
\(493\) 0 0
\(494\) 3.21539 0.144667
\(495\) 5.27792 0.237225
\(496\) 10.4543 0.469412
\(497\) −4.39230 −0.197022
\(498\) −1.60770 −0.0720425
\(499\) 5.85641 0.262169 0.131084 0.991371i \(-0.458154\pi\)
0.131084 + 0.991371i \(0.458154\pi\)
\(500\) −1.73205 −0.0774597
\(501\) 5.37945 0.240336
\(502\) −7.12436 −0.317976
\(503\) −14.7985 −0.659831 −0.329916 0.944010i \(-0.607020\pi\)
−0.329916 + 0.944010i \(0.607020\pi\)
\(504\) 1.41421 0.0629941
\(505\) −4.14110 −0.184277
\(506\) 22.3923 0.995459
\(507\) 15.3533 0.681863
\(508\) 22.0454 0.978107
\(509\) 20.7846 0.921262 0.460631 0.887592i \(-0.347623\pi\)
0.460631 + 0.887592i \(0.347623\pi\)
\(510\) −4.62158 −0.204647
\(511\) −0.832204 −0.0368145
\(512\) 22.1841 0.980408
\(513\) 24.0000 1.05963
\(514\) 6.21166 0.273984
\(515\) −0.196152 −0.00864351
\(516\) 10.3923 0.457496
\(517\) −44.2487 −1.94606
\(518\) 1.60770 0.0706381
\(519\) 29.3939 1.29025
\(520\) −2.82843 −0.124035
\(521\) 32.7846 1.43632 0.718160 0.695878i \(-0.244985\pi\)
0.718160 + 0.695878i \(0.244985\pi\)
\(522\) 0 0
\(523\) −21.6603 −0.947137 −0.473568 0.880757i \(-0.657034\pi\)
−0.473568 + 0.880757i \(0.657034\pi\)
\(524\) −3.76217 −0.164351
\(525\) −1.03528 −0.0451832
\(526\) −2.48334 −0.108279
\(527\) 26.7846 1.16676
\(528\) 18.3923 0.800422
\(529\) 44.1769 1.92074
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) −5.37945 −0.233229
\(533\) −12.8295 −0.555706
\(534\) −1.51575 −0.0655929
\(535\) 2.19615 0.0949479
\(536\) 21.4906 0.928253
\(537\) 23.1822 1.00039
\(538\) 16.9282 0.729827
\(539\) 34.1170 1.46952
\(540\) −9.79796 −0.421637
\(541\) 25.4558 1.09443 0.547216 0.836991i \(-0.315688\pi\)
0.547216 + 0.836991i \(0.315688\pi\)
\(542\) −4.98076 −0.213942
\(543\) 8.28221 0.355424
\(544\) 32.4449 1.39106
\(545\) 1.46410 0.0627152
\(546\) −0.784610 −0.0335782
\(547\) 21.5167 0.919986 0.459993 0.887923i \(-0.347852\pi\)
0.459993 + 0.887923i \(0.347852\pi\)
\(548\) −17.1464 −0.732459
\(549\) 3.10583 0.132554
\(550\) −2.73205 −0.116495
\(551\) 0 0
\(552\) −22.3923 −0.953080
\(553\) −11.5911 −0.492904
\(554\) 1.51575 0.0643980
\(555\) −6.00000 −0.254686
\(556\) 23.3205 0.989010
\(557\) 22.3923 0.948792 0.474396 0.880311i \(-0.342666\pi\)
0.474396 + 0.880311i \(0.342666\pi\)
\(558\) −2.19615 −0.0929705
\(559\) 6.21166 0.262725
\(560\) 1.80385 0.0762265
\(561\) 47.1223 1.98951
\(562\) −2.27362 −0.0959071
\(563\) 16.8690 0.710945 0.355472 0.934687i \(-0.384320\pi\)
0.355472 + 0.934687i \(0.384320\pi\)
\(564\) 20.5359 0.864717
\(565\) 13.7632 0.579022
\(566\) 10.8604 0.456498
\(567\) −3.66025 −0.153716
\(568\) 11.5911 0.486352
\(569\) −15.9353 −0.668042 −0.334021 0.942566i \(-0.608406\pi\)
−0.334021 + 0.942566i \(0.608406\pi\)
\(570\) −3.10583 −0.130089
\(571\) −11.6077 −0.485767 −0.242883 0.970055i \(-0.578093\pi\)
−0.242883 + 0.970055i \(0.578093\pi\)
\(572\) 13.3843 0.559624
\(573\) −27.1769 −1.13533
\(574\) −3.32051 −0.138595
\(575\) −8.19615 −0.341803
\(576\) 2.26795 0.0944979
\(577\) 44.3954 1.84821 0.924103 0.382144i \(-0.124814\pi\)
0.924103 + 0.382144i \(0.124814\pi\)
\(578\) 11.8313 0.492119
\(579\) 18.0000 0.748054
\(580\) 0 0
\(581\) 1.60770 0.0666984
\(582\) 5.37945 0.222985
\(583\) 0 0
\(584\) 2.19615 0.0908774
\(585\) −1.46410 −0.0605332
\(586\) 6.05256 0.250029
\(587\) −44.1962 −1.82417 −0.912085 0.410001i \(-0.865528\pi\)
−0.912085 + 0.410001i \(0.865528\pi\)
\(588\) −15.8338 −0.652973
\(589\) 18.0000 0.741677
\(590\) 3.10583 0.127865
\(591\) 2.27362 0.0935244
\(592\) 10.4543 0.429669
\(593\) 19.6077 0.805192 0.402596 0.915378i \(-0.368108\pi\)
0.402596 + 0.915378i \(0.368108\pi\)
\(594\) −15.4548 −0.634119
\(595\) 4.62158 0.189466
\(596\) −31.1769 −1.27706
\(597\) 27.5264 1.12658
\(598\) −6.21166 −0.254014
\(599\) 7.14540 0.291953 0.145977 0.989288i \(-0.453368\pi\)
0.145977 + 0.989288i \(0.453368\pi\)
\(600\) 2.73205 0.111536
\(601\) −20.0764 −0.818933 −0.409467 0.912325i \(-0.634285\pi\)
−0.409467 + 0.912325i \(0.634285\pi\)
\(602\) 1.60770 0.0655248
\(603\) 11.1244 0.453019
\(604\) 31.8564 1.29622
\(605\) 16.8564 0.685310
\(606\) 3.03150 0.123146
\(607\) −12.7279 −0.516610 −0.258305 0.966063i \(-0.583164\pi\)
−0.258305 + 0.966063i \(0.583164\pi\)
\(608\) 21.8038 0.884263
\(609\) 0 0
\(610\) −1.60770 −0.0650937
\(611\) 12.2747 0.496579
\(612\) 10.9348 0.442012
\(613\) −32.9282 −1.32996 −0.664979 0.746862i \(-0.731559\pi\)
−0.664979 + 0.746862i \(0.731559\pi\)
\(614\) −13.0192 −0.525414
\(615\) 12.3923 0.499706
\(616\) 7.46410 0.300737
\(617\) −6.79367 −0.273503 −0.136751 0.990605i \(-0.543666\pi\)
−0.136751 + 0.990605i \(0.543666\pi\)
\(618\) 0.143594 0.00577618
\(619\) −13.5601 −0.545027 −0.272514 0.962152i \(-0.587855\pi\)
−0.272514 + 0.962152i \(0.587855\pi\)
\(620\) −7.34847 −0.295122
\(621\) −46.3644 −1.86054
\(622\) 0.0525589 0.00210742
\(623\) 1.51575 0.0607272
\(624\) −5.10205 −0.204246
\(625\) 1.00000 0.0400000
\(626\) −13.1812 −0.526826
\(627\) 31.6675 1.26468
\(628\) −12.7279 −0.507899
\(629\) 26.7846 1.06797
\(630\) −0.378937 −0.0150972
\(631\) 17.8564 0.710852 0.355426 0.934704i \(-0.384336\pi\)
0.355426 + 0.934704i \(0.384336\pi\)
\(632\) 30.5885 1.21674
\(633\) 31.1769 1.23917
\(634\) −10.8756 −0.431927
\(635\) −12.7279 −0.505092
\(636\) 0 0
\(637\) −9.46410 −0.374981
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) −11.4524 −0.452696
\(641\) 15.9353 0.629406 0.314703 0.949190i \(-0.398095\pi\)
0.314703 + 0.949190i \(0.398095\pi\)
\(642\) −1.60770 −0.0634507
\(643\) −9.94744 −0.392289 −0.196144 0.980575i \(-0.562842\pi\)
−0.196144 + 0.980575i \(0.562842\pi\)
\(644\) 10.3923 0.409514
\(645\) −6.00000 −0.236250
\(646\) 13.8647 0.545501
\(647\) 27.3731 1.07615 0.538073 0.842898i \(-0.319152\pi\)
0.538073 + 0.842898i \(0.319152\pi\)
\(648\) 9.65926 0.379452
\(649\) −31.6675 −1.24306
\(650\) 0.757875 0.0297263
\(651\) −4.39230 −0.172148
\(652\) −7.34847 −0.287788
\(653\) −26.3896 −1.03270 −0.516352 0.856376i \(-0.672710\pi\)
−0.516352 + 0.856376i \(0.672710\pi\)
\(654\) −1.07180 −0.0419106
\(655\) 2.17209 0.0848705
\(656\) −21.5921 −0.843031
\(657\) 1.13681 0.0443513
\(658\) 3.17691 0.123849
\(659\) −10.6574 −0.415152 −0.207576 0.978219i \(-0.566557\pi\)
−0.207576 + 0.978219i \(0.566557\pi\)
\(660\) −12.9282 −0.503230
\(661\) −5.85641 −0.227788 −0.113894 0.993493i \(-0.536332\pi\)
−0.113894 + 0.993493i \(0.536332\pi\)
\(662\) 9.80385 0.381037
\(663\) −13.0718 −0.507667
\(664\) −4.24264 −0.164646
\(665\) 3.10583 0.120439
\(666\) −2.19615 −0.0850992
\(667\) 0 0
\(668\) 6.58846 0.254915
\(669\) 13.6617 0.528190
\(670\) −5.75839 −0.222466
\(671\) 16.3923 0.632818
\(672\) −5.32051 −0.205243
\(673\) −25.3205 −0.976034 −0.488017 0.872834i \(-0.662280\pi\)
−0.488017 + 0.872834i \(0.662280\pi\)
\(674\) −9.37307 −0.361037
\(675\) 5.65685 0.217732
\(676\) 18.8038 0.723225
\(677\) −38.8129 −1.49170 −0.745850 0.666113i \(-0.767957\pi\)
−0.745850 + 0.666113i \(0.767957\pi\)
\(678\) −10.0754 −0.386942
\(679\) −5.37945 −0.206444
\(680\) −12.1962 −0.467701
\(681\) 22.3500 0.856454
\(682\) −11.5911 −0.443847
\(683\) 32.1962 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(684\) 7.34847 0.280976
\(685\) 9.89949 0.378240
\(686\) −5.10205 −0.194797
\(687\) 36.0000 1.37349
\(688\) 10.4543 0.398566
\(689\) 0 0
\(690\) 6.00000 0.228416
\(691\) −3.07180 −0.116857 −0.0584283 0.998292i \(-0.518609\pi\)
−0.0584283 + 0.998292i \(0.518609\pi\)
\(692\) 36.0000 1.36851
\(693\) 3.86370 0.146770
\(694\) −13.5601 −0.514735
\(695\) −13.4641 −0.510722
\(696\) 0 0
\(697\) −55.3205 −2.09541
\(698\) 9.52056 0.360358
\(699\) −31.6675 −1.19777
\(700\) −1.26795 −0.0479240
\(701\) −32.7846 −1.23826 −0.619129 0.785289i \(-0.712514\pi\)
−0.619129 + 0.785289i \(0.712514\pi\)
\(702\) 4.28719 0.161809
\(703\) 18.0000 0.678883
\(704\) 11.9700 0.451138
\(705\) −11.8564 −0.446538
\(706\) −16.9706 −0.638696
\(707\) −3.03150 −0.114011
\(708\) 14.6969 0.552345
\(709\) 7.21539 0.270980 0.135490 0.990779i \(-0.456739\pi\)
0.135490 + 0.990779i \(0.456739\pi\)
\(710\) −3.10583 −0.116560
\(711\) 15.8338 0.593812
\(712\) −4.00000 −0.149906
\(713\) −34.7733 −1.30227
\(714\) −3.38323 −0.126614
\(715\) −7.72741 −0.288989
\(716\) 28.3923 1.06107
\(717\) −8.48528 −0.316889
\(718\) −3.66025 −0.136599
\(719\) −10.3923 −0.387568 −0.193784 0.981044i \(-0.562076\pi\)
−0.193784 + 0.981044i \(0.562076\pi\)
\(720\) −2.46410 −0.0918316
\(721\) −0.143594 −0.00534770
\(722\) −0.517638 −0.0192645
\(723\) 12.6264 0.469580
\(724\) 10.1436 0.376984
\(725\) 0 0
\(726\) −12.3397 −0.457971
\(727\) 50.6071 1.87691 0.938456 0.345398i \(-0.112256\pi\)
0.938456 + 0.345398i \(0.112256\pi\)
\(728\) −2.07055 −0.0767398
\(729\) 29.0000 1.07407
\(730\) −0.588457 −0.0217798
\(731\) 26.7846 0.990665
\(732\) −7.60770 −0.281189
\(733\) 15.0015 0.554095 0.277047 0.960856i \(-0.410644\pi\)
0.277047 + 0.960856i \(0.410644\pi\)
\(734\) 1.01924 0.0376208
\(735\) 9.14162 0.337194
\(736\) −42.1218 −1.55263
\(737\) 58.7134 2.16274
\(738\) 4.53590 0.166969
\(739\) 16.6660 0.613067 0.306534 0.951860i \(-0.400831\pi\)
0.306534 + 0.951860i \(0.400831\pi\)
\(740\) −7.34847 −0.270135
\(741\) −8.78461 −0.322711
\(742\) 0 0
\(743\) −0.101536 −0.00372499 −0.00186250 0.999998i \(-0.500593\pi\)
−0.00186250 + 0.999998i \(0.500593\pi\)
\(744\) 11.5911 0.424951
\(745\) 18.0000 0.659469
\(746\) −11.3880 −0.416946
\(747\) −2.19615 −0.0803530
\(748\) 57.7128 2.11019
\(749\) 1.60770 0.0587439
\(750\) −0.732051 −0.0267307
\(751\) −18.9396 −0.691115 −0.345558 0.938398i \(-0.612310\pi\)
−0.345558 + 0.938398i \(0.612310\pi\)
\(752\) 20.6584 0.753334
\(753\) 19.4641 0.709311
\(754\) 0 0
\(755\) −18.3923 −0.669365
\(756\) −7.17260 −0.260865
\(757\) 30.5307 1.10966 0.554828 0.831965i \(-0.312784\pi\)
0.554828 + 0.831965i \(0.312784\pi\)
\(758\) −8.19615 −0.297698
\(759\) −61.1769 −2.22058
\(760\) −8.19615 −0.297306
\(761\) −10.3923 −0.376721 −0.188360 0.982100i \(-0.560317\pi\)
−0.188360 + 0.982100i \(0.560317\pi\)
\(762\) 9.31749 0.337537
\(763\) 1.07180 0.0388016
\(764\) −33.2848 −1.20420
\(765\) −6.31319 −0.228254
\(766\) 1.13681 0.0410747
\(767\) 8.78461 0.317194
\(768\) 1.96902 0.0710508
\(769\) 14.6969 0.529985 0.264993 0.964250i \(-0.414630\pi\)
0.264993 + 0.964250i \(0.414630\pi\)
\(770\) −2.00000 −0.0720750
\(771\) −16.9706 −0.611180
\(772\) 22.0454 0.793432
\(773\) 18.3848 0.661254 0.330627 0.943761i \(-0.392740\pi\)
0.330627 + 0.943761i \(0.392740\pi\)
\(774\) −2.19615 −0.0789391
\(775\) 4.24264 0.152400
\(776\) 14.1962 0.509612
\(777\) −4.39230 −0.157573
\(778\) 16.9282 0.606905
\(779\) −37.1769 −1.33200
\(780\) 3.58630 0.128410
\(781\) 31.6675 1.13315
\(782\) −26.7846 −0.957816
\(783\) 0 0
\(784\) −15.9282 −0.568864
\(785\) 7.34847 0.262278
\(786\) −1.59008 −0.0567162
\(787\) −38.5885 −1.37553 −0.687765 0.725933i \(-0.741408\pi\)
−0.687765 + 0.725933i \(0.741408\pi\)
\(788\) 2.78461 0.0991976
\(789\) 6.78461 0.241539
\(790\) −8.19615 −0.291606
\(791\) 10.0754 0.358239
\(792\) −10.1962 −0.362305
\(793\) −4.54725 −0.161478
\(794\) 15.7322 0.558315
\(795\) 0 0
\(796\) 33.7128 1.19492
\(797\) 6.79367 0.240644 0.120322 0.992735i \(-0.461607\pi\)
0.120322 + 0.992735i \(0.461607\pi\)
\(798\) −2.27362 −0.0804854
\(799\) 52.9282 1.87247
\(800\) 5.13922 0.181699
\(801\) −2.07055 −0.0731594
\(802\) 4.54725 0.160569
\(803\) 6.00000 0.211735
\(804\) −27.2490 −0.960998
\(805\) −6.00000 −0.211472
\(806\) 3.21539 0.113257
\(807\) −46.2487 −1.62803
\(808\) 8.00000 0.281439
\(809\) 31.8706 1.12051 0.560255 0.828320i \(-0.310703\pi\)
0.560255 + 0.828320i \(0.310703\pi\)
\(810\) −2.58819 −0.0909397
\(811\) 4.67949 0.164319 0.0821596 0.996619i \(-0.473818\pi\)
0.0821596 + 0.996619i \(0.473818\pi\)
\(812\) 0 0
\(813\) 13.6077 0.477243
\(814\) −11.5911 −0.406268
\(815\) 4.24264 0.148613
\(816\) −22.0000 −0.770154
\(817\) 18.0000 0.629740
\(818\) 9.21539 0.322209
\(819\) −1.07180 −0.0374516
\(820\) 15.1774 0.530018
\(821\) 26.7846 0.934789 0.467395 0.884049i \(-0.345193\pi\)
0.467395 + 0.884049i \(0.345193\pi\)
\(822\) −7.24693 −0.252766
\(823\) 50.6071 1.76405 0.882026 0.471201i \(-0.156179\pi\)
0.882026 + 0.471201i \(0.156179\pi\)
\(824\) 0.378937 0.0132009
\(825\) 7.46410 0.259867
\(826\) 2.27362 0.0791095
\(827\) −33.0817 −1.15036 −0.575182 0.818025i \(-0.695069\pi\)
−0.575182 + 0.818025i \(0.695069\pi\)
\(828\) −14.1962 −0.493350
\(829\) −45.5322 −1.58140 −0.790700 0.612204i \(-0.790283\pi\)
−0.790700 + 0.612204i \(0.790283\pi\)
\(830\) 1.13681 0.0394593
\(831\) −4.14110 −0.143653
\(832\) −3.32051 −0.115118
\(833\) −40.8091 −1.41395
\(834\) 9.85641 0.341299
\(835\) −3.80385 −0.131638
\(836\) 38.7846 1.34139
\(837\) 24.0000 0.829561
\(838\) 9.31749 0.321867
\(839\) 13.7632 0.475158 0.237579 0.971368i \(-0.423646\pi\)
0.237579 + 0.971368i \(0.423646\pi\)
\(840\) 2.00000 0.0690066
\(841\) 0 0
\(842\) −9.21539 −0.317583
\(843\) 6.21166 0.213941
\(844\) 38.1838 1.31434
\(845\) −10.8564 −0.373472
\(846\) −4.33975 −0.149204
\(847\) 12.3397 0.423999
\(848\) 0 0
\(849\) −29.6713 −1.01832
\(850\) 3.26795 0.112090
\(851\) −34.7733 −1.19201
\(852\) −14.6969 −0.503509
\(853\) −35.9101 −1.22954 −0.614770 0.788707i \(-0.710751\pi\)
−0.614770 + 0.788707i \(0.710751\pi\)
\(854\) −1.17691 −0.0402732
\(855\) −4.24264 −0.145095
\(856\) −4.24264 −0.145010
\(857\) −44.7846 −1.52981 −0.764907 0.644141i \(-0.777215\pi\)
−0.764907 + 0.644141i \(0.777215\pi\)
\(858\) 5.65685 0.193122
\(859\) 5.07484 0.173151 0.0865757 0.996245i \(-0.472408\pi\)
0.0865757 + 0.996245i \(0.472408\pi\)
\(860\) −7.34847 −0.250581
\(861\) 9.07180 0.309166
\(862\) 2.27362 0.0774400
\(863\) 38.1962 1.30021 0.650106 0.759843i \(-0.274724\pi\)
0.650106 + 0.759843i \(0.274724\pi\)
\(864\) 29.0718 0.989043
\(865\) −20.7846 −0.706698
\(866\) 6.58846 0.223885
\(867\) −32.3238 −1.09778
\(868\) −5.37945 −0.182591
\(869\) 83.5692 2.83489
\(870\) 0 0
\(871\) −16.2872 −0.551870
\(872\) −2.82843 −0.0957826
\(873\) 7.34847 0.248708
\(874\) −18.0000 −0.608859
\(875\) 0.732051 0.0247478
\(876\) −2.78461 −0.0940832
\(877\) −24.7846 −0.836917 −0.418458 0.908236i \(-0.637429\pi\)
−0.418458 + 0.908236i \(0.637429\pi\)
\(878\) −4.62158 −0.155971
\(879\) −16.5359 −0.557742
\(880\) −13.0053 −0.438409
\(881\) 30.6322 1.03203 0.516013 0.856581i \(-0.327416\pi\)
0.516013 + 0.856581i \(0.327416\pi\)
\(882\) 3.34607 0.112668
\(883\) 22.5885 0.760162 0.380081 0.924953i \(-0.375896\pi\)
0.380081 + 0.924953i \(0.375896\pi\)
\(884\) −16.0096 −0.538462
\(885\) −8.48528 −0.285230
\(886\) −7.66025 −0.257351
\(887\) 21.0101 0.705451 0.352726 0.935727i \(-0.385255\pi\)
0.352726 + 0.935727i \(0.385255\pi\)
\(888\) 11.5911 0.388972
\(889\) −9.31749 −0.312498
\(890\) 1.07180 0.0359267
\(891\) 26.3896 0.884084
\(892\) 16.7321 0.560230
\(893\) 35.5692 1.19028
\(894\) −13.1769 −0.440702
\(895\) −16.3923 −0.547934
\(896\) −8.38375 −0.280081
\(897\) 16.9706 0.566631
\(898\) 15.8564 0.529135
\(899\) 0 0
\(900\) 1.73205 0.0577350
\(901\) 0 0
\(902\) 23.9401 0.797118
\(903\) −4.39230 −0.146167
\(904\) −26.5885 −0.884319
\(905\) −5.85641 −0.194674
\(906\) 13.4641 0.447315
\(907\) 35.9101 1.19238 0.596188 0.802845i \(-0.296681\pi\)
0.596188 + 0.802845i \(0.296681\pi\)
\(908\) 27.3731 0.908407
\(909\) 4.14110 0.137352
\(910\) 0.554803 0.0183915
\(911\) −21.0101 −0.696097 −0.348048 0.937477i \(-0.613156\pi\)
−0.348048 + 0.937477i \(0.613156\pi\)
\(912\) −14.7846 −0.489567
\(913\) −11.5911 −0.383610
\(914\) −13.9391 −0.461063
\(915\) 4.39230 0.145205
\(916\) 44.0908 1.45680
\(917\) 1.59008 0.0525090
\(918\) 18.4863 0.610139
\(919\) −23.8564 −0.786950 −0.393475 0.919335i \(-0.628727\pi\)
−0.393475 + 0.919335i \(0.628727\pi\)
\(920\) 15.8338 0.522023
\(921\) 35.5692 1.17205
\(922\) −11.7128 −0.385741
\(923\) −8.78461 −0.289149
\(924\) −9.46410 −0.311346
\(925\) 4.24264 0.139497
\(926\) 11.2122 0.368455
\(927\) 0.196152 0.00644249
\(928\) 0 0
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) −3.10583 −0.101844
\(931\) −27.4249 −0.898814
\(932\) −38.7846 −1.27043
\(933\) −0.143594 −0.00470104
\(934\) −11.2679 −0.368699
\(935\) −33.3205 −1.08970
\(936\) 2.82843 0.0924500
\(937\) 46.2487 1.51088 0.755440 0.655218i \(-0.227423\pi\)
0.755440 + 0.655218i \(0.227423\pi\)
\(938\) −4.21543 −0.137639
\(939\) 36.0117 1.17520
\(940\) −14.5211 −0.473625
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) −5.37945 −0.175272
\(943\) 71.8203 2.33879
\(944\) 14.7846 0.481198
\(945\) 4.14110 0.134710
\(946\) −11.5911 −0.376859
\(947\) −48.5365 −1.57723 −0.788613 0.614890i \(-0.789200\pi\)
−0.788613 + 0.614890i \(0.789200\pi\)
\(948\) −38.7846 −1.25967
\(949\) −1.66441 −0.0540290
\(950\) 2.19615 0.0712526
\(951\) 29.7128 0.963504
\(952\) −8.92820 −0.289365
\(953\) −47.5692 −1.54092 −0.770459 0.637489i \(-0.779973\pi\)
−0.770459 + 0.637489i \(0.779973\pi\)
\(954\) 0 0
\(955\) 19.2170 0.621847
\(956\) −10.3923 −0.336111
\(957\) 0 0
\(958\) −2.33975 −0.0755938
\(959\) 7.24693 0.234016
\(960\) 3.20736 0.103517
\(961\) −13.0000 −0.419355
\(962\) 3.21539 0.103668
\(963\) −2.19615 −0.0707700
\(964\) 15.4641 0.498065
\(965\) −12.7279 −0.409726
\(966\) 4.39230 0.141320
\(967\) 59.0924 1.90028 0.950141 0.311820i \(-0.100939\pi\)
0.950141 + 0.311820i \(0.100939\pi\)
\(968\) −32.5641 −1.04665
\(969\) −37.8792 −1.21685
\(970\) −3.80385 −0.122134
\(971\) −36.4649 −1.17022 −0.585108 0.810955i \(-0.698948\pi\)
−0.585108 + 0.810955i \(0.698948\pi\)
\(972\) 17.1464 0.549972
\(973\) −9.85641 −0.315982
\(974\) −11.6926 −0.374657
\(975\) −2.07055 −0.0663107
\(976\) −7.65308 −0.244969
\(977\) 48.0000 1.53566 0.767828 0.640656i \(-0.221338\pi\)
0.767828 + 0.640656i \(0.221338\pi\)
\(978\) −3.10583 −0.0993134
\(979\) −10.9282 −0.349267
\(980\) 11.1962 0.357648
\(981\) −1.46410 −0.0467452
\(982\) −0.732051 −0.0233607
\(983\) 0.859411 0.0274109 0.0137055 0.999906i \(-0.495637\pi\)
0.0137055 + 0.999906i \(0.495637\pi\)
\(984\) −23.9401 −0.763182
\(985\) −1.60770 −0.0512254
\(986\) 0 0
\(987\) −8.67949 −0.276271
\(988\) −10.7589 −0.342286
\(989\) −34.7733 −1.10573
\(990\) 2.73205 0.0868303
\(991\) −61.3205 −1.94791 −0.973955 0.226741i \(-0.927193\pi\)
−0.973955 + 0.226741i \(0.927193\pi\)
\(992\) 21.8038 0.692273
\(993\) −26.7846 −0.849984
\(994\) −2.27362 −0.0721150
\(995\) −19.4641 −0.617054
\(996\) 5.37945 0.170454
\(997\) −30.5307 −0.966917 −0.483458 0.875367i \(-0.660620\pi\)
−0.483458 + 0.875367i \(0.660620\pi\)
\(998\) 3.03150 0.0959604
\(999\) 24.0000 0.759326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4205.2.a.g.1.3 4
29.12 odd 4 145.2.c.a.86.3 yes 4
29.17 odd 4 145.2.c.a.86.2 4
29.28 even 2 inner 4205.2.a.g.1.2 4
87.17 even 4 1305.2.d.a.811.3 4
87.41 even 4 1305.2.d.a.811.2 4
116.75 even 4 2320.2.g.e.1681.1 4
116.99 even 4 2320.2.g.e.1681.3 4
145.12 even 4 725.2.d.b.724.4 8
145.17 even 4 725.2.d.b.724.6 8
145.99 odd 4 725.2.c.d.376.2 4
145.104 odd 4 725.2.c.d.376.3 4
145.128 even 4 725.2.d.b.724.5 8
145.133 even 4 725.2.d.b.724.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.c.a.86.2 4 29.17 odd 4
145.2.c.a.86.3 yes 4 29.12 odd 4
725.2.c.d.376.2 4 145.99 odd 4
725.2.c.d.376.3 4 145.104 odd 4
725.2.d.b.724.3 8 145.133 even 4
725.2.d.b.724.4 8 145.12 even 4
725.2.d.b.724.5 8 145.128 even 4
725.2.d.b.724.6 8 145.17 even 4
1305.2.d.a.811.2 4 87.41 even 4
1305.2.d.a.811.3 4 87.17 even 4
2320.2.g.e.1681.1 4 116.75 even 4
2320.2.g.e.1681.3 4 116.99 even 4
4205.2.a.g.1.2 4 29.28 even 2 inner
4205.2.a.g.1.3 4 1.1 even 1 trivial