Properties

Label 1305.2.d.a.811.3
Level $1305$
Weight $2$
Character 1305.811
Analytic conductor $10.420$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(811,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.811");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.3
Root \(0.517638i\) of defining polynomial
Character \(\chi\) \(=\) 1305.811
Dual form 1305.2.d.a.811.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.517638i q^{2} +1.73205 q^{4} +1.00000 q^{5} +0.732051 q^{7} +1.93185i q^{8} +0.517638i q^{10} -5.27792i q^{11} -1.46410 q^{13} +0.378937i q^{14} +2.46410 q^{16} +6.31319i q^{17} -4.24264i q^{19} +1.73205 q^{20} +2.73205 q^{22} +8.19615 q^{23} +1.00000 q^{25} -0.757875i q^{26} +1.26795 q^{28} +(5.19615 - 1.41421i) q^{29} -4.24264i q^{31} +5.13922i q^{32} -3.26795 q^{34} +0.732051 q^{35} +4.24264i q^{37} +2.19615 q^{38} +1.93185i q^{40} +8.76268i q^{41} -4.24264i q^{43} -9.14162i q^{44} +4.24264i q^{46} -8.38375i q^{47} -6.46410 q^{49} +0.517638i q^{50} -2.53590 q^{52} -5.27792i q^{55} +1.41421i q^{56} +(0.732051 + 2.68973i) q^{58} -6.00000 q^{59} +3.10583i q^{61} +2.19615 q^{62} +2.26795 q^{64} -1.46410 q^{65} +11.1244 q^{67} +10.9348i q^{68} +0.378937i q^{70} -6.00000 q^{71} -1.13681i q^{73} -2.19615 q^{74} -7.34847i q^{76} -3.86370i q^{77} +15.8338i q^{79} +2.46410 q^{80} -4.53590 q^{82} -2.19615 q^{83} +6.31319i q^{85} +2.19615 q^{86} +10.1962 q^{88} +2.07055i q^{89} -1.07180 q^{91} +14.1962 q^{92} +4.33975 q^{94} -4.24264i q^{95} -7.34847i q^{97} -3.34607i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 4 q^{7} + 8 q^{13} - 4 q^{16} + 4 q^{22} + 12 q^{23} + 4 q^{25} + 12 q^{28} - 20 q^{34} - 4 q^{35} - 12 q^{38} - 12 q^{49} - 24 q^{52} - 4 q^{58} - 24 q^{59} - 12 q^{62} + 16 q^{64} + 8 q^{65}+ \cdots + 52 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.517638i 0.366025i 0.983111 + 0.183013i \(0.0585849\pi\)
−0.983111 + 0.183013i \(0.941415\pi\)
\(3\) 0 0
\(4\) 1.73205 0.866025
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.732051 0.276689 0.138345 0.990384i \(-0.455822\pi\)
0.138345 + 0.990384i \(0.455822\pi\)
\(8\) 1.93185i 0.683013i
\(9\) 0 0
\(10\) 0.517638i 0.163692i
\(11\) 5.27792i 1.59135i −0.605723 0.795676i \(-0.707116\pi\)
0.605723 0.795676i \(-0.292884\pi\)
\(12\) 0 0
\(13\) −1.46410 −0.406069 −0.203034 0.979172i \(-0.565080\pi\)
−0.203034 + 0.979172i \(0.565080\pi\)
\(14\) 0.378937i 0.101275i
\(15\) 0 0
\(16\) 2.46410 0.616025
\(17\) 6.31319i 1.53117i 0.643332 + 0.765587i \(0.277551\pi\)
−0.643332 + 0.765587i \(0.722449\pi\)
\(18\) 0 0
\(19\) 4.24264i 0.973329i −0.873589 0.486664i \(-0.838214\pi\)
0.873589 0.486664i \(-0.161786\pi\)
\(20\) 1.73205 0.387298
\(21\) 0 0
\(22\) 2.73205 0.582475
\(23\) 8.19615 1.70902 0.854508 0.519438i \(-0.173859\pi\)
0.854508 + 0.519438i \(0.173859\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0.757875i 0.148631i
\(27\) 0 0
\(28\) 1.26795 0.239620
\(29\) 5.19615 1.41421i 0.964901 0.262613i
\(30\) 0 0
\(31\) 4.24264i 0.762001i −0.924575 0.381000i \(-0.875580\pi\)
0.924575 0.381000i \(-0.124420\pi\)
\(32\) 5.13922i 0.908494i
\(33\) 0 0
\(34\) −3.26795 −0.560449
\(35\) 0.732051 0.123739
\(36\) 0 0
\(37\) 4.24264i 0.697486i 0.937218 + 0.348743i \(0.113391\pi\)
−0.937218 + 0.348743i \(0.886609\pi\)
\(38\) 2.19615 0.356263
\(39\) 0 0
\(40\) 1.93185i 0.305453i
\(41\) 8.76268i 1.36850i 0.729247 + 0.684251i \(0.239871\pi\)
−0.729247 + 0.684251i \(0.760129\pi\)
\(42\) 0 0
\(43\) 4.24264i 0.646997i −0.946229 0.323498i \(-0.895141\pi\)
0.946229 0.323498i \(-0.104859\pi\)
\(44\) 9.14162i 1.37815i
\(45\) 0 0
\(46\) 4.24264i 0.625543i
\(47\) 8.38375i 1.22289i −0.791285 0.611447i \(-0.790588\pi\)
0.791285 0.611447i \(-0.209412\pi\)
\(48\) 0 0
\(49\) −6.46410 −0.923443
\(50\) 0.517638i 0.0732051i
\(51\) 0 0
\(52\) −2.53590 −0.351666
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 5.27792i 0.711674i
\(56\) 1.41421i 0.188982i
\(57\) 0 0
\(58\) 0.732051 + 2.68973i 0.0961230 + 0.353178i
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 3.10583i 0.397661i 0.980034 + 0.198830i \(0.0637143\pi\)
−0.980034 + 0.198830i \(0.936286\pi\)
\(62\) 2.19615 0.278912
\(63\) 0 0
\(64\) 2.26795 0.283494
\(65\) −1.46410 −0.181599
\(66\) 0 0
\(67\) 11.1244 1.35906 0.679528 0.733649i \(-0.262185\pi\)
0.679528 + 0.733649i \(0.262185\pi\)
\(68\) 10.9348i 1.32604i
\(69\) 0 0
\(70\) 0.378937i 0.0452917i
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 1.13681i 0.133054i −0.997785 0.0665269i \(-0.978808\pi\)
0.997785 0.0665269i \(-0.0211918\pi\)
\(74\) −2.19615 −0.255298
\(75\) 0 0
\(76\) 7.34847i 0.842927i
\(77\) 3.86370i 0.440310i
\(78\) 0 0
\(79\) 15.8338i 1.78144i 0.454556 + 0.890718i \(0.349798\pi\)
−0.454556 + 0.890718i \(0.650202\pi\)
\(80\) 2.46410 0.275495
\(81\) 0 0
\(82\) −4.53590 −0.500906
\(83\) −2.19615 −0.241059 −0.120530 0.992710i \(-0.538459\pi\)
−0.120530 + 0.992710i \(0.538459\pi\)
\(84\) 0 0
\(85\) 6.31319i 0.684762i
\(86\) 2.19615 0.236817
\(87\) 0 0
\(88\) 10.1962 1.08691
\(89\) 2.07055i 0.219478i 0.993960 + 0.109739i \(0.0350015\pi\)
−0.993960 + 0.109739i \(0.964998\pi\)
\(90\) 0 0
\(91\) −1.07180 −0.112355
\(92\) 14.1962 1.48005
\(93\) 0 0
\(94\) 4.33975 0.447611
\(95\) 4.24264i 0.435286i
\(96\) 0 0
\(97\) 7.34847i 0.746124i −0.927806 0.373062i \(-0.878308\pi\)
0.927806 0.373062i \(-0.121692\pi\)
\(98\) 3.34607i 0.338004i
\(99\) 0 0
\(100\) 1.73205 0.173205
\(101\) 4.14110i 0.412055i −0.978546 0.206028i \(-0.933946\pi\)
0.978546 0.206028i \(-0.0660537\pi\)
\(102\) 0 0
\(103\) −0.196152 −0.0193275 −0.00966374 0.999953i \(-0.503076\pi\)
−0.00966374 + 0.999953i \(0.503076\pi\)
\(104\) 2.82843i 0.277350i
\(105\) 0 0
\(106\) 0 0
\(107\) −2.19615 −0.212310 −0.106155 0.994350i \(-0.533854\pi\)
−0.106155 + 0.994350i \(0.533854\pi\)
\(108\) 0 0
\(109\) −1.46410 −0.140236 −0.0701178 0.997539i \(-0.522338\pi\)
−0.0701178 + 0.997539i \(0.522338\pi\)
\(110\) 2.73205 0.260491
\(111\) 0 0
\(112\) 1.80385 0.170448
\(113\) 13.7632i 1.29473i −0.762179 0.647366i \(-0.775870\pi\)
0.762179 0.647366i \(-0.224130\pi\)
\(114\) 0 0
\(115\) 8.19615 0.764295
\(116\) 9.00000 2.44949i 0.835629 0.227429i
\(117\) 0 0
\(118\) 3.10583i 0.285915i
\(119\) 4.62158i 0.423659i
\(120\) 0 0
\(121\) −16.8564 −1.53240
\(122\) −1.60770 −0.145554
\(123\) 0 0
\(124\) 7.34847i 0.659912i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 12.7279i 1.12942i 0.825289 + 0.564710i \(0.191012\pi\)
−0.825289 + 0.564710i \(0.808988\pi\)
\(128\) 11.4524i 1.01226i
\(129\) 0 0
\(130\) 0.757875i 0.0664700i
\(131\) 2.17209i 0.189776i −0.995488 0.0948881i \(-0.969751\pi\)
0.995488 0.0948881i \(-0.0302493\pi\)
\(132\) 0 0
\(133\) 3.10583i 0.269309i
\(134\) 5.75839i 0.497449i
\(135\) 0 0
\(136\) −12.1962 −1.04581
\(137\) 9.89949i 0.845771i 0.906183 + 0.422885i \(0.138983\pi\)
−0.906183 + 0.422885i \(0.861017\pi\)
\(138\) 0 0
\(139\) −13.4641 −1.14201 −0.571005 0.820947i \(-0.693446\pi\)
−0.571005 + 0.820947i \(0.693446\pi\)
\(140\) 1.26795 0.107161
\(141\) 0 0
\(142\) 3.10583i 0.260635i
\(143\) 7.72741i 0.646198i
\(144\) 0 0
\(145\) 5.19615 1.41421i 0.431517 0.117444i
\(146\) 0.588457 0.0487011
\(147\) 0 0
\(148\) 7.34847i 0.604040i
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 18.3923 1.49674 0.748372 0.663279i \(-0.230836\pi\)
0.748372 + 0.663279i \(0.230836\pi\)
\(152\) 8.19615 0.664796
\(153\) 0 0
\(154\) 2.00000 0.161165
\(155\) 4.24264i 0.340777i
\(156\) 0 0
\(157\) 7.34847i 0.586472i 0.956040 + 0.293236i \(0.0947321\pi\)
−0.956040 + 0.293236i \(0.905268\pi\)
\(158\) −8.19615 −0.652051
\(159\) 0 0
\(160\) 5.13922i 0.406291i
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) 4.24264i 0.332309i 0.986100 + 0.166155i \(0.0531351\pi\)
−0.986100 + 0.166155i \(0.946865\pi\)
\(164\) 15.1774i 1.18516i
\(165\) 0 0
\(166\) 1.13681i 0.0882337i
\(167\) −3.80385 −0.294351 −0.147175 0.989110i \(-0.547018\pi\)
−0.147175 + 0.989110i \(0.547018\pi\)
\(168\) 0 0
\(169\) −10.8564 −0.835108
\(170\) −3.26795 −0.250640
\(171\) 0 0
\(172\) 7.34847i 0.560316i
\(173\) −20.7846 −1.58022 −0.790112 0.612962i \(-0.789978\pi\)
−0.790112 + 0.612962i \(0.789978\pi\)
\(174\) 0 0
\(175\) 0.732051 0.0553378
\(176\) 13.0053i 0.980313i
\(177\) 0 0
\(178\) −1.07180 −0.0803346
\(179\) −16.3923 −1.22522 −0.612609 0.790386i \(-0.709880\pi\)
−0.612609 + 0.790386i \(0.709880\pi\)
\(180\) 0 0
\(181\) −5.85641 −0.435303 −0.217652 0.976027i \(-0.569840\pi\)
−0.217652 + 0.976027i \(0.569840\pi\)
\(182\) 0.554803i 0.0411247i
\(183\) 0 0
\(184\) 15.8338i 1.16728i
\(185\) 4.24264i 0.311925i
\(186\) 0 0
\(187\) 33.3205 2.43664
\(188\) 14.5211i 1.05906i
\(189\) 0 0
\(190\) 2.19615 0.159326
\(191\) 19.2170i 1.39049i 0.718772 + 0.695246i \(0.244705\pi\)
−0.718772 + 0.695246i \(0.755295\pi\)
\(192\) 0 0
\(193\) 12.7279i 0.916176i 0.888907 + 0.458088i \(0.151466\pi\)
−0.888907 + 0.458088i \(0.848534\pi\)
\(194\) 3.80385 0.273100
\(195\) 0 0
\(196\) −11.1962 −0.799725
\(197\) 1.60770 0.114544 0.0572718 0.998359i \(-0.481760\pi\)
0.0572718 + 0.998359i \(0.481760\pi\)
\(198\) 0 0
\(199\) −19.4641 −1.37977 −0.689887 0.723917i \(-0.742340\pi\)
−0.689887 + 0.723917i \(0.742340\pi\)
\(200\) 1.93185i 0.136603i
\(201\) 0 0
\(202\) 2.14359 0.150823
\(203\) 3.80385 1.03528i 0.266978 0.0726621i
\(204\) 0 0
\(205\) 8.76268i 0.612012i
\(206\) 0.101536i 0.00707435i
\(207\) 0 0
\(208\) −3.60770 −0.250149
\(209\) −22.3923 −1.54891
\(210\) 0 0
\(211\) 22.0454i 1.51767i −0.651284 0.758834i \(-0.725769\pi\)
0.651284 0.758834i \(-0.274231\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.13681i 0.0777109i
\(215\) 4.24264i 0.289346i
\(216\) 0 0
\(217\) 3.10583i 0.210837i
\(218\) 0.757875i 0.0513298i
\(219\) 0 0
\(220\) 9.14162i 0.616328i
\(221\) 9.24316i 0.621762i
\(222\) 0 0
\(223\) −9.66025 −0.646898 −0.323449 0.946246i \(-0.604842\pi\)
−0.323449 + 0.946246i \(0.604842\pi\)
\(224\) 3.76217i 0.251370i
\(225\) 0 0
\(226\) 7.12436 0.473905
\(227\) 15.8038 1.04894 0.524469 0.851429i \(-0.324264\pi\)
0.524469 + 0.851429i \(0.324264\pi\)
\(228\) 0 0
\(229\) 25.4558i 1.68217i −0.540903 0.841085i \(-0.681918\pi\)
0.540903 0.841085i \(-0.318082\pi\)
\(230\) 4.24264i 0.279751i
\(231\) 0 0
\(232\) 2.73205 + 10.0382i 0.179368 + 0.659040i
\(233\) −22.3923 −1.46697 −0.733484 0.679706i \(-0.762107\pi\)
−0.733484 + 0.679706i \(0.762107\pi\)
\(234\) 0 0
\(235\) 8.38375i 0.546895i
\(236\) −10.3923 −0.676481
\(237\) 0 0
\(238\) −2.39230 −0.155070
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 8.92820 0.575116 0.287558 0.957763i \(-0.407157\pi\)
0.287558 + 0.957763i \(0.407157\pi\)
\(242\) 8.72552i 0.560898i
\(243\) 0 0
\(244\) 5.37945i 0.344384i
\(245\) −6.46410 −0.412976
\(246\) 0 0
\(247\) 6.21166i 0.395238i
\(248\) 8.19615 0.520456
\(249\) 0 0
\(250\) 0.517638i 0.0327383i
\(251\) 13.7632i 0.868725i −0.900738 0.434363i \(-0.856974\pi\)
0.900738 0.434363i \(-0.143026\pi\)
\(252\) 0 0
\(253\) 43.2586i 2.71965i
\(254\) −6.58846 −0.413397
\(255\) 0 0
\(256\) −1.39230 −0.0870191
\(257\) −12.0000 −0.748539 −0.374270 0.927320i \(-0.622107\pi\)
−0.374270 + 0.927320i \(0.622107\pi\)
\(258\) 0 0
\(259\) 3.10583i 0.192987i
\(260\) −2.53590 −0.157270
\(261\) 0 0
\(262\) 1.12436 0.0694629
\(263\) 4.79744i 0.295823i −0.989001 0.147912i \(-0.952745\pi\)
0.989001 0.147912i \(-0.0472551\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.60770 0.0985741
\(267\) 0 0
\(268\) 19.2679 1.17698
\(269\) 32.7028i 1.99392i −0.0778925 0.996962i \(-0.524819\pi\)
0.0778925 0.996962i \(-0.475181\pi\)
\(270\) 0 0
\(271\) 9.62209i 0.584501i −0.956342 0.292250i \(-0.905596\pi\)
0.956342 0.292250i \(-0.0944040\pi\)
\(272\) 15.5563i 0.943242i
\(273\) 0 0
\(274\) −5.12436 −0.309574
\(275\) 5.27792i 0.318270i
\(276\) 0 0
\(277\) 2.92820 0.175939 0.0879693 0.996123i \(-0.471962\pi\)
0.0879693 + 0.996123i \(0.471962\pi\)
\(278\) 6.96953i 0.418005i
\(279\) 0 0
\(280\) 1.41421i 0.0845154i
\(281\) 4.39230 0.262023 0.131011 0.991381i \(-0.458178\pi\)
0.131011 + 0.991381i \(0.458178\pi\)
\(282\) 0 0
\(283\) −20.9808 −1.24718 −0.623588 0.781753i \(-0.714326\pi\)
−0.623588 + 0.781753i \(0.714326\pi\)
\(284\) −10.3923 −0.616670
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) 6.41473i 0.378649i
\(288\) 0 0
\(289\) −22.8564 −1.34449
\(290\) 0.732051 + 2.68973i 0.0429875 + 0.157946i
\(291\) 0 0
\(292\) 1.96902i 0.115228i
\(293\) 11.6926i 0.683092i 0.939865 + 0.341546i \(0.110950\pi\)
−0.939865 + 0.341546i \(0.889050\pi\)
\(294\) 0 0
\(295\) −6.00000 −0.349334
\(296\) −8.19615 −0.476392
\(297\) 0 0
\(298\) 9.31749i 0.539747i
\(299\) −12.0000 −0.693978
\(300\) 0 0
\(301\) 3.10583i 0.179017i
\(302\) 9.52056i 0.547847i
\(303\) 0 0
\(304\) 10.4543i 0.599595i
\(305\) 3.10583i 0.177839i
\(306\) 0 0
\(307\) 25.1512i 1.43546i 0.696323 + 0.717728i \(0.254818\pi\)
−0.696323 + 0.717728i \(0.745182\pi\)
\(308\) 6.69213i 0.381320i
\(309\) 0 0
\(310\) 2.19615 0.124733
\(311\) 0.101536i 0.00575758i 0.999996 + 0.00287879i \(0.000916348\pi\)
−0.999996 + 0.00287879i \(0.999084\pi\)
\(312\) 0 0
\(313\) −25.4641 −1.43932 −0.719658 0.694329i \(-0.755701\pi\)
−0.719658 + 0.694329i \(0.755701\pi\)
\(314\) −3.80385 −0.214664
\(315\) 0 0
\(316\) 27.4249i 1.54277i
\(317\) 21.0101i 1.18005i 0.807386 + 0.590023i \(0.200881\pi\)
−0.807386 + 0.590023i \(0.799119\pi\)
\(318\) 0 0
\(319\) −7.46410 27.4249i −0.417909 1.53550i
\(320\) 2.26795 0.126782
\(321\) 0 0
\(322\) 3.10583i 0.173081i
\(323\) 26.7846 1.49034
\(324\) 0 0
\(325\) −1.46410 −0.0812137
\(326\) −2.19615 −0.121634
\(327\) 0 0
\(328\) −16.9282 −0.934704
\(329\) 6.13733i 0.338362i
\(330\) 0 0
\(331\) 18.9396i 1.04101i 0.853858 + 0.520507i \(0.174257\pi\)
−0.853858 + 0.520507i \(0.825743\pi\)
\(332\) −3.80385 −0.208763
\(333\) 0 0
\(334\) 1.96902i 0.107740i
\(335\) 11.1244 0.607788
\(336\) 0 0
\(337\) 18.1074i 0.986372i −0.869924 0.493186i \(-0.835832\pi\)
0.869924 0.493186i \(-0.164168\pi\)
\(338\) 5.61969i 0.305671i
\(339\) 0 0
\(340\) 10.9348i 0.593021i
\(341\) −22.3923 −1.21261
\(342\) 0 0
\(343\) −9.85641 −0.532196
\(344\) 8.19615 0.441907
\(345\) 0 0
\(346\) 10.7589i 0.578402i
\(347\) −26.1962 −1.40628 −0.703142 0.711050i \(-0.748220\pi\)
−0.703142 + 0.711050i \(0.748220\pi\)
\(348\) 0 0
\(349\) 18.3923 0.984518 0.492259 0.870449i \(-0.336171\pi\)
0.492259 + 0.870449i \(0.336171\pi\)
\(350\) 0.378937i 0.0202551i
\(351\) 0 0
\(352\) 27.1244 1.44573
\(353\) −32.7846 −1.74495 −0.872474 0.488660i \(-0.837486\pi\)
−0.872474 + 0.488660i \(0.837486\pi\)
\(354\) 0 0
\(355\) −6.00000 −0.318447
\(356\) 3.58630i 0.190074i
\(357\) 0 0
\(358\) 8.48528i 0.448461i
\(359\) 7.07107i 0.373197i −0.982436 0.186598i \(-0.940254\pi\)
0.982436 0.186598i \(-0.0597463\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 3.03150i 0.159332i
\(363\) 0 0
\(364\) −1.85641 −0.0973021
\(365\) 1.13681i 0.0595035i
\(366\) 0 0
\(367\) 1.96902i 0.102782i −0.998679 0.0513909i \(-0.983635\pi\)
0.998679 0.0513909i \(-0.0163654\pi\)
\(368\) 20.1962 1.05280
\(369\) 0 0
\(370\) −2.19615 −0.114173
\(371\) 0 0
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 17.2480i 0.891871i
\(375\) 0 0
\(376\) 16.1962 0.835253
\(377\) −7.60770 + 2.07055i −0.391816 + 0.106639i
\(378\) 0 0
\(379\) 15.8338i 0.813325i 0.913578 + 0.406663i \(0.133308\pi\)
−0.913578 + 0.406663i \(0.866692\pi\)
\(380\) 7.34847i 0.376969i
\(381\) 0 0
\(382\) −9.94744 −0.508955
\(383\) 2.19615 0.112218 0.0561091 0.998425i \(-0.482131\pi\)
0.0561091 + 0.998425i \(0.482131\pi\)
\(384\) 0 0
\(385\) 3.86370i 0.196913i
\(386\) −6.58846 −0.335344
\(387\) 0 0
\(388\) 12.7279i 0.646162i
\(389\) 32.7028i 1.65810i −0.559177 0.829048i \(-0.688883\pi\)
0.559177 0.829048i \(-0.311117\pi\)
\(390\) 0 0
\(391\) 51.7439i 2.61680i
\(392\) 12.4877i 0.630723i
\(393\) 0 0
\(394\) 0.832204i 0.0419258i
\(395\) 15.8338i 0.796682i
\(396\) 0 0
\(397\) 30.3923 1.52535 0.762673 0.646784i \(-0.223887\pi\)
0.762673 + 0.646784i \(0.223887\pi\)
\(398\) 10.0754i 0.505032i
\(399\) 0 0
\(400\) 2.46410 0.123205
\(401\) −8.78461 −0.438682 −0.219341 0.975648i \(-0.570391\pi\)
−0.219341 + 0.975648i \(0.570391\pi\)
\(402\) 0 0
\(403\) 6.21166i 0.309425i
\(404\) 7.17260i 0.356850i
\(405\) 0 0
\(406\) 0.535898 + 1.96902i 0.0265962 + 0.0977206i
\(407\) 22.3923 1.10995
\(408\) 0 0
\(409\) 17.8028i 0.880290i −0.897927 0.440145i \(-0.854927\pi\)
0.897927 0.440145i \(-0.145073\pi\)
\(410\) −4.53590 −0.224012
\(411\) 0 0
\(412\) −0.339746 −0.0167381
\(413\) −4.39230 −0.216131
\(414\) 0 0
\(415\) −2.19615 −0.107805
\(416\) 7.52433i 0.368911i
\(417\) 0 0
\(418\) 11.5911i 0.566940i
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 0 0
\(421\) 17.8028i 0.867654i −0.900996 0.433827i \(-0.857163\pi\)
0.900996 0.433827i \(-0.142837\pi\)
\(422\) 11.4115 0.555505
\(423\) 0 0
\(424\) 0 0
\(425\) 6.31319i 0.306235i
\(426\) 0 0
\(427\) 2.27362i 0.110028i
\(428\) −3.80385 −0.183866
\(429\) 0 0
\(430\) 2.19615 0.105908
\(431\) −4.39230 −0.211570 −0.105785 0.994389i \(-0.533736\pi\)
−0.105785 + 0.994389i \(0.533736\pi\)
\(432\) 0 0
\(433\) 12.7279i 0.611665i 0.952085 + 0.305832i \(0.0989347\pi\)
−0.952085 + 0.305832i \(0.901065\pi\)
\(434\) 1.60770 0.0771718
\(435\) 0 0
\(436\) −2.53590 −0.121448
\(437\) 34.7733i 1.66343i
\(438\) 0 0
\(439\) 8.92820 0.426120 0.213060 0.977039i \(-0.431657\pi\)
0.213060 + 0.977039i \(0.431657\pi\)
\(440\) 10.1962 0.486082
\(441\) 0 0
\(442\) 4.78461 0.227581
\(443\) 14.7985i 0.703097i 0.936170 + 0.351548i \(0.114345\pi\)
−0.936170 + 0.351548i \(0.885655\pi\)
\(444\) 0 0
\(445\) 2.07055i 0.0981536i
\(446\) 5.00052i 0.236781i
\(447\) 0 0
\(448\) 1.66025 0.0784396
\(449\) 30.6322i 1.44562i 0.691045 + 0.722812i \(0.257151\pi\)
−0.691045 + 0.722812i \(0.742849\pi\)
\(450\) 0 0
\(451\) 46.2487 2.17777
\(452\) 23.8386i 1.12127i
\(453\) 0 0
\(454\) 8.18067i 0.383938i
\(455\) −1.07180 −0.0502466
\(456\) 0 0
\(457\) 26.9282 1.25965 0.629824 0.776738i \(-0.283127\pi\)
0.629824 + 0.776738i \(0.283127\pi\)
\(458\) 13.1769 0.615717
\(459\) 0 0
\(460\) 14.1962 0.661899
\(461\) 22.6274i 1.05386i 0.849907 + 0.526932i \(0.176658\pi\)
−0.849907 + 0.526932i \(0.823342\pi\)
\(462\) 0 0
\(463\) −21.6603 −1.00664 −0.503319 0.864101i \(-0.667888\pi\)
−0.503319 + 0.864101i \(0.667888\pi\)
\(464\) 12.8038 3.48477i 0.594404 0.161776i
\(465\) 0 0
\(466\) 11.5911i 0.536948i
\(467\) 21.7680i 1.00730i −0.863907 0.503652i \(-0.831990\pi\)
0.863907 0.503652i \(-0.168010\pi\)
\(468\) 0 0
\(469\) 8.14359 0.376036
\(470\) 4.33975 0.200178
\(471\) 0 0
\(472\) 11.5911i 0.533524i
\(473\) −22.3923 −1.02960
\(474\) 0 0
\(475\) 4.24264i 0.194666i
\(476\) 8.00481i 0.366900i
\(477\) 0 0
\(478\) 3.10583i 0.142057i
\(479\) 4.52004i 0.206526i 0.994654 + 0.103263i \(0.0329283\pi\)
−0.994654 + 0.103263i \(0.967072\pi\)
\(480\) 0 0
\(481\) 6.21166i 0.283227i
\(482\) 4.62158i 0.210507i
\(483\) 0 0
\(484\) −29.1962 −1.32710
\(485\) 7.34847i 0.333677i
\(486\) 0 0
\(487\) −22.5885 −1.02358 −0.511790 0.859110i \(-0.671018\pi\)
−0.511790 + 0.859110i \(0.671018\pi\)
\(488\) −6.00000 −0.271607
\(489\) 0 0
\(490\) 3.34607i 0.151160i
\(491\) 1.41421i 0.0638226i 0.999491 + 0.0319113i \(0.0101594\pi\)
−0.999491 + 0.0319113i \(0.989841\pi\)
\(492\) 0 0
\(493\) 8.92820 + 32.8043i 0.402106 + 1.47743i
\(494\) −3.21539 −0.144667
\(495\) 0 0
\(496\) 10.4543i 0.469412i
\(497\) −4.39230 −0.197022
\(498\) 0 0
\(499\) −5.85641 −0.262169 −0.131084 0.991371i \(-0.541846\pi\)
−0.131084 + 0.991371i \(0.541846\pi\)
\(500\) 1.73205 0.0774597
\(501\) 0 0
\(502\) 7.12436 0.317976
\(503\) 14.7985i 0.659831i 0.944010 + 0.329916i \(0.107020\pi\)
−0.944010 + 0.329916i \(0.892980\pi\)
\(504\) 0 0
\(505\) 4.14110i 0.184277i
\(506\) 22.3923 0.995459
\(507\) 0 0
\(508\) 22.0454i 0.978107i
\(509\) −20.7846 −0.921262 −0.460631 0.887592i \(-0.652377\pi\)
−0.460631 + 0.887592i \(0.652377\pi\)
\(510\) 0 0
\(511\) 0.832204i 0.0368145i
\(512\) 22.1841i 0.980408i
\(513\) 0 0
\(514\) 6.21166i 0.273984i
\(515\) −0.196152 −0.00864351
\(516\) 0 0
\(517\) −44.2487 −1.94606
\(518\) −1.60770 −0.0706381
\(519\) 0 0
\(520\) 2.82843i 0.124035i
\(521\) 32.7846 1.43632 0.718160 0.695878i \(-0.244985\pi\)
0.718160 + 0.695878i \(0.244985\pi\)
\(522\) 0 0
\(523\) −21.6603 −0.947137 −0.473568 0.880757i \(-0.657034\pi\)
−0.473568 + 0.880757i \(0.657034\pi\)
\(524\) 3.76217i 0.164351i
\(525\) 0 0
\(526\) 2.48334 0.108279
\(527\) 26.7846 1.16676
\(528\) 0 0
\(529\) 44.1769 1.92074
\(530\) 0 0
\(531\) 0 0
\(532\) 5.37945i 0.233229i
\(533\) 12.8295i 0.555706i
\(534\) 0 0
\(535\) −2.19615 −0.0949479
\(536\) 21.4906i 0.928253i
\(537\) 0 0
\(538\) 16.9282 0.729827
\(539\) 34.1170i 1.46952i
\(540\) 0 0
\(541\) 25.4558i 1.09443i −0.836991 0.547216i \(-0.815688\pi\)
0.836991 0.547216i \(-0.184312\pi\)
\(542\) 4.98076 0.213942
\(543\) 0 0
\(544\) −32.4449 −1.39106
\(545\) −1.46410 −0.0627152
\(546\) 0 0
\(547\) 21.5167 0.919986 0.459993 0.887923i \(-0.347852\pi\)
0.459993 + 0.887923i \(0.347852\pi\)
\(548\) 17.1464i 0.732459i
\(549\) 0 0
\(550\) 2.73205 0.116495
\(551\) −6.00000 22.0454i −0.255609 0.939166i
\(552\) 0 0
\(553\) 11.5911i 0.492904i
\(554\) 1.51575i 0.0643980i
\(555\) 0 0
\(556\) −23.3205 −0.989010
\(557\) 22.3923 0.948792 0.474396 0.880311i \(-0.342666\pi\)
0.474396 + 0.880311i \(0.342666\pi\)
\(558\) 0 0
\(559\) 6.21166i 0.262725i
\(560\) 1.80385 0.0762265
\(561\) 0 0
\(562\) 2.27362i 0.0959071i
\(563\) 16.8690i 0.710945i −0.934687 0.355472i \(-0.884320\pi\)
0.934687 0.355472i \(-0.115680\pi\)
\(564\) 0 0
\(565\) 13.7632i 0.579022i
\(566\) 10.8604i 0.456498i
\(567\) 0 0
\(568\) 11.5911i 0.486352i
\(569\) 15.9353i 0.668042i 0.942566 + 0.334021i \(0.108406\pi\)
−0.942566 + 0.334021i \(0.891594\pi\)
\(570\) 0 0
\(571\) −11.6077 −0.485767 −0.242883 0.970055i \(-0.578093\pi\)
−0.242883 + 0.970055i \(0.578093\pi\)
\(572\) 13.3843i 0.559624i
\(573\) 0 0
\(574\) −3.32051 −0.138595
\(575\) 8.19615 0.341803
\(576\) 0 0
\(577\) 44.3954i 1.84821i 0.382144 + 0.924103i \(0.375186\pi\)
−0.382144 + 0.924103i \(0.624814\pi\)
\(578\) 11.8313i 0.492119i
\(579\) 0 0
\(580\) 9.00000 2.44949i 0.373705 0.101710i
\(581\) −1.60770 −0.0666984
\(582\) 0 0
\(583\) 0 0
\(584\) 2.19615 0.0908774
\(585\) 0 0
\(586\) −6.05256 −0.250029
\(587\) 44.1962 1.82417 0.912085 0.410001i \(-0.134472\pi\)
0.912085 + 0.410001i \(0.134472\pi\)
\(588\) 0 0
\(589\) −18.0000 −0.741677
\(590\) 3.10583i 0.127865i
\(591\) 0 0
\(592\) 10.4543i 0.429669i
\(593\) 19.6077 0.805192 0.402596 0.915378i \(-0.368108\pi\)
0.402596 + 0.915378i \(0.368108\pi\)
\(594\) 0 0
\(595\) 4.62158i 0.189466i
\(596\) 31.1769 1.27706
\(597\) 0 0
\(598\) 6.21166i 0.254014i
\(599\) 7.14540i 0.291953i 0.989288 + 0.145977i \(0.0466324\pi\)
−0.989288 + 0.145977i \(0.953368\pi\)
\(600\) 0 0
\(601\) 20.0764i 0.818933i 0.912325 + 0.409467i \(0.134285\pi\)
−0.912325 + 0.409467i \(0.865715\pi\)
\(602\) 1.60770 0.0655248
\(603\) 0 0
\(604\) 31.8564 1.29622
\(605\) −16.8564 −0.685310
\(606\) 0 0
\(607\) 12.7279i 0.516610i −0.966063 0.258305i \(-0.916836\pi\)
0.966063 0.258305i \(-0.0831640\pi\)
\(608\) 21.8038 0.884263
\(609\) 0 0
\(610\) −1.60770 −0.0650937
\(611\) 12.2747i 0.496579i
\(612\) 0 0
\(613\) 32.9282 1.32996 0.664979 0.746862i \(-0.268441\pi\)
0.664979 + 0.746862i \(0.268441\pi\)
\(614\) −13.0192 −0.525414
\(615\) 0 0
\(616\) 7.46410 0.300737
\(617\) 6.79367i 0.273503i 0.990605 + 0.136751i \(0.0436661\pi\)
−0.990605 + 0.136751i \(0.956334\pi\)
\(618\) 0 0
\(619\) 13.5601i 0.545027i −0.962152 0.272514i \(-0.912145\pi\)
0.962152 0.272514i \(-0.0878550\pi\)
\(620\) 7.34847i 0.295122i
\(621\) 0 0
\(622\) −0.0525589 −0.00210742
\(623\) 1.51575i 0.0607272i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 13.1812i 0.526826i
\(627\) 0 0
\(628\) 12.7279i 0.507899i
\(629\) −26.7846 −1.06797
\(630\) 0 0
\(631\) −17.8564 −0.710852 −0.355426 0.934704i \(-0.615664\pi\)
−0.355426 + 0.934704i \(0.615664\pi\)
\(632\) −30.5885 −1.21674
\(633\) 0 0
\(634\) −10.8756 −0.431927
\(635\) 12.7279i 0.505092i
\(636\) 0 0
\(637\) 9.46410 0.374981
\(638\) 14.1962 3.86370i 0.562031 0.152965i
\(639\) 0 0
\(640\) 11.4524i 0.452696i
\(641\) 15.9353i 0.629406i 0.949190 + 0.314703i \(0.101905\pi\)
−0.949190 + 0.314703i \(0.898095\pi\)
\(642\) 0 0
\(643\) 9.94744 0.392289 0.196144 0.980575i \(-0.437158\pi\)
0.196144 + 0.980575i \(0.437158\pi\)
\(644\) 10.3923 0.409514
\(645\) 0 0
\(646\) 13.8647i 0.545501i
\(647\) 27.3731 1.07615 0.538073 0.842898i \(-0.319152\pi\)
0.538073 + 0.842898i \(0.319152\pi\)
\(648\) 0 0
\(649\) 31.6675i 1.24306i
\(650\) 0.757875i 0.0297263i
\(651\) 0 0
\(652\) 7.34847i 0.287788i
\(653\) 26.3896i 1.03270i 0.856376 + 0.516352i \(0.172710\pi\)
−0.856376 + 0.516352i \(0.827290\pi\)
\(654\) 0 0
\(655\) 2.17209i 0.0848705i
\(656\) 21.5921i 0.843031i
\(657\) 0 0
\(658\) 3.17691 0.123849
\(659\) 10.6574i 0.415152i −0.978219 0.207576i \(-0.933443\pi\)
0.978219 0.207576i \(-0.0665575\pi\)
\(660\) 0 0
\(661\) −5.85641 −0.227788 −0.113894 0.993493i \(-0.536332\pi\)
−0.113894 + 0.993493i \(0.536332\pi\)
\(662\) −9.80385 −0.381037
\(663\) 0 0
\(664\) 4.24264i 0.164646i
\(665\) 3.10583i 0.120439i
\(666\) 0 0
\(667\) 42.5885 11.5911i 1.64903 0.448810i
\(668\) −6.58846 −0.254915
\(669\) 0 0
\(670\) 5.75839i 0.222466i
\(671\) 16.3923 0.632818
\(672\) 0 0
\(673\) 25.3205 0.976034 0.488017 0.872834i \(-0.337720\pi\)
0.488017 + 0.872834i \(0.337720\pi\)
\(674\) 9.37307 0.361037
\(675\) 0 0
\(676\) −18.8038 −0.723225
\(677\) 38.8129i 1.49170i 0.666113 + 0.745850i \(0.267957\pi\)
−0.666113 + 0.745850i \(0.732043\pi\)
\(678\) 0 0
\(679\) 5.37945i 0.206444i
\(680\) −12.1962 −0.467701
\(681\) 0 0
\(682\) 11.5911i 0.443847i
\(683\) −32.1962 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(684\) 0 0
\(685\) 9.89949i 0.378240i
\(686\) 5.10205i 0.194797i
\(687\) 0 0
\(688\) 10.4543i 0.398566i
\(689\) 0 0
\(690\) 0 0
\(691\) −3.07180 −0.116857 −0.0584283 0.998292i \(-0.518609\pi\)
−0.0584283 + 0.998292i \(0.518609\pi\)
\(692\) −36.0000 −1.36851
\(693\) 0 0
\(694\) 13.5601i 0.514735i
\(695\) −13.4641 −0.510722
\(696\) 0 0
\(697\) −55.3205 −2.09541
\(698\) 9.52056i 0.360358i
\(699\) 0 0
\(700\) 1.26795 0.0479240
\(701\) −32.7846 −1.23826 −0.619129 0.785289i \(-0.712514\pi\)
−0.619129 + 0.785289i \(0.712514\pi\)
\(702\) 0 0
\(703\) 18.0000 0.678883
\(704\) 11.9700i 0.451138i
\(705\) 0 0
\(706\) 16.9706i 0.638696i
\(707\) 3.03150i 0.114011i
\(708\) 0 0
\(709\) −7.21539 −0.270980 −0.135490 0.990779i \(-0.543261\pi\)
−0.135490 + 0.990779i \(0.543261\pi\)
\(710\) 3.10583i 0.116560i
\(711\) 0 0
\(712\) −4.00000 −0.149906
\(713\) 34.7733i 1.30227i
\(714\) 0 0
\(715\) 7.72741i 0.288989i
\(716\) −28.3923 −1.06107
\(717\) 0 0
\(718\) 3.66025 0.136599
\(719\) 10.3923 0.387568 0.193784 0.981044i \(-0.437924\pi\)
0.193784 + 0.981044i \(0.437924\pi\)
\(720\) 0 0
\(721\) −0.143594 −0.00534770
\(722\) 0.517638i 0.0192645i
\(723\) 0 0
\(724\) −10.1436 −0.376984
\(725\) 5.19615 1.41421i 0.192980 0.0525226i
\(726\) 0 0
\(727\) 50.6071i 1.87691i −0.345398 0.938456i \(-0.612256\pi\)
0.345398 0.938456i \(-0.387744\pi\)
\(728\) 2.07055i 0.0767398i
\(729\) 0 0
\(730\) 0.588457 0.0217798
\(731\) 26.7846 0.990665
\(732\) 0 0
\(733\) 15.0015i 0.554095i 0.960856 + 0.277047i \(0.0893559\pi\)
−0.960856 + 0.277047i \(0.910644\pi\)
\(734\) 1.01924 0.0376208
\(735\) 0 0
\(736\) 42.1218i 1.55263i
\(737\) 58.7134i 2.16274i
\(738\) 0 0
\(739\) 16.6660i 0.613067i −0.951860 0.306534i \(-0.900831\pi\)
0.951860 0.306534i \(-0.0991692\pi\)
\(740\) 7.34847i 0.270135i
\(741\) 0 0
\(742\) 0 0
\(743\) 0.101536i 0.00372499i 0.999998 + 0.00186250i \(0.000592851\pi\)
−0.999998 + 0.00186250i \(0.999407\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) 11.3880i 0.416946i
\(747\) 0 0
\(748\) 57.7128 2.11019
\(749\) −1.60770 −0.0587439
\(750\) 0 0
\(751\) 18.9396i 0.691115i −0.938398 0.345558i \(-0.887690\pi\)
0.938398 0.345558i \(-0.112310\pi\)
\(752\) 20.6584i 0.753334i
\(753\) 0 0
\(754\) −1.07180 3.93803i −0.0390325 0.143415i
\(755\) 18.3923 0.669365
\(756\) 0 0
\(757\) 30.5307i 1.10966i −0.831965 0.554828i \(-0.812784\pi\)
0.831965 0.554828i \(-0.187216\pi\)
\(758\) −8.19615 −0.297698
\(759\) 0 0
\(760\) 8.19615 0.297306
\(761\) 10.3923 0.376721 0.188360 0.982100i \(-0.439683\pi\)
0.188360 + 0.982100i \(0.439683\pi\)
\(762\) 0 0
\(763\) −1.07180 −0.0388016
\(764\) 33.2848i 1.20420i
\(765\) 0 0
\(766\) 1.13681i 0.0410747i
\(767\) 8.78461 0.317194
\(768\) 0 0
\(769\) 14.6969i 0.529985i 0.964250 + 0.264993i \(0.0853695\pi\)
−0.964250 + 0.264993i \(0.914630\pi\)
\(770\) 2.00000 0.0720750
\(771\) 0 0
\(772\) 22.0454i 0.793432i
\(773\) 18.3848i 0.661254i 0.943761 + 0.330627i \(0.107260\pi\)
−0.943761 + 0.330627i \(0.892740\pi\)
\(774\) 0 0
\(775\) 4.24264i 0.152400i
\(776\) 14.1962 0.509612
\(777\) 0 0
\(778\) 16.9282 0.606905
\(779\) 37.1769 1.33200
\(780\) 0 0
\(781\) 31.6675i 1.13315i
\(782\) −26.7846 −0.957816
\(783\) 0 0
\(784\) −15.9282 −0.568864
\(785\) 7.34847i 0.262278i
\(786\) 0 0
\(787\) 38.5885 1.37553 0.687765 0.725933i \(-0.258592\pi\)
0.687765 + 0.725933i \(0.258592\pi\)
\(788\) 2.78461 0.0991976
\(789\) 0 0
\(790\) −8.19615 −0.291606
\(791\) 10.0754i 0.358239i
\(792\) 0 0
\(793\) 4.54725i 0.161478i
\(794\) 15.7322i 0.558315i
\(795\) 0 0
\(796\) −33.7128 −1.19492
\(797\) 6.79367i 0.240644i 0.992735 + 0.120322i \(0.0383927\pi\)
−0.992735 + 0.120322i \(0.961607\pi\)
\(798\) 0 0
\(799\) 52.9282 1.87247
\(800\) 5.13922i 0.181699i
\(801\) 0 0
\(802\) 4.54725i 0.160569i
\(803\) −6.00000 −0.211735
\(804\) 0 0
\(805\) 6.00000 0.211472
\(806\) −3.21539 −0.113257
\(807\) 0 0
\(808\) 8.00000 0.281439
\(809\) 31.8706i 1.12051i −0.828320 0.560255i \(-0.810703\pi\)
0.828320 0.560255i \(-0.189297\pi\)
\(810\) 0 0
\(811\) −4.67949 −0.164319 −0.0821596 0.996619i \(-0.526182\pi\)
−0.0821596 + 0.996619i \(0.526182\pi\)
\(812\) 6.58846 1.79315i 0.231210 0.0629273i
\(813\) 0 0
\(814\) 11.5911i 0.406268i
\(815\) 4.24264i 0.148613i
\(816\) 0 0
\(817\) −18.0000 −0.629740
\(818\) 9.21539 0.322209
\(819\) 0 0
\(820\) 15.1774i 0.530018i
\(821\) 26.7846 0.934789 0.467395 0.884049i \(-0.345193\pi\)
0.467395 + 0.884049i \(0.345193\pi\)
\(822\) 0 0
\(823\) 50.6071i 1.76405i −0.471201 0.882026i \(-0.656179\pi\)
0.471201 0.882026i \(-0.343821\pi\)
\(824\) 0.378937i 0.0132009i
\(825\) 0 0
\(826\) 2.27362i 0.0791095i
\(827\) 33.0817i 1.15036i 0.818025 + 0.575182i \(0.195069\pi\)
−0.818025 + 0.575182i \(0.804931\pi\)
\(828\) 0 0
\(829\) 45.5322i 1.58140i 0.612204 + 0.790700i \(0.290283\pi\)
−0.612204 + 0.790700i \(0.709717\pi\)
\(830\) 1.13681i 0.0394593i
\(831\) 0 0
\(832\) −3.32051 −0.115118
\(833\) 40.8091i 1.41395i
\(834\) 0 0
\(835\) −3.80385 −0.131638
\(836\) −38.7846 −1.34139
\(837\) 0 0
\(838\) 9.31749i 0.321867i
\(839\) 13.7632i 0.475158i −0.971368 0.237579i \(-0.923646\pi\)
0.971368 0.237579i \(-0.0763539\pi\)
\(840\) 0 0
\(841\) 25.0000 14.6969i 0.862069 0.506791i
\(842\) 9.21539 0.317583
\(843\) 0 0
\(844\) 38.1838i 1.31434i
\(845\) −10.8564 −0.373472
\(846\) 0 0
\(847\) −12.3397 −0.423999
\(848\) 0 0
\(849\) 0 0
\(850\) −3.26795 −0.112090
\(851\) 34.7733i 1.19201i
\(852\) 0 0
\(853\) 35.9101i 1.22954i −0.788707 0.614770i \(-0.789249\pi\)
0.788707 0.614770i \(-0.210751\pi\)
\(854\) −1.17691 −0.0402732
\(855\) 0 0
\(856\) 4.24264i 0.145010i
\(857\) 44.7846 1.52981 0.764907 0.644141i \(-0.222785\pi\)
0.764907 + 0.644141i \(0.222785\pi\)
\(858\) 0 0
\(859\) 5.07484i 0.173151i 0.996245 + 0.0865757i \(0.0275925\pi\)
−0.996245 + 0.0865757i \(0.972408\pi\)
\(860\) 7.34847i 0.250581i
\(861\) 0 0
\(862\) 2.27362i 0.0774400i
\(863\) 38.1962 1.30021 0.650106 0.759843i \(-0.274724\pi\)
0.650106 + 0.759843i \(0.274724\pi\)
\(864\) 0 0
\(865\) −20.7846 −0.706698
\(866\) −6.58846 −0.223885
\(867\) 0 0
\(868\) 5.37945i 0.182591i
\(869\) 83.5692 2.83489
\(870\) 0 0
\(871\) −16.2872 −0.551870
\(872\) 2.82843i 0.0957826i
\(873\) 0 0
\(874\) 18.0000 0.608859
\(875\) 0.732051 0.0247478
\(876\) 0 0
\(877\) −24.7846 −0.836917 −0.418458 0.908236i \(-0.637429\pi\)
−0.418458 + 0.908236i \(0.637429\pi\)
\(878\) 4.62158i 0.155971i
\(879\) 0 0
\(880\) 13.0053i 0.438409i
\(881\) 30.6322i 1.03203i 0.856581 + 0.516013i \(0.172584\pi\)
−0.856581 + 0.516013i \(0.827416\pi\)
\(882\) 0 0
\(883\) −22.5885 −0.760162 −0.380081 0.924953i \(-0.624104\pi\)
−0.380081 + 0.924953i \(0.624104\pi\)
\(884\) 16.0096i 0.538462i
\(885\) 0 0
\(886\) −7.66025 −0.257351
\(887\) 21.0101i 0.705451i 0.935727 + 0.352726i \(0.114745\pi\)
−0.935727 + 0.352726i \(0.885255\pi\)
\(888\) 0 0
\(889\) 9.31749i 0.312498i
\(890\) −1.07180 −0.0359267
\(891\) 0 0
\(892\) −16.7321 −0.560230
\(893\) −35.5692 −1.19028
\(894\) 0 0
\(895\) −16.3923 −0.547934
\(896\) 8.38375i 0.280081i
\(897\) 0 0
\(898\) −15.8564 −0.529135
\(899\) −6.00000 22.0454i −0.200111 0.735256i
\(900\) 0 0
\(901\) 0 0
\(902\) 23.9401i 0.797118i
\(903\) 0 0
\(904\) 26.5885 0.884319
\(905\) −5.85641 −0.194674
\(906\) 0 0
\(907\) 35.9101i 1.19238i 0.802845 + 0.596188i \(0.203319\pi\)
−0.802845 + 0.596188i \(0.796681\pi\)
\(908\) 27.3731 0.908407
\(909\) 0 0
\(910\) 0.554803i 0.0183915i
\(911\) 21.0101i 0.696097i 0.937477 + 0.348048i \(0.113156\pi\)
−0.937477 + 0.348048i \(0.886844\pi\)
\(912\) 0 0
\(913\) 11.5911i 0.383610i
\(914\) 13.9391i 0.461063i
\(915\) 0 0
\(916\) 44.0908i 1.45680i
\(917\) 1.59008i 0.0525090i
\(918\) 0 0
\(919\) −23.8564 −0.786950 −0.393475 0.919335i \(-0.628727\pi\)
−0.393475 + 0.919335i \(0.628727\pi\)
\(920\) 15.8338i 0.522023i
\(921\) 0 0
\(922\) −11.7128 −0.385741
\(923\) 8.78461 0.289149
\(924\) 0 0
\(925\) 4.24264i 0.139497i
\(926\) 11.2122i 0.368455i
\(927\) 0 0
\(928\) 7.26795 + 26.7042i 0.238582 + 0.876607i
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) 27.4249i 0.898814i
\(932\) −38.7846 −1.27043
\(933\) 0 0
\(934\) 11.2679 0.368699
\(935\) 33.3205 1.08970
\(936\) 0 0
\(937\) −46.2487 −1.51088 −0.755440 0.655218i \(-0.772577\pi\)
−0.755440 + 0.655218i \(0.772577\pi\)
\(938\) 4.21543i 0.137639i
\(939\) 0 0
\(940\) 14.5211i 0.473625i
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) 71.8203i 2.33879i
\(944\) −14.7846 −0.481198
\(945\) 0 0
\(946\) 11.5911i 0.376859i
\(947\) 48.5365i 1.57723i −0.614890 0.788613i \(-0.710800\pi\)
0.614890 0.788613i \(-0.289200\pi\)
\(948\) 0 0
\(949\) 1.66441i 0.0540290i
\(950\) 2.19615 0.0712526
\(951\) 0 0
\(952\) −8.92820 −0.289365
\(953\) 47.5692 1.54092 0.770459 0.637489i \(-0.220027\pi\)
0.770459 + 0.637489i \(0.220027\pi\)
\(954\) 0 0
\(955\) 19.2170i 0.621847i
\(956\) −10.3923 −0.336111
\(957\) 0 0
\(958\) −2.33975 −0.0755938
\(959\) 7.24693i 0.234016i
\(960\) 0 0
\(961\) 13.0000 0.419355
\(962\) 3.21539 0.103668
\(963\) 0 0
\(964\) 15.4641 0.498065
\(965\) 12.7279i 0.409726i
\(966\) 0 0
\(967\) 59.0924i 1.90028i 0.311820 + 0.950141i \(0.399061\pi\)
−0.311820 + 0.950141i \(0.600939\pi\)
\(968\) 32.5641i 1.04665i
\(969\) 0 0
\(970\) 3.80385 0.122134
\(971\) 36.4649i 1.17022i −0.810955 0.585108i \(-0.801052\pi\)
0.810955 0.585108i \(-0.198948\pi\)
\(972\) 0 0
\(973\) −9.85641 −0.315982
\(974\) 11.6926i 0.374657i
\(975\) 0 0
\(976\) 7.65308i 0.244969i
\(977\) −48.0000 −1.53566 −0.767828 0.640656i \(-0.778662\pi\)
−0.767828 + 0.640656i \(0.778662\pi\)
\(978\) 0 0
\(979\) 10.9282 0.349267
\(980\) −11.1962 −0.357648
\(981\) 0 0
\(982\) −0.732051 −0.0233607
\(983\) 0.859411i 0.0274109i −0.999906 0.0137055i \(-0.995637\pi\)
0.999906 0.0137055i \(-0.00436272\pi\)
\(984\) 0 0
\(985\) 1.60770 0.0512254
\(986\) −16.9808 + 4.62158i −0.540778 + 0.147181i
\(987\) 0 0
\(988\) 10.7589i 0.342286i
\(989\) 34.7733i 1.10573i
\(990\) 0 0
\(991\) 61.3205 1.94791 0.973955 0.226741i \(-0.0728071\pi\)
0.973955 + 0.226741i \(0.0728071\pi\)
\(992\) 21.8038 0.692273
\(993\) 0 0
\(994\) 2.27362i 0.0721150i
\(995\) −19.4641 −0.617054
\(996\) 0 0
\(997\) 30.5307i 0.966917i 0.875367 + 0.483458i \(0.160620\pi\)
−0.875367 + 0.483458i \(0.839380\pi\)
\(998\) 3.03150i 0.0959604i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.d.a.811.3 4
3.2 odd 2 145.2.c.a.86.2 4
12.11 even 2 2320.2.g.e.1681.1 4
15.2 even 4 725.2.d.b.724.6 8
15.8 even 4 725.2.d.b.724.3 8
15.14 odd 2 725.2.c.d.376.3 4
29.28 even 2 inner 1305.2.d.a.811.2 4
87.17 even 4 4205.2.a.g.1.2 4
87.41 even 4 4205.2.a.g.1.3 4
87.86 odd 2 145.2.c.a.86.3 yes 4
348.347 even 2 2320.2.g.e.1681.3 4
435.173 even 4 725.2.d.b.724.5 8
435.347 even 4 725.2.d.b.724.4 8
435.434 odd 2 725.2.c.d.376.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.c.a.86.2 4 3.2 odd 2
145.2.c.a.86.3 yes 4 87.86 odd 2
725.2.c.d.376.2 4 435.434 odd 2
725.2.c.d.376.3 4 15.14 odd 2
725.2.d.b.724.3 8 15.8 even 4
725.2.d.b.724.4 8 435.347 even 4
725.2.d.b.724.5 8 435.173 even 4
725.2.d.b.724.6 8 15.2 even 4
1305.2.d.a.811.2 4 29.28 even 2 inner
1305.2.d.a.811.3 4 1.1 even 1 trivial
2320.2.g.e.1681.1 4 12.11 even 2
2320.2.g.e.1681.3 4 348.347 even 2
4205.2.a.g.1.2 4 87.17 even 4
4205.2.a.g.1.3 4 87.41 even 4