L(s) = 1 | − 2-s − 2·3-s + 5·5-s + 2·6-s − 3·7-s − 3·8-s − 3·9-s − 5·10-s − 2·11-s + 3·14-s − 10·15-s + 4·16-s − 19·17-s + 3·18-s + 19-s + 6·21-s + 2·22-s + 4·23-s + 6·24-s + 15·25-s + 7·27-s + 10·30-s − 18·31-s + 32-s + 4·33-s + 19·34-s − 15·35-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.15·3-s + 2.23·5-s + 0.816·6-s − 1.13·7-s − 1.06·8-s − 9-s − 1.58·10-s − 0.603·11-s + 0.801·14-s − 2.58·15-s + 16-s − 4.60·17-s + 0.707·18-s + 0.229·19-s + 1.30·21-s + 0.426·22-s + 0.834·23-s + 1.22·24-s + 3·25-s + 1.34·27-s + 1.82·30-s − 3.23·31-s + 0.176·32-s + 0.696·33-s + 3.25·34-s − 2.53·35-s + ⋯ |
Λ(s)=(=((55⋅2910)s/2ΓC(s)5L(s)−Λ(2−s)
Λ(s)=(=((55⋅2910)s/2ΓC(s+1/2)5L(s)−Λ(1−s)
Degree: |
10 |
Conductor: |
55⋅2910
|
Sign: |
−1
|
Analytic conductor: |
4.26791×107 |
Root analytic conductor: |
5.79457 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
5
|
Selberg data: |
(10, 55⋅2910, ( :1/2,1/2,1/2,1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | C1 | (1−T)5 |
| 29 | | 1 |
good | 2 | C2≀S5 | 1+T+T2+p2T3+3T4+T5+3pT6+p4T7+p3T8+p4T9+p5T10 |
| 3 | C2≀S5 | 1+2T+7T2+13T3+10pT4+55T5+10p2T6+13p2T7+7p3T8+2p4T9+p5T10 |
| 7 | C2≀S5 | 1+3T+15T2+29T3+23pT4+339T5+23p2T6+29p2T7+15p3T8+3p4T9+p5T10 |
| 11 | C2≀S5 | 1+2T+38T2+42T3+659T4+507T5+659pT6+42p2T7+38p3T8+2p4T9+p5T10 |
| 13 | C2≀S5 | 1+20T2+42T3+209T4+97pT5+209pT6+42p2T7+20p3T8+p5T10 |
| 17 | C2≀S5 | 1+19T+220T2+1732T3+10416T4+48237T5+10416pT6+1732p2T7+220p3T8+19p4T9+p5T10 |
| 19 | C2≀S5 | 1−T+78T2−35T3+2627T4−625T5+2627pT6−35p2T7+78p3T8−p4T9+p5T10 |
| 23 | C2≀S5 | 1−4T+96T2−335T3+4040T4−11267T5+4040pT6−335p2T7+96p3T8−4p4T9+p5T10 |
| 31 | C2≀S5 | 1+18T+275T2+2595T3+21254T4+126505T5+21254pT6+2595p2T7+275p3T8+18p4T9+p5T10 |
| 37 | C2≀S5 | 1+2T+80T2+375T3+2290T4+22265T5+2290pT6+375p2T7+80p3T8+2p4T9+p5T10 |
| 41 | C2≀S5 | 1+2T+109T2+269T3+6604T4+14767T5+6604pT6+269p2T7+109p3T8+2p4T9+p5T10 |
| 43 | C2≀S5 | 1+22T+350T2+3762T3+34123T4+241123T5+34123pT6+3762p2T7+350p3T8+22p4T9+p5T10 |
| 47 | C2≀S5 | 1−2T+182T2−322T3+15091T4−22153T5+15091pT6−322p2T7+182p3T8−2p4T9+p5T10 |
| 53 | C2≀S5 | 1+14T+128T2+1603T3+13482T4+85069T5+13482pT6+1603p2T7+128p3T8+14p4T9+p5T10 |
| 59 | C2≀S5 | 1−20T+384T2−4494T3+49003T4−390251T5+49003pT6−4494p2T7+384p3T8−20p4T9+p5T10 |
| 61 | C2≀S5 | 1+5T+58T2+320T3+1846T4+40683T5+1846pT6+320p2T7+58p3T8+5p4T9+p5T10 |
| 67 | C2≀S5 | 1+21T+392T2+5058T3+54770T4+490501T5+54770pT6+5058p2T7+392p3T8+21p4T9+p5T10 |
| 71 | C2≀S5 | 1+4T+243T2+459T3+26400T4+27539T5+26400pT6+459p2T7+243p3T8+4p4T9+p5T10 |
| 73 | C2≀S5 | 1+28T+451T2+4697T3+40258T4+321827T5+40258pT6+4697p2T7+451p3T8+28p4T9+p5T10 |
| 79 | C2≀S5 | 1+3T+148T2+1016T3+14230T4+124135T5+14230pT6+1016p2T7+148p3T8+3p4T9+p5T10 |
| 83 | C2≀S5 | 1−8T+51T2−1107T3+10766T4−49059T5+10766pT6−1107p2T7+51p3T8−8p4T9+p5T10 |
| 89 | C2≀S5 | 1−34T+481T2−1879T3−38568T4+652859T5−38568pT6−1879p2T7+481p3T8−34p4T9+p5T10 |
| 97 | C2≀S5 | 1+9T+339T2+3194T3+54021T4+452547T5+54021pT6+3194p2T7+339p3T8+9p4T9+p5T10 |
show more | | |
show less | | |
L(s)=p∏ j=1∏10(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.38793340403305927336471181093, −5.36193691472971951280787891314, −5.20008067352100838750521085099, −4.95953019754265346570286813753, −4.90851761830961027198381936671, −4.51299758414817032817752545057, −4.47252696455220729216181350272, −4.40089748220770563737607140320, −4.28500756698698299578505139928, −3.80340182641658453953101075652, −3.51747982214993566318402831087, −3.46462412890037505664121717579, −3.40941524390359957177212550349, −3.12805402784365255079366956767, −3.03673990796860739830719538903, −2.72497896670605168756404664843, −2.53852058217544949438741529867, −2.49792810825375743361365602135, −2.27421235976264044436882644364, −1.91749211285794864864701837129, −1.90017899413792410491872737844, −1.80014133748797939287248327236, −1.40744837257987688700519077899, −1.20282522586832668508859049040, −0.887083036256129725478936855607, 0, 0, 0, 0, 0,
0.887083036256129725478936855607, 1.20282522586832668508859049040, 1.40744837257987688700519077899, 1.80014133748797939287248327236, 1.90017899413792410491872737844, 1.91749211285794864864701837129, 2.27421235976264044436882644364, 2.49792810825375743361365602135, 2.53852058217544949438741529867, 2.72497896670605168756404664843, 3.03673990796860739830719538903, 3.12805402784365255079366956767, 3.40941524390359957177212550349, 3.46462412890037505664121717579, 3.51747982214993566318402831087, 3.80340182641658453953101075652, 4.28500756698698299578505139928, 4.40089748220770563737607140320, 4.47252696455220729216181350272, 4.51299758414817032817752545057, 4.90851761830961027198381936671, 4.95953019754265346570286813753, 5.20008067352100838750521085099, 5.36193691472971951280787891314, 5.38793340403305927336471181093