Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4205,2,Mod(1,4205)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4205, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4205.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 4205.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 5.5.1586009.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.81969 | 2.21248 | 5.95067 | 1.00000 | −6.23850 | −3.02603 | −11.1397 | 1.89505 | −2.81969 | |||||||||||||||||||||||||||||||||
1.2 | −2.03739 | −1.51980 | 2.15097 | 1.00000 | 3.09643 | 2.57663 | −0.307585 | −0.690207 | −2.03739 | ||||||||||||||||||||||||||||||||||
1.3 | 0.594278 | −3.18209 | −1.64683 | 1.00000 | −1.89105 | −4.07314 | −2.16723 | 7.12569 | 0.594278 | ||||||||||||||||||||||||||||||||||
1.4 | 0.849666 | 1.37380 | −1.27807 | 1.00000 | 1.16727 | 3.54107 | −2.78526 | −1.11267 | 0.849666 | ||||||||||||||||||||||||||||||||||
1.5 | 2.41314 | −0.884387 | 3.82326 | 1.00000 | −2.13415 | −2.01854 | 4.39978 | −2.21786 | 2.41314 | ||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4205.2.a.h | ✓ | 5 |
29.b | even | 2 | 1 | 4205.2.a.k | yes | 5 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
4205.2.a.h | ✓ | 5 | 1.a | even | 1 | 1 | trivial |
4205.2.a.k | yes | 5 | 29.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|