Properties

Label 4205.2.a.h
Level 42054205
Weight 22
Character orbit 4205.a
Self dual yes
Analytic conductor 33.57733.577
Analytic rank 11
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4205,2,Mod(1,4205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4205.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4205=5292 4205 = 5 \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 33.577094049933.5770940499
Analytic rank: 11
Dimension: 55
Coefficient field: 5.5.1586009.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x5x49x3+4x2+17x+7 x^{5} - x^{4} - 9x^{3} + 4x^{2} + 17x + 7 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2β4q3+(β4+β3+2)q4+q5+(β4β3β21)q6+(β3β2)q7+(β4β22β12)q8++(3β4β32β2+3)q99+O(q100) q - \beta_1 q^{2} - \beta_{4} q^{3} + ( - \beta_{4} + \beta_{3} + 2) q^{4} + q^{5} + (\beta_{4} - \beta_{3} - \beta_{2} - 1) q^{6} + ( - \beta_{3} - \beta_{2}) q^{7} + (\beta_{4} - \beta_{2} - 2 \beta_1 - 2) q^{8}+ \cdots + ( - 3 \beta_{4} - \beta_{3} - 2 \beta_{2} + \cdots - 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5qq22q3+9q4+5q56q63q712q8+5q9q102q11+10q12q142q15+21q1619q176q18+q19+9q20+9q21+25q99+O(q100) 5 q - q^{2} - 2 q^{3} + 9 q^{4} + 5 q^{5} - 6 q^{6} - 3 q^{7} - 12 q^{8} + 5 q^{9} - q^{10} - 2 q^{11} + 10 q^{12} - q^{14} - 2 q^{15} + 21 q^{16} - 19 q^{17} - 6 q^{18} + q^{19} + 9 q^{20} + 9 q^{21}+ \cdots - 25 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x5x49x3+4x2+17x+7 x^{5} - x^{4} - 9x^{3} + 4x^{2} + 17x + 7 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν4ν38ν2+5ν+10 \nu^{4} - \nu^{3} - 8\nu^{2} + 5\nu + 10 Copy content Toggle raw display
β3\beta_{3}== ν42ν37ν2+11ν+8 \nu^{4} - 2\nu^{3} - 7\nu^{2} + 11\nu + 8 Copy content Toggle raw display
β4\beta_{4}== ν42ν38ν2+11ν+12 \nu^{4} - 2\nu^{3} - 8\nu^{2} + 11\nu + 12 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β4+β3+4 -\beta_{4} + \beta_{3} + 4 Copy content Toggle raw display
ν3\nu^{3}== β4+β2+6β1+2 -\beta_{4} + \beta_{2} + 6\beta _1 + 2 Copy content Toggle raw display
ν4\nu^{4}== 9β4+8β3+2β2+β1+24 -9\beta_{4} + 8\beta_{3} + 2\beta_{2} + \beta _1 + 24 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.81969
2.03739
−0.594278
−0.849666
−2.41314
−2.81969 2.21248 5.95067 1.00000 −6.23850 −3.02603 −11.1397 1.89505 −2.81969
1.2 −2.03739 −1.51980 2.15097 1.00000 3.09643 2.57663 −0.307585 −0.690207 −2.03739
1.3 0.594278 −3.18209 −1.64683 1.00000 −1.89105 −4.07314 −2.16723 7.12569 0.594278
1.4 0.849666 1.37380 −1.27807 1.00000 1.16727 3.54107 −2.78526 −1.11267 0.849666
1.5 2.41314 −0.884387 3.82326 1.00000 −2.13415 −2.01854 4.39978 −2.21786 2.41314
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
2929 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4205.2.a.h 5
29.b even 2 1 4205.2.a.k yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4205.2.a.h 5 1.a even 1 1 trivial
4205.2.a.k yes 5 29.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4205))S_{2}^{\mathrm{new}}(\Gamma_0(4205)):

T25+T249T234T22+17T27 T_{2}^{5} + T_{2}^{4} - 9T_{2}^{3} - 4T_{2}^{2} + 17T_{2} - 7 Copy content Toggle raw display
T35+2T348T3311T32+12T3+13 T_{3}^{5} + 2T_{3}^{4} - 8T_{3}^{3} - 11T_{3}^{2} + 12T_{3} + 13 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T5+T49T3+7 T^{5} + T^{4} - 9 T^{3} + \cdots - 7 Copy content Toggle raw display
33 T5+2T4++13 T^{5} + 2 T^{4} + \cdots + 13 Copy content Toggle raw display
55 (T1)5 (T - 1)^{5} Copy content Toggle raw display
77 T5+3T4++227 T^{5} + 3 T^{4} + \cdots + 227 Copy content Toggle raw display
1111 T5+2T4++67 T^{5} + 2 T^{4} + \cdots + 67 Copy content Toggle raw display
1313 T545T3++169 T^{5} - 45 T^{3} + \cdots + 169 Copy content Toggle raw display
1717 T5+19T4++331 T^{5} + 19 T^{4} + \cdots + 331 Copy content Toggle raw display
1919 T5T4+17 T^{5} - T^{4} + \cdots - 17 Copy content Toggle raw display
2323 T54T4+89 T^{5} - 4 T^{4} + \cdots - 89 Copy content Toggle raw display
2929 T5 T^{5} Copy content Toggle raw display
3131 T5+18T4++211 T^{5} + 18 T^{4} + \cdots + 211 Copy content Toggle raw display
3737 T5+2T4+9 T^{5} + 2 T^{4} + \cdots - 9 Copy content Toggle raw display
4141 T5+2T4+567 T^{5} + 2 T^{4} + \cdots - 567 Copy content Toggle raw display
4343 T5+22T4+1053 T^{5} + 22 T^{4} + \cdots - 1053 Copy content Toggle raw display
4747 T52T4+721 T^{5} - 2 T^{4} + \cdots - 721 Copy content Toggle raw display
5353 T5+14T4+6197 T^{5} + 14 T^{4} + \cdots - 6197 Copy content Toggle raw display
5959 T520T4++801 T^{5} - 20 T^{4} + \cdots + 801 Copy content Toggle raw display
6161 T5+5T4++38853 T^{5} + 5 T^{4} + \cdots + 38853 Copy content Toggle raw display
6767 T5+21T4++1267 T^{5} + 21 T^{4} + \cdots + 1267 Copy content Toggle raw display
7171 T5+4T4++2689 T^{5} + 4 T^{4} + \cdots + 2689 Copy content Toggle raw display
7373 T5+28T4+65511 T^{5} + 28 T^{4} + \cdots - 65511 Copy content Toggle raw display
7979 T5+3T4++1053 T^{5} + 3 T^{4} + \cdots + 1053 Copy content Toggle raw display
8383 T58T4++24479 T^{5} - 8 T^{4} + \cdots + 24479 Copy content Toggle raw display
8989 T534T4++448693 T^{5} - 34 T^{4} + \cdots + 448693 Copy content Toggle raw display
9797 T5+9T4++2273 T^{5} + 9 T^{4} + \cdots + 2273 Copy content Toggle raw display
show more
show less