Properties

Label 2-4205-1.1-c1-0-169
Degree $2$
Conductor $4205$
Sign $-1$
Analytic cond. $33.5770$
Root an. cond. $5.79457$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.03·2-s − 1.51·3-s + 2.15·4-s + 5-s + 3.09·6-s + 2.57·7-s − 0.307·8-s − 0.690·9-s − 2.03·10-s − 1.88·11-s − 3.26·12-s + 4.44·13-s − 5.24·14-s − 1.51·15-s − 3.67·16-s − 1.96·17-s + 1.40·18-s + 1.67·19-s + 2.15·20-s − 3.91·21-s + 3.84·22-s + 1.51·23-s + 0.467·24-s + 25-s − 9.05·26-s + 5.60·27-s + 5.54·28-s + ⋯
L(s)  = 1  − 1.44·2-s − 0.877·3-s + 1.07·4-s + 0.447·5-s + 1.26·6-s + 0.973·7-s − 0.108·8-s − 0.230·9-s − 0.644·10-s − 0.568·11-s − 0.943·12-s + 1.23·13-s − 1.40·14-s − 0.392·15-s − 0.918·16-s − 0.476·17-s + 0.331·18-s + 0.383·19-s + 0.480·20-s − 0.854·21-s + 0.819·22-s + 0.316·23-s + 0.0954·24-s + 0.200·25-s − 1.77·26-s + 1.07·27-s + 1.04·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4205\)    =    \(5 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(33.5770\)
Root analytic conductor: \(5.79457\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4205,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
29 \( 1 \)
good2 \( 1 + 2.03T + 2T^{2} \)
3 \( 1 + 1.51T + 3T^{2} \)
7 \( 1 - 2.57T + 7T^{2} \)
11 \( 1 + 1.88T + 11T^{2} \)
13 \( 1 - 4.44T + 13T^{2} \)
17 \( 1 + 1.96T + 17T^{2} \)
19 \( 1 - 1.67T + 19T^{2} \)
23 \( 1 - 1.51T + 23T^{2} \)
31 \( 1 + 2.48T + 31T^{2} \)
37 \( 1 + 11.5T + 37T^{2} \)
41 \( 1 - 7.95T + 41T^{2} \)
43 \( 1 + 9.39T + 43T^{2} \)
47 \( 1 - 7.28T + 47T^{2} \)
53 \( 1 + 14.3T + 53T^{2} \)
59 \( 1 + 3.82T + 59T^{2} \)
61 \( 1 + 4.24T + 61T^{2} \)
67 \( 1 + 7.59T + 67T^{2} \)
71 \( 1 - 11.2T + 71T^{2} \)
73 \( 1 + 12.7T + 73T^{2} \)
79 \( 1 + 6.61T + 79T^{2} \)
83 \( 1 + 0.787T + 83T^{2} \)
89 \( 1 - 13.0T + 89T^{2} \)
97 \( 1 + 16.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.241520049733004186765013448121, −7.47725584950072953747787869607, −6.68908510917012629473787093585, −5.94119299446439038250285160851, −5.20008067352100838750521085099, −4.51299758414817032817752545057, −3.12805402784365255079366956767, −1.90017899413792410491872737844, −1.20282522586832668508859049040, 0, 1.20282522586832668508859049040, 1.90017899413792410491872737844, 3.12805402784365255079366956767, 4.51299758414817032817752545057, 5.20008067352100838750521085099, 5.94119299446439038250285160851, 6.68908510917012629473787093585, 7.47725584950072953747787869607, 8.241520049733004186765013448121

Graph of the $Z$-function along the critical line