Properties

Label 2-4205-1.1-c1-0-239
Degree $2$
Conductor $4205$
Sign $-1$
Analytic cond. $33.5770$
Root an. cond. $5.79457$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.34·2-s + 1.23·3-s − 0.203·4-s + 5-s + 1.66·6-s − 3.86·7-s − 2.95·8-s − 1.46·9-s + 1.34·10-s + 5.03·11-s − 0.252·12-s + 3.21·13-s − 5.17·14-s + 1.23·15-s − 3.55·16-s − 5.75·17-s − 1.96·18-s + 4.82·19-s − 0.203·20-s − 4.78·21-s + 6.74·22-s − 3.49·23-s − 3.65·24-s + 25-s + 4.30·26-s − 5.53·27-s + 0.787·28-s + ⋯
L(s)  = 1  + 0.947·2-s + 0.715·3-s − 0.101·4-s + 0.447·5-s + 0.677·6-s − 1.46·7-s − 1.04·8-s − 0.488·9-s + 0.423·10-s + 1.51·11-s − 0.0729·12-s + 0.891·13-s − 1.38·14-s + 0.319·15-s − 0.887·16-s − 1.39·17-s − 0.462·18-s + 1.10·19-s − 0.0455·20-s − 1.04·21-s + 1.43·22-s − 0.728·23-s − 0.747·24-s + 0.200·25-s + 0.845·26-s − 1.06·27-s + 0.148·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4205\)    =    \(5 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(33.5770\)
Root analytic conductor: \(5.79457\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4205,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
29 \( 1 \)
good2 \( 1 - 1.34T + 2T^{2} \)
3 \( 1 - 1.23T + 3T^{2} \)
7 \( 1 + 3.86T + 7T^{2} \)
11 \( 1 - 5.03T + 11T^{2} \)
13 \( 1 - 3.21T + 13T^{2} \)
17 \( 1 + 5.75T + 17T^{2} \)
19 \( 1 - 4.82T + 19T^{2} \)
23 \( 1 + 3.49T + 23T^{2} \)
31 \( 1 + 3.10T + 31T^{2} \)
37 \( 1 - 2.71T + 37T^{2} \)
41 \( 1 + 12.5T + 41T^{2} \)
43 \( 1 + 8.64T + 43T^{2} \)
47 \( 1 - 0.222T + 47T^{2} \)
53 \( 1 + 6.68T + 53T^{2} \)
59 \( 1 + 4.63T + 59T^{2} \)
61 \( 1 + 9.46T + 61T^{2} \)
67 \( 1 + 12.9T + 67T^{2} \)
71 \( 1 - 7.50T + 71T^{2} \)
73 \( 1 - 3.53T + 73T^{2} \)
79 \( 1 + 4.45T + 79T^{2} \)
83 \( 1 - 8.43T + 83T^{2} \)
89 \( 1 - 9.68T + 89T^{2} \)
97 \( 1 + 15.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.275171829199918371665740362497, −6.95993713598510300003836624216, −6.30294976828677517595916769345, −6.03040635807666292695384059373, −4.98034313660634558272452439237, −3.95693038061179539488680551973, −3.45515359303753619377049891609, −2.91698449877499855988588740568, −1.69925728561776504397360537243, 0, 1.69925728561776504397360537243, 2.91698449877499855988588740568, 3.45515359303753619377049891609, 3.95693038061179539488680551973, 4.98034313660634558272452439237, 6.03040635807666292695384059373, 6.30294976828677517595916769345, 6.95993713598510300003836624216, 8.275171829199918371665740362497

Graph of the $Z$-function along the critical line