Properties

Label 4205.2.a.y.1.19
Level $4205$
Weight $2$
Character 4205.1
Self dual yes
Analytic conductor $33.577$
Analytic rank $1$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4205,2,Mod(1,4205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4205.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4205 = 5 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.5770940499\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Character \(\chi\) \(=\) 4205.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.34022 q^{2} +1.23909 q^{3} -0.203815 q^{4} +1.00000 q^{5} +1.66065 q^{6} -3.86391 q^{7} -2.95359 q^{8} -1.46465 q^{9} +1.34022 q^{10} +5.03570 q^{11} -0.252546 q^{12} +3.21526 q^{13} -5.17848 q^{14} +1.23909 q^{15} -3.55083 q^{16} -5.75831 q^{17} -1.96295 q^{18} +4.82162 q^{19} -0.203815 q^{20} -4.78774 q^{21} +6.74894 q^{22} -3.49187 q^{23} -3.65977 q^{24} +1.00000 q^{25} +4.30915 q^{26} -5.53211 q^{27} +0.787523 q^{28} +1.66065 q^{30} -3.10558 q^{31} +1.14830 q^{32} +6.23970 q^{33} -7.71740 q^{34} -3.86391 q^{35} +0.298518 q^{36} +2.71406 q^{37} +6.46203 q^{38} +3.98400 q^{39} -2.95359 q^{40} -12.5230 q^{41} -6.41661 q^{42} -8.64635 q^{43} -1.02635 q^{44} -1.46465 q^{45} -4.67987 q^{46} +0.222881 q^{47} -4.39980 q^{48} +7.92979 q^{49} +1.34022 q^{50} -7.13508 q^{51} -0.655318 q^{52} -6.68898 q^{53} -7.41424 q^{54} +5.03570 q^{55} +11.4124 q^{56} +5.97443 q^{57} -4.63118 q^{59} -0.252546 q^{60} -9.46013 q^{61} -4.16216 q^{62} +5.65928 q^{63} +8.64063 q^{64} +3.21526 q^{65} +8.36256 q^{66} -12.9846 q^{67} +1.17363 q^{68} -4.32675 q^{69} -5.17848 q^{70} +7.50217 q^{71} +4.32598 q^{72} +3.53453 q^{73} +3.63743 q^{74} +1.23909 q^{75} -0.982719 q^{76} -19.4575 q^{77} +5.33943 q^{78} -4.45093 q^{79} -3.55083 q^{80} -2.46084 q^{81} -16.7836 q^{82} +8.43040 q^{83} +0.975813 q^{84} -5.75831 q^{85} -11.5880 q^{86} -14.8734 q^{88} +9.68882 q^{89} -1.96295 q^{90} -12.4235 q^{91} +0.711695 q^{92} -3.84810 q^{93} +0.298709 q^{94} +4.82162 q^{95} +1.42285 q^{96} -15.6823 q^{97} +10.6276 q^{98} -7.37555 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 14 q^{4} + 24 q^{5} - 18 q^{6} - 38 q^{7} + 18 q^{9} - 34 q^{13} - 10 q^{16} + 14 q^{20} - 10 q^{22} - 44 q^{23} - 4 q^{24} + 24 q^{25} - 44 q^{28} - 18 q^{30} - 58 q^{33} + 8 q^{34} - 38 q^{35}+ \cdots + 22 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34022 0.947677 0.473839 0.880612i \(-0.342868\pi\)
0.473839 + 0.880612i \(0.342868\pi\)
\(3\) 1.23909 0.715390 0.357695 0.933838i \(-0.383563\pi\)
0.357695 + 0.933838i \(0.383563\pi\)
\(4\) −0.203815 −0.101907
\(5\) 1.00000 0.447214
\(6\) 1.66065 0.677959
\(7\) −3.86391 −1.46042 −0.730210 0.683223i \(-0.760578\pi\)
−0.730210 + 0.683223i \(0.760578\pi\)
\(8\) −2.95359 −1.04425
\(9\) −1.46465 −0.488217
\(10\) 1.34022 0.423814
\(11\) 5.03570 1.51832 0.759161 0.650903i \(-0.225610\pi\)
0.759161 + 0.650903i \(0.225610\pi\)
\(12\) −0.252546 −0.0729036
\(13\) 3.21526 0.891752 0.445876 0.895095i \(-0.352892\pi\)
0.445876 + 0.895095i \(0.352892\pi\)
\(14\) −5.17848 −1.38401
\(15\) 1.23909 0.319932
\(16\) −3.55083 −0.887707
\(17\) −5.75831 −1.39660 −0.698298 0.715807i \(-0.746059\pi\)
−0.698298 + 0.715807i \(0.746059\pi\)
\(18\) −1.96295 −0.462672
\(19\) 4.82162 1.10616 0.553078 0.833129i \(-0.313453\pi\)
0.553078 + 0.833129i \(0.313453\pi\)
\(20\) −0.203815 −0.0455744
\(21\) −4.78774 −1.04477
\(22\) 6.74894 1.43888
\(23\) −3.49187 −0.728105 −0.364053 0.931378i \(-0.618607\pi\)
−0.364053 + 0.931378i \(0.618607\pi\)
\(24\) −3.65977 −0.747048
\(25\) 1.00000 0.200000
\(26\) 4.30915 0.845094
\(27\) −5.53211 −1.06466
\(28\) 0.787523 0.148828
\(29\) 0 0
\(30\) 1.66065 0.303192
\(31\) −3.10558 −0.557779 −0.278890 0.960323i \(-0.589966\pi\)
−0.278890 + 0.960323i \(0.589966\pi\)
\(32\) 1.14830 0.202993
\(33\) 6.23970 1.08619
\(34\) −7.71740 −1.32352
\(35\) −3.86391 −0.653120
\(36\) 0.298518 0.0497530
\(37\) 2.71406 0.446189 0.223094 0.974797i \(-0.428384\pi\)
0.223094 + 0.974797i \(0.428384\pi\)
\(38\) 6.46203 1.04828
\(39\) 3.98400 0.637951
\(40\) −2.95359 −0.467004
\(41\) −12.5230 −1.95576 −0.977882 0.209157i \(-0.932928\pi\)
−0.977882 + 0.209157i \(0.932928\pi\)
\(42\) −6.41661 −0.990105
\(43\) −8.64635 −1.31856 −0.659278 0.751899i \(-0.729138\pi\)
−0.659278 + 0.751899i \(0.729138\pi\)
\(44\) −1.02635 −0.154728
\(45\) −1.46465 −0.218337
\(46\) −4.67987 −0.690009
\(47\) 0.222881 0.0325105 0.0162553 0.999868i \(-0.494826\pi\)
0.0162553 + 0.999868i \(0.494826\pi\)
\(48\) −4.39980 −0.635057
\(49\) 7.92979 1.13283
\(50\) 1.34022 0.189535
\(51\) −7.13508 −0.999111
\(52\) −0.655318 −0.0908762
\(53\) −6.68898 −0.918802 −0.459401 0.888229i \(-0.651936\pi\)
−0.459401 + 0.888229i \(0.651936\pi\)
\(54\) −7.41424 −1.00895
\(55\) 5.03570 0.679014
\(56\) 11.4124 1.52505
\(57\) 5.97443 0.791333
\(58\) 0 0
\(59\) −4.63118 −0.602928 −0.301464 0.953478i \(-0.597475\pi\)
−0.301464 + 0.953478i \(0.597475\pi\)
\(60\) −0.252546 −0.0326035
\(61\) −9.46013 −1.21125 −0.605623 0.795752i \(-0.707076\pi\)
−0.605623 + 0.795752i \(0.707076\pi\)
\(62\) −4.16216 −0.528595
\(63\) 5.65928 0.713002
\(64\) 8.64063 1.08008
\(65\) 3.21526 0.398804
\(66\) 8.36256 1.02936
\(67\) −12.9846 −1.58632 −0.793159 0.609014i \(-0.791565\pi\)
−0.793159 + 0.609014i \(0.791565\pi\)
\(68\) 1.17363 0.142324
\(69\) −4.32675 −0.520879
\(70\) −5.17848 −0.618947
\(71\) 7.50217 0.890344 0.445172 0.895445i \(-0.353142\pi\)
0.445172 + 0.895445i \(0.353142\pi\)
\(72\) 4.32598 0.509822
\(73\) 3.53453 0.413685 0.206843 0.978374i \(-0.433681\pi\)
0.206843 + 0.978374i \(0.433681\pi\)
\(74\) 3.63743 0.422843
\(75\) 1.23909 0.143078
\(76\) −0.982719 −0.112726
\(77\) −19.4575 −2.21739
\(78\) 5.33943 0.604571
\(79\) −4.45093 −0.500769 −0.250385 0.968146i \(-0.580557\pi\)
−0.250385 + 0.968146i \(0.580557\pi\)
\(80\) −3.55083 −0.396995
\(81\) −2.46084 −0.273427
\(82\) −16.7836 −1.85343
\(83\) 8.43040 0.925357 0.462678 0.886526i \(-0.346889\pi\)
0.462678 + 0.886526i \(0.346889\pi\)
\(84\) 0.975813 0.106470
\(85\) −5.75831 −0.624577
\(86\) −11.5880 −1.24957
\(87\) 0 0
\(88\) −14.8734 −1.58551
\(89\) 9.68882 1.02701 0.513506 0.858086i \(-0.328346\pi\)
0.513506 + 0.858086i \(0.328346\pi\)
\(90\) −1.96295 −0.206913
\(91\) −12.4235 −1.30233
\(92\) 0.711695 0.0741994
\(93\) −3.84810 −0.399030
\(94\) 0.298709 0.0308095
\(95\) 4.82162 0.494688
\(96\) 1.42285 0.145219
\(97\) −15.6823 −1.59230 −0.796149 0.605101i \(-0.793133\pi\)
−0.796149 + 0.605101i \(0.793133\pi\)
\(98\) 10.6276 1.07355
\(99\) −7.37555 −0.741271
\(100\) −0.203815 −0.0203815
\(101\) −4.23137 −0.421037 −0.210519 0.977590i \(-0.567515\pi\)
−0.210519 + 0.977590i \(0.567515\pi\)
\(102\) −9.56256 −0.946835
\(103\) −1.93739 −0.190897 −0.0954484 0.995434i \(-0.530429\pi\)
−0.0954484 + 0.995434i \(0.530429\pi\)
\(104\) −9.49657 −0.931215
\(105\) −4.78774 −0.467235
\(106\) −8.96470 −0.870728
\(107\) −5.34791 −0.517002 −0.258501 0.966011i \(-0.583228\pi\)
−0.258501 + 0.966011i \(0.583228\pi\)
\(108\) 1.12753 0.108496
\(109\) −3.65169 −0.349769 −0.174884 0.984589i \(-0.555955\pi\)
−0.174884 + 0.984589i \(0.555955\pi\)
\(110\) 6.74894 0.643486
\(111\) 3.36297 0.319199
\(112\) 13.7201 1.29643
\(113\) 9.16662 0.862323 0.431162 0.902275i \(-0.358104\pi\)
0.431162 + 0.902275i \(0.358104\pi\)
\(114\) 8.00705 0.749929
\(115\) −3.49187 −0.325618
\(116\) 0 0
\(117\) −4.70923 −0.435369
\(118\) −6.20679 −0.571381
\(119\) 22.2496 2.03962
\(120\) −3.65977 −0.334090
\(121\) 14.3583 1.30530
\(122\) −12.6786 −1.14787
\(123\) −15.5171 −1.39913
\(124\) 0.632964 0.0568419
\(125\) 1.00000 0.0894427
\(126\) 7.58467 0.675696
\(127\) −6.23834 −0.553563 −0.276781 0.960933i \(-0.589268\pi\)
−0.276781 + 0.960933i \(0.589268\pi\)
\(128\) 9.28373 0.820574
\(129\) −10.7136 −0.943282
\(130\) 4.30915 0.377937
\(131\) 0.654087 0.0571478 0.0285739 0.999592i \(-0.490903\pi\)
0.0285739 + 0.999592i \(0.490903\pi\)
\(132\) −1.27174 −0.110691
\(133\) −18.6303 −1.61545
\(134\) −17.4022 −1.50332
\(135\) −5.53211 −0.476128
\(136\) 17.0077 1.45840
\(137\) −2.60785 −0.222804 −0.111402 0.993775i \(-0.535534\pi\)
−0.111402 + 0.993775i \(0.535534\pi\)
\(138\) −5.79879 −0.493625
\(139\) 5.86910 0.497810 0.248905 0.968528i \(-0.419929\pi\)
0.248905 + 0.968528i \(0.419929\pi\)
\(140\) 0.787523 0.0665578
\(141\) 0.276170 0.0232577
\(142\) 10.0546 0.843759
\(143\) 16.1911 1.35397
\(144\) 5.20073 0.433394
\(145\) 0 0
\(146\) 4.73704 0.392040
\(147\) 9.82574 0.810413
\(148\) −0.553166 −0.0454700
\(149\) 10.4004 0.852037 0.426019 0.904714i \(-0.359916\pi\)
0.426019 + 0.904714i \(0.359916\pi\)
\(150\) 1.66065 0.135592
\(151\) −3.48009 −0.283206 −0.141603 0.989924i \(-0.545226\pi\)
−0.141603 + 0.989924i \(0.545226\pi\)
\(152\) −14.2411 −1.15511
\(153\) 8.43392 0.681842
\(154\) −26.0773 −2.10137
\(155\) −3.10558 −0.249446
\(156\) −0.811999 −0.0650120
\(157\) 9.31575 0.743478 0.371739 0.928337i \(-0.378762\pi\)
0.371739 + 0.928337i \(0.378762\pi\)
\(158\) −5.96522 −0.474567
\(159\) −8.28826 −0.657302
\(160\) 1.14830 0.0907811
\(161\) 13.4923 1.06334
\(162\) −3.29807 −0.259121
\(163\) 0.416983 0.0326606 0.0163303 0.999867i \(-0.494802\pi\)
0.0163303 + 0.999867i \(0.494802\pi\)
\(164\) 2.55238 0.199307
\(165\) 6.23970 0.485760
\(166\) 11.2986 0.876940
\(167\) −11.8458 −0.916656 −0.458328 0.888783i \(-0.651552\pi\)
−0.458328 + 0.888783i \(0.651552\pi\)
\(168\) 14.1410 1.09100
\(169\) −2.66211 −0.204778
\(170\) −7.71740 −0.591897
\(171\) −7.06200 −0.540044
\(172\) 1.76226 0.134371
\(173\) −5.01268 −0.381107 −0.190553 0.981677i \(-0.561028\pi\)
−0.190553 + 0.981677i \(0.561028\pi\)
\(174\) 0 0
\(175\) −3.86391 −0.292084
\(176\) −17.8809 −1.34783
\(177\) −5.73846 −0.431329
\(178\) 12.9851 0.973276
\(179\) −4.57941 −0.342281 −0.171140 0.985247i \(-0.554745\pi\)
−0.171140 + 0.985247i \(0.554745\pi\)
\(180\) 0.298518 0.0222502
\(181\) 1.38162 0.102695 0.0513475 0.998681i \(-0.483648\pi\)
0.0513475 + 0.998681i \(0.483648\pi\)
\(182\) −16.6502 −1.23419
\(183\) −11.7220 −0.866513
\(184\) 10.3136 0.760326
\(185\) 2.71406 0.199542
\(186\) −5.15730 −0.378151
\(187\) −28.9971 −2.12048
\(188\) −0.0454265 −0.00331307
\(189\) 21.3756 1.55484
\(190\) 6.46203 0.468805
\(191\) −25.0514 −1.81265 −0.906327 0.422577i \(-0.861126\pi\)
−0.906327 + 0.422577i \(0.861126\pi\)
\(192\) 10.7065 0.772678
\(193\) −11.5666 −0.832585 −0.416293 0.909231i \(-0.636671\pi\)
−0.416293 + 0.909231i \(0.636671\pi\)
\(194\) −21.0177 −1.50898
\(195\) 3.98400 0.285300
\(196\) −1.61621 −0.115444
\(197\) −22.1833 −1.58049 −0.790246 0.612790i \(-0.790047\pi\)
−0.790246 + 0.612790i \(0.790047\pi\)
\(198\) −9.88485 −0.702485
\(199\) 20.5710 1.45824 0.729120 0.684386i \(-0.239930\pi\)
0.729120 + 0.684386i \(0.239930\pi\)
\(200\) −2.95359 −0.208851
\(201\) −16.0891 −1.13484
\(202\) −5.67096 −0.399008
\(203\) 0 0
\(204\) 1.45424 0.101817
\(205\) −12.5230 −0.874644
\(206\) −2.59653 −0.180909
\(207\) 5.11437 0.355473
\(208\) −11.4168 −0.791615
\(209\) 24.2803 1.67950
\(210\) −6.41661 −0.442788
\(211\) 4.37352 0.301086 0.150543 0.988603i \(-0.451898\pi\)
0.150543 + 0.988603i \(0.451898\pi\)
\(212\) 1.36331 0.0936329
\(213\) 9.29588 0.636943
\(214\) −7.16736 −0.489951
\(215\) −8.64635 −0.589676
\(216\) 16.3396 1.11177
\(217\) 11.9997 0.814592
\(218\) −4.89407 −0.331468
\(219\) 4.37961 0.295946
\(220\) −1.02635 −0.0691966
\(221\) −18.5145 −1.24542
\(222\) 4.50711 0.302498
\(223\) −0.505255 −0.0338344 −0.0169172 0.999857i \(-0.505385\pi\)
−0.0169172 + 0.999857i \(0.505385\pi\)
\(224\) −4.43693 −0.296455
\(225\) −1.46465 −0.0976434
\(226\) 12.2853 0.817204
\(227\) −2.44549 −0.162313 −0.0811564 0.996701i \(-0.525861\pi\)
−0.0811564 + 0.996701i \(0.525861\pi\)
\(228\) −1.21768 −0.0806428
\(229\) 11.0213 0.728310 0.364155 0.931338i \(-0.381358\pi\)
0.364155 + 0.931338i \(0.381358\pi\)
\(230\) −4.67987 −0.308581
\(231\) −24.1096 −1.58630
\(232\) 0 0
\(233\) 11.0552 0.724252 0.362126 0.932129i \(-0.382051\pi\)
0.362126 + 0.932129i \(0.382051\pi\)
\(234\) −6.31140 −0.412589
\(235\) 0.222881 0.0145392
\(236\) 0.943904 0.0614429
\(237\) −5.51511 −0.358245
\(238\) 29.8193 1.93290
\(239\) 12.6393 0.817571 0.408786 0.912630i \(-0.365952\pi\)
0.408786 + 0.912630i \(0.365952\pi\)
\(240\) −4.39980 −0.284006
\(241\) 20.5451 1.32343 0.661713 0.749757i \(-0.269830\pi\)
0.661713 + 0.749757i \(0.269830\pi\)
\(242\) 19.2433 1.23700
\(243\) 13.5471 0.869049
\(244\) 1.92812 0.123435
\(245\) 7.92979 0.506616
\(246\) −20.7964 −1.32593
\(247\) 15.5028 0.986417
\(248\) 9.17263 0.582463
\(249\) 10.4460 0.661991
\(250\) 1.34022 0.0847628
\(251\) 6.95375 0.438917 0.219458 0.975622i \(-0.429571\pi\)
0.219458 + 0.975622i \(0.429571\pi\)
\(252\) −1.15345 −0.0726603
\(253\) −17.5840 −1.10550
\(254\) −8.36073 −0.524599
\(255\) −7.13508 −0.446816
\(256\) −4.83903 −0.302440
\(257\) −20.6193 −1.28620 −0.643099 0.765783i \(-0.722352\pi\)
−0.643099 + 0.765783i \(0.722352\pi\)
\(258\) −14.3586 −0.893927
\(259\) −10.4869 −0.651623
\(260\) −0.655318 −0.0406411
\(261\) 0 0
\(262\) 0.876619 0.0541577
\(263\) 21.5161 1.32674 0.663370 0.748292i \(-0.269126\pi\)
0.663370 + 0.748292i \(0.269126\pi\)
\(264\) −18.4295 −1.13426
\(265\) −6.68898 −0.410901
\(266\) −24.9687 −1.53093
\(267\) 12.0053 0.734714
\(268\) 2.64645 0.161658
\(269\) 21.7280 1.32478 0.662390 0.749159i \(-0.269542\pi\)
0.662390 + 0.749159i \(0.269542\pi\)
\(270\) −7.41424 −0.451216
\(271\) −3.70503 −0.225064 −0.112532 0.993648i \(-0.535896\pi\)
−0.112532 + 0.993648i \(0.535896\pi\)
\(272\) 20.4468 1.23977
\(273\) −15.3938 −0.931676
\(274\) −3.49509 −0.211146
\(275\) 5.03570 0.303664
\(276\) 0.881856 0.0530815
\(277\) 2.66495 0.160121 0.0800606 0.996790i \(-0.474489\pi\)
0.0800606 + 0.996790i \(0.474489\pi\)
\(278\) 7.86587 0.471764
\(279\) 4.54860 0.272317
\(280\) 11.4124 0.682022
\(281\) 0.265091 0.0158140 0.00790701 0.999969i \(-0.497483\pi\)
0.00790701 + 0.999969i \(0.497483\pi\)
\(282\) 0.370128 0.0220408
\(283\) 7.65663 0.455139 0.227570 0.973762i \(-0.426922\pi\)
0.227570 + 0.973762i \(0.426922\pi\)
\(284\) −1.52906 −0.0907328
\(285\) 5.97443 0.353895
\(286\) 21.6996 1.28312
\(287\) 48.3877 2.85624
\(288\) −1.68186 −0.0991045
\(289\) 16.1582 0.950480
\(290\) 0 0
\(291\) −19.4318 −1.13911
\(292\) −0.720390 −0.0421576
\(293\) −5.42694 −0.317045 −0.158523 0.987355i \(-0.550673\pi\)
−0.158523 + 0.987355i \(0.550673\pi\)
\(294\) 13.1686 0.768010
\(295\) −4.63118 −0.269638
\(296\) −8.01623 −0.465934
\(297\) −27.8581 −1.61649
\(298\) 13.9389 0.807456
\(299\) −11.2273 −0.649289
\(300\) −0.252546 −0.0145807
\(301\) 33.4087 1.92565
\(302\) −4.66408 −0.268388
\(303\) −5.24306 −0.301206
\(304\) −17.1208 −0.981943
\(305\) −9.46013 −0.541686
\(306\) 11.3033 0.646166
\(307\) 23.3143 1.33062 0.665309 0.746568i \(-0.268300\pi\)
0.665309 + 0.746568i \(0.268300\pi\)
\(308\) 3.96573 0.225968
\(309\) −2.40061 −0.136566
\(310\) −4.16216 −0.236395
\(311\) 29.8056 1.69012 0.845060 0.534671i \(-0.179564\pi\)
0.845060 + 0.534671i \(0.179564\pi\)
\(312\) −11.7671 −0.666182
\(313\) −18.6046 −1.05160 −0.525798 0.850609i \(-0.676233\pi\)
−0.525798 + 0.850609i \(0.676233\pi\)
\(314\) 12.4851 0.704577
\(315\) 5.65928 0.318864
\(316\) 0.907167 0.0510321
\(317\) 3.40919 0.191479 0.0957396 0.995406i \(-0.469478\pi\)
0.0957396 + 0.995406i \(0.469478\pi\)
\(318\) −11.1081 −0.622910
\(319\) 0 0
\(320\) 8.64063 0.483026
\(321\) −6.62655 −0.369858
\(322\) 18.0826 1.00770
\(323\) −27.7644 −1.54485
\(324\) 0.501557 0.0278643
\(325\) 3.21526 0.178350
\(326\) 0.558848 0.0309517
\(327\) −4.52478 −0.250221
\(328\) 36.9879 2.04231
\(329\) −0.861192 −0.0474791
\(330\) 8.36256 0.460344
\(331\) 17.8368 0.980399 0.490200 0.871610i \(-0.336924\pi\)
0.490200 + 0.871610i \(0.336924\pi\)
\(332\) −1.71824 −0.0943008
\(333\) −3.97515 −0.217837
\(334\) −15.8760 −0.868695
\(335\) −12.9846 −0.709423
\(336\) 17.0004 0.927450
\(337\) 9.69957 0.528369 0.264185 0.964472i \(-0.414897\pi\)
0.264185 + 0.964472i \(0.414897\pi\)
\(338\) −3.56781 −0.194063
\(339\) 11.3583 0.616898
\(340\) 1.17363 0.0636490
\(341\) −15.6388 −0.846888
\(342\) −9.46462 −0.511788
\(343\) −3.59262 −0.193983
\(344\) 25.5378 1.37691
\(345\) −4.32675 −0.232944
\(346\) −6.71808 −0.361166
\(347\) 27.8087 1.49285 0.746425 0.665469i \(-0.231769\pi\)
0.746425 + 0.665469i \(0.231769\pi\)
\(348\) 0 0
\(349\) −31.0380 −1.66142 −0.830712 0.556703i \(-0.812066\pi\)
−0.830712 + 0.556703i \(0.812066\pi\)
\(350\) −5.17848 −0.276801
\(351\) −17.7872 −0.949409
\(352\) 5.78250 0.308208
\(353\) 5.96567 0.317520 0.158760 0.987317i \(-0.449250\pi\)
0.158760 + 0.987317i \(0.449250\pi\)
\(354\) −7.69079 −0.408761
\(355\) 7.50217 0.398174
\(356\) −1.97473 −0.104660
\(357\) 27.5693 1.45912
\(358\) −6.13740 −0.324372
\(359\) 13.9053 0.733894 0.366947 0.930242i \(-0.380403\pi\)
0.366947 + 0.930242i \(0.380403\pi\)
\(360\) 4.32598 0.227999
\(361\) 4.24805 0.223582
\(362\) 1.85167 0.0973216
\(363\) 17.7913 0.933799
\(364\) 2.53209 0.132718
\(365\) 3.53453 0.185006
\(366\) −15.7100 −0.821175
\(367\) 17.4703 0.911942 0.455971 0.889995i \(-0.349292\pi\)
0.455971 + 0.889995i \(0.349292\pi\)
\(368\) 12.3990 0.646344
\(369\) 18.3418 0.954838
\(370\) 3.63743 0.189101
\(371\) 25.8456 1.34184
\(372\) 0.784301 0.0406641
\(373\) 1.44817 0.0749835 0.0374917 0.999297i \(-0.488063\pi\)
0.0374917 + 0.999297i \(0.488063\pi\)
\(374\) −38.8625 −2.00953
\(375\) 1.23909 0.0639864
\(376\) −0.658300 −0.0339492
\(377\) 0 0
\(378\) 28.6479 1.47349
\(379\) 4.09290 0.210238 0.105119 0.994460i \(-0.466478\pi\)
0.105119 + 0.994460i \(0.466478\pi\)
\(380\) −0.982719 −0.0504124
\(381\) −7.72987 −0.396013
\(382\) −33.5743 −1.71781
\(383\) 0.300571 0.0153585 0.00767924 0.999971i \(-0.497556\pi\)
0.00767924 + 0.999971i \(0.497556\pi\)
\(384\) 11.5034 0.587030
\(385\) −19.4575 −0.991646
\(386\) −15.5018 −0.789022
\(387\) 12.6639 0.643742
\(388\) 3.19629 0.162267
\(389\) −17.2457 −0.874393 −0.437197 0.899366i \(-0.644029\pi\)
−0.437197 + 0.899366i \(0.644029\pi\)
\(390\) 5.33943 0.270373
\(391\) 20.1073 1.01687
\(392\) −23.4214 −1.18296
\(393\) 0.810473 0.0408830
\(394\) −29.7304 −1.49780
\(395\) −4.45093 −0.223951
\(396\) 1.50325 0.0755410
\(397\) −27.2974 −1.37002 −0.685008 0.728536i \(-0.740201\pi\)
−0.685008 + 0.728536i \(0.740201\pi\)
\(398\) 27.5696 1.38194
\(399\) −23.0847 −1.15568
\(400\) −3.55083 −0.177541
\(401\) −8.97403 −0.448142 −0.224071 0.974573i \(-0.571935\pi\)
−0.224071 + 0.974573i \(0.571935\pi\)
\(402\) −21.5629 −1.07546
\(403\) −9.98525 −0.497401
\(404\) 0.862417 0.0429069
\(405\) −2.46084 −0.122280
\(406\) 0 0
\(407\) 13.6672 0.677458
\(408\) 21.0741 1.04332
\(409\) 15.8156 0.782030 0.391015 0.920384i \(-0.372124\pi\)
0.391015 + 0.920384i \(0.372124\pi\)
\(410\) −16.7836 −0.828881
\(411\) −3.23137 −0.159392
\(412\) 0.394869 0.0194538
\(413\) 17.8945 0.880529
\(414\) 6.85437 0.336874
\(415\) 8.43040 0.413832
\(416\) 3.69208 0.181019
\(417\) 7.27235 0.356129
\(418\) 32.5409 1.59163
\(419\) −39.1991 −1.91500 −0.957500 0.288434i \(-0.906865\pi\)
−0.957500 + 0.288434i \(0.906865\pi\)
\(420\) 0.975813 0.0476148
\(421\) 39.5568 1.92788 0.963941 0.266115i \(-0.0857402\pi\)
0.963941 + 0.266115i \(0.0857402\pi\)
\(422\) 5.86148 0.285332
\(423\) −0.326443 −0.0158722
\(424\) 19.7565 0.959462
\(425\) −5.75831 −0.279319
\(426\) 12.4585 0.603617
\(427\) 36.5531 1.76893
\(428\) 1.08998 0.0526864
\(429\) 20.0622 0.968614
\(430\) −11.5880 −0.558823
\(431\) −3.11697 −0.150139 −0.0750697 0.997178i \(-0.523918\pi\)
−0.0750697 + 0.997178i \(0.523918\pi\)
\(432\) 19.6436 0.945103
\(433\) −2.09593 −0.100724 −0.0503621 0.998731i \(-0.516038\pi\)
−0.0503621 + 0.998731i \(0.516038\pi\)
\(434\) 16.0822 0.771970
\(435\) 0 0
\(436\) 0.744270 0.0356441
\(437\) −16.8365 −0.805398
\(438\) 5.86963 0.280462
\(439\) 3.10731 0.148304 0.0741519 0.997247i \(-0.476375\pi\)
0.0741519 + 0.997247i \(0.476375\pi\)
\(440\) −14.8734 −0.709062
\(441\) −11.6144 −0.553066
\(442\) −24.8134 −1.18025
\(443\) 11.3167 0.537672 0.268836 0.963186i \(-0.413361\pi\)
0.268836 + 0.963186i \(0.413361\pi\)
\(444\) −0.685423 −0.0325288
\(445\) 9.68882 0.459294
\(446\) −0.677152 −0.0320641
\(447\) 12.8871 0.609539
\(448\) −33.3866 −1.57737
\(449\) 35.1123 1.65705 0.828526 0.559951i \(-0.189180\pi\)
0.828526 + 0.559951i \(0.189180\pi\)
\(450\) −1.96295 −0.0925345
\(451\) −63.0621 −2.96948
\(452\) −1.86830 −0.0878772
\(453\) −4.31215 −0.202603
\(454\) −3.27749 −0.153820
\(455\) −12.4235 −0.582421
\(456\) −17.6460 −0.826352
\(457\) 33.2957 1.55751 0.778754 0.627330i \(-0.215852\pi\)
0.778754 + 0.627330i \(0.215852\pi\)
\(458\) 14.7710 0.690203
\(459\) 31.8556 1.48689
\(460\) 0.711695 0.0331830
\(461\) −31.9796 −1.48944 −0.744719 0.667379i \(-0.767416\pi\)
−0.744719 + 0.667379i \(0.767416\pi\)
\(462\) −32.3122 −1.50330
\(463\) −21.7185 −1.00934 −0.504672 0.863311i \(-0.668387\pi\)
−0.504672 + 0.863311i \(0.668387\pi\)
\(464\) 0 0
\(465\) −3.84810 −0.178451
\(466\) 14.8164 0.686357
\(467\) −17.1624 −0.794179 −0.397089 0.917780i \(-0.629980\pi\)
−0.397089 + 0.917780i \(0.629980\pi\)
\(468\) 0.959812 0.0443673
\(469\) 50.1712 2.31669
\(470\) 0.298709 0.0137784
\(471\) 11.5431 0.531877
\(472\) 13.6786 0.629610
\(473\) −43.5405 −2.00199
\(474\) −7.39146 −0.339501
\(475\) 4.82162 0.221231
\(476\) −4.53480 −0.207852
\(477\) 9.79703 0.448575
\(478\) 16.9395 0.774794
\(479\) −26.1468 −1.19468 −0.597339 0.801989i \(-0.703775\pi\)
−0.597339 + 0.801989i \(0.703775\pi\)
\(480\) 1.42285 0.0649439
\(481\) 8.72640 0.397890
\(482\) 27.5349 1.25418
\(483\) 16.7182 0.760702
\(484\) −2.92644 −0.133020
\(485\) −15.6823 −0.712097
\(486\) 18.1561 0.823578
\(487\) −23.0580 −1.04486 −0.522429 0.852683i \(-0.674974\pi\)
−0.522429 + 0.852683i \(0.674974\pi\)
\(488\) 27.9414 1.26485
\(489\) 0.516680 0.0233651
\(490\) 10.6276 0.480108
\(491\) −2.13628 −0.0964091 −0.0482046 0.998837i \(-0.515350\pi\)
−0.0482046 + 0.998837i \(0.515350\pi\)
\(492\) 3.16263 0.142582
\(493\) 0 0
\(494\) 20.7771 0.934806
\(495\) −7.37555 −0.331506
\(496\) 11.0274 0.495145
\(497\) −28.9877 −1.30028
\(498\) 14.0000 0.627354
\(499\) 9.64391 0.431721 0.215860 0.976424i \(-0.430744\pi\)
0.215860 + 0.976424i \(0.430744\pi\)
\(500\) −0.203815 −0.00911488
\(501\) −14.6780 −0.655767
\(502\) 9.31954 0.415951
\(503\) −33.7545 −1.50504 −0.752519 0.658571i \(-0.771161\pi\)
−0.752519 + 0.658571i \(0.771161\pi\)
\(504\) −16.7152 −0.744554
\(505\) −4.23137 −0.188294
\(506\) −23.5664 −1.04766
\(507\) −3.29860 −0.146496
\(508\) 1.27147 0.0564122
\(509\) 22.8073 1.01092 0.505459 0.862851i \(-0.331323\pi\)
0.505459 + 0.862851i \(0.331323\pi\)
\(510\) −9.56256 −0.423437
\(511\) −13.6571 −0.604154
\(512\) −25.0528 −1.10719
\(513\) −26.6738 −1.17768
\(514\) −27.6344 −1.21890
\(515\) −1.93739 −0.0853717
\(516\) 2.18360 0.0961275
\(517\) 1.12236 0.0493615
\(518\) −14.0547 −0.617528
\(519\) −6.21117 −0.272640
\(520\) −9.49657 −0.416452
\(521\) −34.9903 −1.53295 −0.766476 0.642272i \(-0.777992\pi\)
−0.766476 + 0.642272i \(0.777992\pi\)
\(522\) 0 0
\(523\) −21.9987 −0.961936 −0.480968 0.876738i \(-0.659715\pi\)
−0.480968 + 0.876738i \(0.659715\pi\)
\(524\) −0.133313 −0.00582379
\(525\) −4.78774 −0.208954
\(526\) 28.8363 1.25732
\(527\) 17.8829 0.778992
\(528\) −22.1561 −0.964221
\(529\) −10.8068 −0.469863
\(530\) −8.96470 −0.389402
\(531\) 6.78306 0.294360
\(532\) 3.79714 0.164627
\(533\) −40.2647 −1.74406
\(534\) 16.0898 0.696272
\(535\) −5.34791 −0.231210
\(536\) 38.3512 1.65652
\(537\) −5.67430 −0.244864
\(538\) 29.1203 1.25546
\(539\) 39.9321 1.72000
\(540\) 1.12753 0.0485211
\(541\) 38.0683 1.63669 0.818343 0.574730i \(-0.194893\pi\)
0.818343 + 0.574730i \(0.194893\pi\)
\(542\) −4.96555 −0.213288
\(543\) 1.71195 0.0734669
\(544\) −6.61227 −0.283499
\(545\) −3.65169 −0.156421
\(546\) −20.6311 −0.882928
\(547\) −36.8179 −1.57422 −0.787110 0.616813i \(-0.788424\pi\)
−0.787110 + 0.616813i \(0.788424\pi\)
\(548\) 0.531519 0.0227054
\(549\) 13.8558 0.591351
\(550\) 6.74894 0.287776
\(551\) 0 0
\(552\) 12.7794 0.543929
\(553\) 17.1980 0.731333
\(554\) 3.57161 0.151743
\(555\) 3.36297 0.142750
\(556\) −1.19621 −0.0507306
\(557\) 16.1095 0.682581 0.341290 0.939958i \(-0.389136\pi\)
0.341290 + 0.939958i \(0.389136\pi\)
\(558\) 6.09611 0.258069
\(559\) −27.8003 −1.17583
\(560\) 13.7201 0.579779
\(561\) −35.9301 −1.51697
\(562\) 0.355280 0.0149866
\(563\) 2.46470 0.103875 0.0519374 0.998650i \(-0.483460\pi\)
0.0519374 + 0.998650i \(0.483460\pi\)
\(564\) −0.0562876 −0.00237014
\(565\) 9.16662 0.385643
\(566\) 10.2616 0.431325
\(567\) 9.50847 0.399318
\(568\) −22.1584 −0.929745
\(569\) −25.1103 −1.05268 −0.526340 0.850274i \(-0.676436\pi\)
−0.526340 + 0.850274i \(0.676436\pi\)
\(570\) 8.00705 0.335378
\(571\) −36.9106 −1.54466 −0.772330 0.635222i \(-0.780909\pi\)
−0.772330 + 0.635222i \(0.780909\pi\)
\(572\) −3.29999 −0.137979
\(573\) −31.0410 −1.29675
\(574\) 64.8501 2.70679
\(575\) −3.49187 −0.145621
\(576\) −12.6555 −0.527313
\(577\) 20.4809 0.852630 0.426315 0.904575i \(-0.359812\pi\)
0.426315 + 0.904575i \(0.359812\pi\)
\(578\) 21.6555 0.900748
\(579\) −14.3321 −0.595623
\(580\) 0 0
\(581\) −32.5743 −1.35141
\(582\) −26.0429 −1.07951
\(583\) −33.6837 −1.39504
\(584\) −10.4396 −0.431992
\(585\) −4.70923 −0.194703
\(586\) −7.27328 −0.300457
\(587\) 1.31085 0.0541046 0.0270523 0.999634i \(-0.491388\pi\)
0.0270523 + 0.999634i \(0.491388\pi\)
\(588\) −2.00263 −0.0825872
\(589\) −14.9740 −0.616991
\(590\) −6.20679 −0.255530
\(591\) −27.4871 −1.13067
\(592\) −9.63716 −0.396085
\(593\) 7.19903 0.295629 0.147814 0.989015i \(-0.452776\pi\)
0.147814 + 0.989015i \(0.452776\pi\)
\(594\) −37.3359 −1.53191
\(595\) 22.2496 0.912144
\(596\) −2.11977 −0.0868290
\(597\) 25.4894 1.04321
\(598\) −15.0470 −0.615317
\(599\) −40.1490 −1.64044 −0.820221 0.572046i \(-0.806150\pi\)
−0.820221 + 0.572046i \(0.806150\pi\)
\(600\) −3.65977 −0.149410
\(601\) −25.8016 −1.05247 −0.526234 0.850340i \(-0.676397\pi\)
−0.526234 + 0.850340i \(0.676397\pi\)
\(602\) 44.7750 1.82489
\(603\) 19.0179 0.774468
\(604\) 0.709295 0.0288608
\(605\) 14.3583 0.583748
\(606\) −7.02684 −0.285446
\(607\) −23.2336 −0.943022 −0.471511 0.881860i \(-0.656291\pi\)
−0.471511 + 0.881860i \(0.656291\pi\)
\(608\) 5.53667 0.224542
\(609\) 0 0
\(610\) −12.6786 −0.513343
\(611\) 0.716620 0.0289914
\(612\) −1.71896 −0.0694848
\(613\) 43.4106 1.75334 0.876669 0.481095i \(-0.159761\pi\)
0.876669 + 0.481095i \(0.159761\pi\)
\(614\) 31.2463 1.26100
\(615\) −15.5171 −0.625712
\(616\) 57.4695 2.31551
\(617\) −2.92095 −0.117593 −0.0587966 0.998270i \(-0.518726\pi\)
−0.0587966 + 0.998270i \(0.518726\pi\)
\(618\) −3.21734 −0.129420
\(619\) 6.78634 0.272766 0.136383 0.990656i \(-0.456452\pi\)
0.136383 + 0.990656i \(0.456452\pi\)
\(620\) 0.632964 0.0254205
\(621\) 19.3174 0.775181
\(622\) 39.9460 1.60169
\(623\) −37.4367 −1.49987
\(624\) −14.1465 −0.566314
\(625\) 1.00000 0.0400000
\(626\) −24.9343 −0.996574
\(627\) 30.0855 1.20150
\(628\) −1.89869 −0.0757660
\(629\) −15.6284 −0.623145
\(630\) 7.58467 0.302180
\(631\) −13.0844 −0.520881 −0.260440 0.965490i \(-0.583868\pi\)
−0.260440 + 0.965490i \(0.583868\pi\)
\(632\) 13.1462 0.522929
\(633\) 5.41920 0.215394
\(634\) 4.56906 0.181461
\(635\) −6.23834 −0.247561
\(636\) 1.68927 0.0669840
\(637\) 25.4963 1.01020
\(638\) 0 0
\(639\) −10.9881 −0.434681
\(640\) 9.28373 0.366972
\(641\) −15.3430 −0.606012 −0.303006 0.952989i \(-0.597990\pi\)
−0.303006 + 0.952989i \(0.597990\pi\)
\(642\) −8.88102 −0.350506
\(643\) −14.6890 −0.579277 −0.289638 0.957136i \(-0.593535\pi\)
−0.289638 + 0.957136i \(0.593535\pi\)
\(644\) −2.74993 −0.108362
\(645\) −10.7136 −0.421848
\(646\) −37.2104 −1.46402
\(647\) 7.17088 0.281916 0.140958 0.990016i \(-0.454982\pi\)
0.140958 + 0.990016i \(0.454982\pi\)
\(648\) 7.26833 0.285527
\(649\) −23.3212 −0.915439
\(650\) 4.30915 0.169019
\(651\) 14.8687 0.582751
\(652\) −0.0849873 −0.00332836
\(653\) 8.03005 0.314240 0.157120 0.987580i \(-0.449779\pi\)
0.157120 + 0.987580i \(0.449779\pi\)
\(654\) −6.06420 −0.237129
\(655\) 0.654087 0.0255573
\(656\) 44.4670 1.73615
\(657\) −5.17685 −0.201968
\(658\) −1.15419 −0.0449948
\(659\) −37.4528 −1.45896 −0.729478 0.684005i \(-0.760237\pi\)
−0.729478 + 0.684005i \(0.760237\pi\)
\(660\) −1.27174 −0.0495026
\(661\) −23.7604 −0.924171 −0.462085 0.886835i \(-0.652899\pi\)
−0.462085 + 0.886835i \(0.652899\pi\)
\(662\) 23.9052 0.929102
\(663\) −22.9411 −0.890959
\(664\) −24.9000 −0.966306
\(665\) −18.6303 −0.722452
\(666\) −5.32757 −0.206439
\(667\) 0 0
\(668\) 2.41435 0.0934142
\(669\) −0.626058 −0.0242048
\(670\) −17.4022 −0.672305
\(671\) −47.6384 −1.83906
\(672\) −5.49776 −0.212081
\(673\) −26.7661 −1.03176 −0.515879 0.856661i \(-0.672535\pi\)
−0.515879 + 0.856661i \(0.672535\pi\)
\(674\) 12.9995 0.500724
\(675\) −5.53211 −0.212931
\(676\) 0.542578 0.0208684
\(677\) −7.77181 −0.298695 −0.149347 0.988785i \(-0.547717\pi\)
−0.149347 + 0.988785i \(0.547717\pi\)
\(678\) 15.2226 0.584620
\(679\) 60.5950 2.32542
\(680\) 17.0077 0.652216
\(681\) −3.03019 −0.116117
\(682\) −20.9594 −0.802577
\(683\) −11.3325 −0.433627 −0.216814 0.976213i \(-0.569566\pi\)
−0.216814 + 0.976213i \(0.569566\pi\)
\(684\) 1.43934 0.0550346
\(685\) −2.60785 −0.0996409
\(686\) −4.81489 −0.183834
\(687\) 13.6564 0.521026
\(688\) 30.7017 1.17049
\(689\) −21.5068 −0.819344
\(690\) −5.79879 −0.220756
\(691\) 19.8571 0.755399 0.377700 0.925928i \(-0.376715\pi\)
0.377700 + 0.925928i \(0.376715\pi\)
\(692\) 1.02166 0.0388376
\(693\) 28.4984 1.08257
\(694\) 37.2698 1.41474
\(695\) 5.86910 0.222628
\(696\) 0 0
\(697\) 72.1114 2.73141
\(698\) −41.5976 −1.57449
\(699\) 13.6984 0.518123
\(700\) 0.787523 0.0297656
\(701\) 31.6059 1.19374 0.596869 0.802339i \(-0.296411\pi\)
0.596869 + 0.802339i \(0.296411\pi\)
\(702\) −23.8387 −0.899734
\(703\) 13.0862 0.493554
\(704\) 43.5117 1.63991
\(705\) 0.276170 0.0104012
\(706\) 7.99529 0.300907
\(707\) 16.3496 0.614891
\(708\) 1.16958 0.0439556
\(709\) 39.2218 1.47301 0.736503 0.676434i \(-0.236476\pi\)
0.736503 + 0.676434i \(0.236476\pi\)
\(710\) 10.0546 0.377341
\(711\) 6.51906 0.244484
\(712\) −28.6168 −1.07246
\(713\) 10.8443 0.406122
\(714\) 36.9489 1.38278
\(715\) 16.1911 0.605512
\(716\) 0.933352 0.0348810
\(717\) 15.6613 0.584882
\(718\) 18.6361 0.695495
\(719\) −1.67354 −0.0624125 −0.0312063 0.999513i \(-0.509935\pi\)
−0.0312063 + 0.999513i \(0.509935\pi\)
\(720\) 5.20073 0.193820
\(721\) 7.48590 0.278790
\(722\) 5.69332 0.211883
\(723\) 25.4573 0.946766
\(724\) −0.281595 −0.0104654
\(725\) 0 0
\(726\) 23.8442 0.884940
\(727\) 38.5023 1.42797 0.713986 0.700160i \(-0.246888\pi\)
0.713986 + 0.700160i \(0.246888\pi\)
\(728\) 36.6939 1.35997
\(729\) 24.1687 0.895136
\(730\) 4.73704 0.175326
\(731\) 49.7884 1.84149
\(732\) 2.38911 0.0883042
\(733\) 11.1932 0.413429 0.206715 0.978401i \(-0.433723\pi\)
0.206715 + 0.978401i \(0.433723\pi\)
\(734\) 23.4140 0.864227
\(735\) 9.82574 0.362428
\(736\) −4.00971 −0.147800
\(737\) −65.3865 −2.40854
\(738\) 24.5821 0.904878
\(739\) −45.2165 −1.66331 −0.831657 0.555289i \(-0.812608\pi\)
−0.831657 + 0.555289i \(0.812608\pi\)
\(740\) −0.553166 −0.0203348
\(741\) 19.2094 0.705673
\(742\) 34.6388 1.27163
\(743\) 23.9297 0.877895 0.438947 0.898513i \(-0.355351\pi\)
0.438947 + 0.898513i \(0.355351\pi\)
\(744\) 11.3657 0.416688
\(745\) 10.4004 0.381043
\(746\) 1.94087 0.0710601
\(747\) −12.3476 −0.451775
\(748\) 5.91005 0.216093
\(749\) 20.6638 0.755040
\(750\) 1.66065 0.0606385
\(751\) −43.9608 −1.60415 −0.802077 0.597221i \(-0.796272\pi\)
−0.802077 + 0.597221i \(0.796272\pi\)
\(752\) −0.791413 −0.0288599
\(753\) 8.61633 0.313997
\(754\) 0 0
\(755\) −3.48009 −0.126653
\(756\) −4.35666 −0.158450
\(757\) 42.1923 1.53351 0.766753 0.641942i \(-0.221871\pi\)
0.766753 + 0.641942i \(0.221871\pi\)
\(758\) 5.48538 0.199238
\(759\) −21.7882 −0.790862
\(760\) −14.2411 −0.516579
\(761\) 14.5122 0.526066 0.263033 0.964787i \(-0.415277\pi\)
0.263033 + 0.964787i \(0.415277\pi\)
\(762\) −10.3597 −0.375293
\(763\) 14.1098 0.510809
\(764\) 5.10585 0.184723
\(765\) 8.43392 0.304929
\(766\) 0.402831 0.0145549
\(767\) −14.8904 −0.537663
\(768\) −5.99601 −0.216362
\(769\) −11.9771 −0.431907 −0.215953 0.976404i \(-0.569286\pi\)
−0.215953 + 0.976404i \(0.569286\pi\)
\(770\) −26.0773 −0.939760
\(771\) −25.5492 −0.920133
\(772\) 2.35746 0.0848467
\(773\) 20.5104 0.737709 0.368854 0.929487i \(-0.379750\pi\)
0.368854 + 0.929487i \(0.379750\pi\)
\(774\) 16.9724 0.610059
\(775\) −3.10558 −0.111556
\(776\) 46.3192 1.66276
\(777\) −12.9942 −0.466164
\(778\) −23.1130 −0.828643
\(779\) −60.3812 −2.16338
\(780\) −0.811999 −0.0290742
\(781\) 37.7787 1.35183
\(782\) 26.9481 0.963663
\(783\) 0 0
\(784\) −28.1573 −1.00562
\(785\) 9.31575 0.332493
\(786\) 1.08621 0.0387439
\(787\) −11.3492 −0.404555 −0.202278 0.979328i \(-0.564834\pi\)
−0.202278 + 0.979328i \(0.564834\pi\)
\(788\) 4.52128 0.161064
\(789\) 26.6604 0.949136
\(790\) −5.96522 −0.212233
\(791\) −35.4190 −1.25935
\(792\) 21.7844 0.774074
\(793\) −30.4168 −1.08013
\(794\) −36.5844 −1.29833
\(795\) −8.28826 −0.293954
\(796\) −4.19268 −0.148606
\(797\) 4.45253 0.157717 0.0788584 0.996886i \(-0.474872\pi\)
0.0788584 + 0.996886i \(0.474872\pi\)
\(798\) −30.9385 −1.09521
\(799\) −1.28342 −0.0454041
\(800\) 1.14830 0.0405985
\(801\) −14.1907 −0.501405
\(802\) −12.0272 −0.424694
\(803\) 17.7988 0.628107
\(804\) 3.27920 0.115648
\(805\) 13.4923 0.475540
\(806\) −13.3824 −0.471376
\(807\) 26.9230 0.947734
\(808\) 12.4978 0.439669
\(809\) −2.94380 −0.103499 −0.0517493 0.998660i \(-0.516480\pi\)
−0.0517493 + 0.998660i \(0.516480\pi\)
\(810\) −3.29807 −0.115882
\(811\) 52.6587 1.84910 0.924548 0.381066i \(-0.124443\pi\)
0.924548 + 0.381066i \(0.124443\pi\)
\(812\) 0 0
\(813\) −4.59087 −0.161009
\(814\) 18.3170 0.642011
\(815\) 0.416983 0.0146063
\(816\) 25.3354 0.886918
\(817\) −41.6894 −1.45853
\(818\) 21.1963 0.741113
\(819\) 18.1960 0.635821
\(820\) 2.55238 0.0891328
\(821\) −1.62029 −0.0565483 −0.0282742 0.999600i \(-0.509001\pi\)
−0.0282742 + 0.999600i \(0.509001\pi\)
\(822\) −4.33074 −0.151052
\(823\) −37.5426 −1.30865 −0.654326 0.756213i \(-0.727047\pi\)
−0.654326 + 0.756213i \(0.727047\pi\)
\(824\) 5.72227 0.199345
\(825\) 6.23970 0.217238
\(826\) 23.9825 0.834457
\(827\) 8.71039 0.302890 0.151445 0.988466i \(-0.451607\pi\)
0.151445 + 0.988466i \(0.451607\pi\)
\(828\) −1.04239 −0.0362254
\(829\) 1.94099 0.0674135 0.0337067 0.999432i \(-0.489269\pi\)
0.0337067 + 0.999432i \(0.489269\pi\)
\(830\) 11.2986 0.392179
\(831\) 3.30212 0.114549
\(832\) 27.7819 0.963163
\(833\) −45.6622 −1.58210
\(834\) 9.74654 0.337495
\(835\) −11.8458 −0.409941
\(836\) −4.94868 −0.171154
\(837\) 17.1804 0.593843
\(838\) −52.5353 −1.81480
\(839\) 36.1898 1.24941 0.624705 0.780861i \(-0.285219\pi\)
0.624705 + 0.780861i \(0.285219\pi\)
\(840\) 14.1410 0.487912
\(841\) 0 0
\(842\) 53.0148 1.82701
\(843\) 0.328473 0.0113132
\(844\) −0.891390 −0.0306829
\(845\) −2.66211 −0.0915794
\(846\) −0.437505 −0.0150417
\(847\) −55.4792 −1.90629
\(848\) 23.7514 0.815628
\(849\) 9.48726 0.325602
\(850\) −7.71740 −0.264704
\(851\) −9.47714 −0.324872
\(852\) −1.89464 −0.0649093
\(853\) 0.842759 0.0288555 0.0144278 0.999896i \(-0.495407\pi\)
0.0144278 + 0.999896i \(0.495407\pi\)
\(854\) 48.9891 1.67637
\(855\) −7.06200 −0.241515
\(856\) 15.7955 0.539881
\(857\) −18.7743 −0.641317 −0.320658 0.947195i \(-0.603904\pi\)
−0.320658 + 0.947195i \(0.603904\pi\)
\(858\) 26.8878 0.917934
\(859\) −32.2105 −1.09901 −0.549504 0.835491i \(-0.685183\pi\)
−0.549504 + 0.835491i \(0.685183\pi\)
\(860\) 1.76226 0.0600924
\(861\) 59.9568 2.04332
\(862\) −4.17742 −0.142284
\(863\) 47.1066 1.60353 0.801763 0.597642i \(-0.203896\pi\)
0.801763 + 0.597642i \(0.203896\pi\)
\(864\) −6.35252 −0.216117
\(865\) −5.01268 −0.170436
\(866\) −2.80901 −0.0954540
\(867\) 20.0214 0.679964
\(868\) −2.44572 −0.0830130
\(869\) −22.4136 −0.760328
\(870\) 0 0
\(871\) −41.7488 −1.41460
\(872\) 10.7856 0.365247
\(873\) 22.9691 0.777387
\(874\) −22.5646 −0.763257
\(875\) −3.86391 −0.130624
\(876\) −0.892630 −0.0301592
\(877\) −31.8345 −1.07498 −0.537488 0.843272i \(-0.680627\pi\)
−0.537488 + 0.843272i \(0.680627\pi\)
\(878\) 4.16448 0.140544
\(879\) −6.72448 −0.226811
\(880\) −17.8809 −0.602766
\(881\) 32.5720 1.09738 0.548689 0.836027i \(-0.315127\pi\)
0.548689 + 0.836027i \(0.315127\pi\)
\(882\) −15.5658 −0.524128
\(883\) 54.9398 1.84887 0.924435 0.381339i \(-0.124537\pi\)
0.924435 + 0.381339i \(0.124537\pi\)
\(884\) 3.77353 0.126917
\(885\) −5.73846 −0.192896
\(886\) 15.1668 0.509539
\(887\) 29.8115 1.00097 0.500486 0.865745i \(-0.333155\pi\)
0.500486 + 0.865745i \(0.333155\pi\)
\(888\) −9.93284 −0.333324
\(889\) 24.1044 0.808434
\(890\) 12.9851 0.435262
\(891\) −12.3921 −0.415150
\(892\) 0.102979 0.00344798
\(893\) 1.07465 0.0359617
\(894\) 17.2715 0.577646
\(895\) −4.57941 −0.153073
\(896\) −35.8715 −1.19838
\(897\) −13.9116 −0.464495
\(898\) 47.0581 1.57035
\(899\) 0 0
\(900\) 0.298518 0.00995060
\(901\) 38.5173 1.28320
\(902\) −84.5170 −2.81411
\(903\) 41.3965 1.37759
\(904\) −27.0745 −0.900484
\(905\) 1.38162 0.0459266
\(906\) −5.77922 −0.192002
\(907\) −31.3088 −1.03959 −0.519796 0.854290i \(-0.673992\pi\)
−0.519796 + 0.854290i \(0.673992\pi\)
\(908\) 0.498427 0.0165409
\(909\) 6.19749 0.205558
\(910\) −16.6502 −0.551947
\(911\) −30.4463 −1.00873 −0.504365 0.863490i \(-0.668273\pi\)
−0.504365 + 0.863490i \(0.668273\pi\)
\(912\) −21.2142 −0.702472
\(913\) 42.4530 1.40499
\(914\) 44.6235 1.47601
\(915\) −11.7220 −0.387516
\(916\) −2.24631 −0.0742203
\(917\) −2.52733 −0.0834598
\(918\) 42.6935 1.40910
\(919\) −38.2199 −1.26076 −0.630379 0.776287i \(-0.717101\pi\)
−0.630379 + 0.776287i \(0.717101\pi\)
\(920\) 10.3136 0.340028
\(921\) 28.8886 0.951911
\(922\) −42.8596 −1.41151
\(923\) 24.1214 0.793967
\(924\) 4.91390 0.161656
\(925\) 2.71406 0.0892377
\(926\) −29.1075 −0.956533
\(927\) 2.83760 0.0931991
\(928\) 0 0
\(929\) 7.40994 0.243112 0.121556 0.992585i \(-0.461212\pi\)
0.121556 + 0.992585i \(0.461212\pi\)
\(930\) −5.15730 −0.169114
\(931\) 38.2345 1.25308
\(932\) −2.25322 −0.0738067
\(933\) 36.9319 1.20910
\(934\) −23.0013 −0.752625
\(935\) −28.9971 −0.948308
\(936\) 13.9092 0.454635
\(937\) −37.5661 −1.22723 −0.613615 0.789605i \(-0.710285\pi\)
−0.613615 + 0.789605i \(0.710285\pi\)
\(938\) 67.2404 2.19548
\(939\) −23.0529 −0.752302
\(940\) −0.0454265 −0.00148165
\(941\) 43.2981 1.41148 0.705738 0.708473i \(-0.250615\pi\)
0.705738 + 0.708473i \(0.250615\pi\)
\(942\) 15.4702 0.504047
\(943\) 43.7287 1.42400
\(944\) 16.4445 0.535224
\(945\) 21.3756 0.695348
\(946\) −58.3537 −1.89724
\(947\) 14.5615 0.473185 0.236592 0.971609i \(-0.423969\pi\)
0.236592 + 0.971609i \(0.423969\pi\)
\(948\) 1.12406 0.0365079
\(949\) 11.3644 0.368905
\(950\) 6.46203 0.209656
\(951\) 4.22430 0.136982
\(952\) −65.7162 −2.12988
\(953\) −8.18056 −0.264994 −0.132497 0.991183i \(-0.542300\pi\)
−0.132497 + 0.991183i \(0.542300\pi\)
\(954\) 13.1302 0.425104
\(955\) −25.0514 −0.810644
\(956\) −2.57609 −0.0833166
\(957\) 0 0
\(958\) −35.0424 −1.13217
\(959\) 10.0765 0.325387
\(960\) 10.7065 0.345552
\(961\) −21.3554 −0.688882
\(962\) 11.6953 0.377071
\(963\) 7.83282 0.252409
\(964\) −4.18740 −0.134867
\(965\) −11.5666 −0.372343
\(966\) 22.4060 0.720900
\(967\) −21.7758 −0.700262 −0.350131 0.936701i \(-0.613863\pi\)
−0.350131 + 0.936701i \(0.613863\pi\)
\(968\) −42.4086 −1.36306
\(969\) −34.4027 −1.10517
\(970\) −21.0177 −0.674838
\(971\) −25.0348 −0.803404 −0.401702 0.915770i \(-0.631581\pi\)
−0.401702 + 0.915770i \(0.631581\pi\)
\(972\) −2.76111 −0.0885626
\(973\) −22.6777 −0.727012
\(974\) −30.9027 −0.990187
\(975\) 3.98400 0.127590
\(976\) 33.5913 1.07523
\(977\) 25.3391 0.810671 0.405335 0.914168i \(-0.367155\pi\)
0.405335 + 0.914168i \(0.367155\pi\)
\(978\) 0.692464 0.0221425
\(979\) 48.7900 1.55933
\(980\) −1.61621 −0.0516279
\(981\) 5.34846 0.170763
\(982\) −2.86309 −0.0913647
\(983\) 0.704210 0.0224608 0.0112304 0.999937i \(-0.496425\pi\)
0.0112304 + 0.999937i \(0.496425\pi\)
\(984\) 45.8313 1.46105
\(985\) −22.1833 −0.706817
\(986\) 0 0
\(987\) −1.06710 −0.0339660
\(988\) −3.15970 −0.100523
\(989\) 30.1919 0.960047
\(990\) −9.88485 −0.314161
\(991\) −27.1594 −0.862746 −0.431373 0.902174i \(-0.641971\pi\)
−0.431373 + 0.902174i \(0.641971\pi\)
\(992\) −3.56614 −0.113225
\(993\) 22.1014 0.701368
\(994\) −38.8499 −1.23224
\(995\) 20.5710 0.652145
\(996\) −2.12906 −0.0674618
\(997\) −5.42615 −0.171848 −0.0859239 0.996302i \(-0.527384\pi\)
−0.0859239 + 0.996302i \(0.527384\pi\)
\(998\) 12.9250 0.409132
\(999\) −15.0145 −0.475037
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4205.2.a.y.1.19 24
29.3 odd 28 145.2.m.a.96.3 yes 24
29.10 odd 28 145.2.m.a.71.3 24
29.28 even 2 inner 4205.2.a.y.1.6 24
145.3 even 28 725.2.p.b.299.7 48
145.32 even 28 725.2.p.b.299.2 48
145.39 odd 28 725.2.q.b.651.2 24
145.68 even 28 725.2.p.b.274.2 48
145.97 even 28 725.2.p.b.274.7 48
145.119 odd 28 725.2.q.b.676.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.m.a.71.3 24 29.10 odd 28
145.2.m.a.96.3 yes 24 29.3 odd 28
725.2.p.b.274.2 48 145.68 even 28
725.2.p.b.274.7 48 145.97 even 28
725.2.p.b.299.2 48 145.32 even 28
725.2.p.b.299.7 48 145.3 even 28
725.2.q.b.651.2 24 145.39 odd 28
725.2.q.b.676.2 24 145.119 odd 28
4205.2.a.y.1.6 24 29.28 even 2 inner
4205.2.a.y.1.19 24 1.1 even 1 trivial