Properties

Label 725.2.p.b.274.2
Level $725$
Weight $2$
Character 725.274
Analytic conductor $5.789$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(149,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.p (of order \(14\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{14})\)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 274.2
Character \(\chi\) \(=\) 725.274
Dual form 725.2.p.b.299.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20749 - 0.581499i) q^{2} +(-0.772561 + 0.968761i) q^{3} +(-0.127077 - 0.159349i) q^{4} +(1.49620 - 0.720531i) q^{6} +(3.02093 + 2.40911i) q^{7} +(0.657236 + 2.87954i) q^{8} +(0.325916 + 1.42793i) q^{9} +(-4.90945 - 1.12055i) q^{11} +0.252546 q^{12} +(3.13465 + 0.715462i) q^{13} +(-2.24686 - 4.66565i) q^{14} +(0.790134 - 3.46180i) q^{16} -5.75831 q^{17} +(0.436798 - 1.91374i) q^{18} +(3.76970 - 3.00623i) q^{19} +(-4.66770 + 1.06537i) q^{21} +(5.27653 + 4.20790i) q^{22} +(1.51507 + 3.14607i) q^{23} +(-3.29734 - 1.58792i) q^{24} +(-3.36903 - 2.68671i) q^{26} +(-4.98426 - 2.40029i) q^{27} -0.787523i q^{28} +(-2.84467 - 4.57251i) q^{29} +(-1.34746 + 2.79803i) q^{31} +(0.715953 - 0.897777i) q^{32} +(4.87839 - 3.89039i) q^{33} +(6.95313 + 3.34845i) q^{34} +(0.186123 - 0.233391i) q^{36} +(0.603935 + 2.64601i) q^{37} +(-6.30001 + 1.43794i) q^{38} +(-3.11482 + 2.48398i) q^{39} +12.5230i q^{41} +(6.25574 + 1.42783i) q^{42} +(-7.79009 + 3.75151i) q^{43} +(0.445317 + 0.924711i) q^{44} -4.67987i q^{46} +(0.0495957 - 0.217293i) q^{47} +(2.74323 + 3.43991i) q^{48} +(1.76454 + 7.73097i) q^{49} +(4.44865 - 5.57843i) q^{51} +(-0.284332 - 0.590421i) q^{52} +(-2.90224 + 6.02657i) q^{53} +(4.62270 + 5.79669i) q^{54} +(-4.95166 + 10.2822i) q^{56} +5.97443i q^{57} +(0.776019 + 7.17546i) q^{58} +4.63118 q^{59} +(-7.39623 - 5.89830i) q^{61} +(3.25411 - 2.59506i) q^{62} +(-2.45547 + 5.09883i) q^{63} +(-7.78494 + 3.74903i) q^{64} +(-8.15289 + 1.86084i) q^{66} +(-12.6590 + 2.88934i) q^{67} +(0.731747 + 0.917581i) q^{68} +(-4.21827 - 0.962792i) q^{69} +(1.66939 - 7.31408i) q^{71} +(-3.89758 + 1.87697i) q^{72} +(-3.18450 + 1.53357i) q^{73} +(0.809405 - 3.54623i) q^{74} +(-0.958080 - 0.218676i) q^{76} +(-12.1315 - 15.2125i) q^{77} +(5.20556 - 1.18814i) q^{78} +(4.33934 - 0.990426i) q^{79} +(2.21714 - 1.06772i) q^{81} +(7.28211 - 15.1215i) q^{82} +(-6.59115 + 5.25627i) q^{83} +(0.762921 + 0.608409i) q^{84} +11.5880 q^{86} +(6.62735 + 0.776735i) q^{87} -14.8734i q^{88} +(-4.20382 + 8.72932i) q^{89} +(7.74590 + 9.71306i) q^{91} +(0.308793 - 0.641215i) q^{92} +(-1.66963 - 3.46702i) q^{93} +(-0.186242 + 0.233540i) q^{94} +(0.316614 + 1.38718i) q^{96} +(9.77776 + 12.2609i) q^{97} +(2.36487 - 10.3612i) q^{98} -7.37555i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 8 q^{6} + 8 q^{9} - 28 q^{11} + 84 q^{14} - 20 q^{16} + 98 q^{21} - 76 q^{24} - 14 q^{29} + 14 q^{31} - 40 q^{34} - 56 q^{36} - 14 q^{39} + 42 q^{44} + 4 q^{49} + 12 q^{51} - 214 q^{54} - 84 q^{56}+ \cdots - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{9}{14}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20749 0.581499i −0.853828 0.411182i −0.0448309 0.998995i \(-0.514275\pi\)
−0.808997 + 0.587813i \(0.799989\pi\)
\(3\) −0.772561 + 0.968761i −0.446038 + 0.559314i −0.953124 0.302582i \(-0.902152\pi\)
0.507085 + 0.861896i \(0.330723\pi\)
\(4\) −0.127077 0.159349i −0.0635383 0.0796745i
\(5\) 0 0
\(6\) 1.49620 0.720531i 0.610820 0.294155i
\(7\) 3.02093 + 2.40911i 1.14180 + 0.910557i 0.996884 0.0788865i \(-0.0251365\pi\)
0.144919 + 0.989444i \(0.453708\pi\)
\(8\) 0.657236 + 2.87954i 0.232368 + 1.01807i
\(9\) 0.325916 + 1.42793i 0.108639 + 0.475976i
\(10\) 0 0
\(11\) −4.90945 1.12055i −1.48025 0.337858i −0.595287 0.803513i \(-0.702962\pi\)
−0.884967 + 0.465655i \(0.845819\pi\)
\(12\) 0.252546 0.0729036
\(13\) 3.13465 + 0.715462i 0.869394 + 0.198434i 0.633874 0.773436i \(-0.281464\pi\)
0.235520 + 0.971870i \(0.424321\pi\)
\(14\) −2.24686 4.66565i −0.600498 1.24695i
\(15\) 0 0
\(16\) 0.790134 3.46180i 0.197533 0.865451i
\(17\) −5.75831 −1.39660 −0.698298 0.715807i \(-0.746059\pi\)
−0.698298 + 0.715807i \(0.746059\pi\)
\(18\) 0.436798 1.91374i 0.102954 0.451072i
\(19\) 3.76970 3.00623i 0.864828 0.689677i −0.0870338 0.996205i \(-0.527739\pi\)
0.951862 + 0.306528i \(0.0991674\pi\)
\(20\) 0 0
\(21\) −4.66770 + 1.06537i −1.01858 + 0.232483i
\(22\) 5.27653 + 4.20790i 1.12496 + 0.897126i
\(23\) 1.51507 + 3.14607i 0.315913 + 0.656000i 0.997099 0.0761100i \(-0.0242500\pi\)
−0.681186 + 0.732110i \(0.738536\pi\)
\(24\) −3.29734 1.58792i −0.673067 0.324132i
\(25\) 0 0
\(26\) −3.36903 2.68671i −0.660721 0.526907i
\(27\) −4.98426 2.40029i −0.959222 0.461937i
\(28\) 0.787523i 0.148828i
\(29\) −2.84467 4.57251i −0.528242 0.849094i
\(30\) 0 0
\(31\) −1.34746 + 2.79803i −0.242011 + 0.502542i −0.986227 0.165398i \(-0.947109\pi\)
0.744216 + 0.667939i \(0.232823\pi\)
\(32\) 0.715953 0.897777i 0.126564 0.158706i
\(33\) 4.87839 3.89039i 0.849219 0.677230i
\(34\) 6.95313 + 3.34845i 1.19245 + 0.574255i
\(35\) 0 0
\(36\) 0.186123 0.233391i 0.0310205 0.0388985i
\(37\) 0.603935 + 2.64601i 0.0992863 + 0.435002i 1.00000 0.000588127i \(0.000187207\pi\)
−0.900714 + 0.434414i \(0.856956\pi\)
\(38\) −6.30001 + 1.43794i −1.02200 + 0.233264i
\(39\) −3.11482 + 2.48398i −0.498770 + 0.397756i
\(40\) 0 0
\(41\) 12.5230i 1.95576i 0.209157 + 0.977882i \(0.432928\pi\)
−0.209157 + 0.977882i \(0.567072\pi\)
\(42\) 6.25574 + 1.42783i 0.965281 + 0.220319i
\(43\) −7.79009 + 3.75151i −1.18798 + 0.572100i −0.920226 0.391388i \(-0.871995\pi\)
−0.267752 + 0.963488i \(0.586281\pi\)
\(44\) 0.445317 + 0.924711i 0.0671341 + 0.139405i
\(45\) 0 0
\(46\) 4.67987i 0.690009i
\(47\) 0.0495957 0.217293i 0.00723428 0.0316954i −0.971182 0.238339i \(-0.923397\pi\)
0.978416 + 0.206644i \(0.0662541\pi\)
\(48\) 2.74323 + 3.43991i 0.395952 + 0.496508i
\(49\) 1.76454 + 7.73097i 0.252078 + 1.10442i
\(50\) 0 0
\(51\) 4.44865 5.57843i 0.622935 0.781136i
\(52\) −0.284332 0.590421i −0.0394297 0.0818767i
\(53\) −2.90224 + 6.02657i −0.398653 + 0.827812i 0.600940 + 0.799294i \(0.294793\pi\)
−0.999593 + 0.0285181i \(0.990921\pi\)
\(54\) 4.62270 + 5.79669i 0.629070 + 0.788829i
\(55\) 0 0
\(56\) −4.95166 + 10.2822i −0.661693 + 1.37402i
\(57\) 5.97443i 0.791333i
\(58\) 0.776019 + 7.17546i 0.101896 + 0.942183i
\(59\) 4.63118 0.602928 0.301464 0.953478i \(-0.402525\pi\)
0.301464 + 0.953478i \(0.402525\pi\)
\(60\) 0 0
\(61\) −7.39623 5.89830i −0.946990 0.755199i 0.0226481 0.999743i \(-0.492790\pi\)
−0.969638 + 0.244544i \(0.921362\pi\)
\(62\) 3.25411 2.59506i 0.413272 0.329573i
\(63\) −2.45547 + 5.09883i −0.309360 + 0.642393i
\(64\) −7.78494 + 3.74903i −0.973117 + 0.468629i
\(65\) 0 0
\(66\) −8.15289 + 1.86084i −1.00355 + 0.229054i
\(67\) −12.6590 + 2.88934i −1.54655 + 0.352989i −0.908792 0.417250i \(-0.862994\pi\)
−0.637755 + 0.770239i \(0.720137\pi\)
\(68\) 0.731747 + 0.917581i 0.0887373 + 0.111273i
\(69\) −4.21827 0.962792i −0.507820 0.115907i
\(70\) 0 0
\(71\) 1.66939 7.31408i 0.198120 0.868021i −0.773934 0.633266i \(-0.781714\pi\)
0.972054 0.234755i \(-0.0754289\pi\)
\(72\) −3.89758 + 1.87697i −0.459334 + 0.221204i
\(73\) −3.18450 + 1.53357i −0.372718 + 0.179491i −0.610859 0.791739i \(-0.709176\pi\)
0.238142 + 0.971230i \(0.423462\pi\)
\(74\) 0.809405 3.54623i 0.0940914 0.412241i
\(75\) 0 0
\(76\) −0.958080 0.218676i −0.109899 0.0250838i
\(77\) −12.1315 15.2125i −1.38252 1.73362i
\(78\) 5.20556 1.18814i 0.589414 0.134530i
\(79\) 4.33934 0.990426i 0.488214 0.111432i 0.0286740 0.999589i \(-0.490872\pi\)
0.459540 + 0.888157i \(0.348014\pi\)
\(80\) 0 0
\(81\) 2.21714 1.06772i 0.246349 0.118635i
\(82\) 7.28211 15.1215i 0.804175 1.66989i
\(83\) −6.59115 + 5.25627i −0.723473 + 0.576950i −0.914477 0.404639i \(-0.867397\pi\)
0.191004 + 0.981589i \(0.438826\pi\)
\(84\) 0.762921 + 0.608409i 0.0832415 + 0.0663829i
\(85\) 0 0
\(86\) 11.5880 1.24957
\(87\) 6.62735 + 0.776735i 0.710527 + 0.0832747i
\(88\) 14.8734i 1.58551i
\(89\) −4.20382 + 8.72932i −0.445604 + 0.925306i 0.550307 + 0.834963i \(0.314511\pi\)
−0.995911 + 0.0903436i \(0.971203\pi\)
\(90\) 0 0
\(91\) 7.74590 + 9.71306i 0.811991 + 1.01820i
\(92\) 0.308793 0.641215i 0.0321939 0.0668513i
\(93\) −1.66963 3.46702i −0.173132 0.359513i
\(94\) −0.186242 + 0.233540i −0.0192094 + 0.0240878i
\(95\) 0 0
\(96\) 0.316614 + 1.38718i 0.0323142 + 0.141578i
\(97\) 9.77776 + 12.2609i 0.992781 + 1.24491i 0.969478 + 0.245180i \(0.0788470\pi\)
0.0233037 + 0.999728i \(0.492582\pi\)
\(98\) 2.36487 10.3612i 0.238888 1.04664i
\(99\) 7.37555i 0.741271i
\(100\) 0 0
\(101\) 1.83592 + 3.81234i 0.182681 + 0.379342i 0.972119 0.234490i \(-0.0753419\pi\)
−0.789437 + 0.613831i \(0.789628\pi\)
\(102\) −8.61557 + 4.14904i −0.853069 + 0.410816i
\(103\) 1.88882 + 0.431110i 0.186111 + 0.0424785i 0.314560 0.949237i \(-0.398143\pi\)
−0.128450 + 0.991716i \(0.541000\pi\)
\(104\) 9.49657i 0.931215i
\(105\) 0 0
\(106\) 7.00888 5.58940i 0.680763 0.542890i
\(107\) 5.21382 1.19002i 0.504039 0.115044i 0.0370620 0.999313i \(-0.488200\pi\)
0.466977 + 0.884269i \(0.345343\pi\)
\(108\) 0.250899 + 1.09926i 0.0241427 + 0.105776i
\(109\) −2.27679 + 2.85501i −0.218077 + 0.273460i −0.878821 0.477151i \(-0.841669\pi\)
0.660744 + 0.750611i \(0.270241\pi\)
\(110\) 0 0
\(111\) −3.02993 1.45914i −0.287588 0.138495i
\(112\) 10.7268 8.55433i 1.01359 0.808308i
\(113\) 5.71530 7.16676i 0.537650 0.674192i −0.436602 0.899655i \(-0.643818\pi\)
0.974252 + 0.225463i \(0.0723896\pi\)
\(114\) 3.47413 7.21410i 0.325382 0.675662i
\(115\) 0 0
\(116\) −0.367133 + 1.03435i −0.0340875 + 0.0960374i
\(117\) 4.70923i 0.435369i
\(118\) −5.59213 2.69303i −0.514797 0.247913i
\(119\) −17.3954 13.8724i −1.59464 1.27168i
\(120\) 0 0
\(121\) 12.9364 + 6.22983i 1.17603 + 0.566349i
\(122\) 5.50106 + 11.4231i 0.498042 + 1.03420i
\(123\) −12.1318 9.67478i −1.09389 0.872346i
\(124\) 0.617095 0.140848i 0.0554167 0.0126485i
\(125\) 0 0
\(126\) 5.92993 4.72896i 0.528280 0.421290i
\(127\) 1.38816 6.08193i 0.123179 0.539684i −0.875251 0.483670i \(-0.839304\pi\)
0.998430 0.0560143i \(-0.0178392\pi\)
\(128\) 9.28373 0.820574
\(129\) 2.38401 10.4450i 0.209900 0.919632i
\(130\) 0 0
\(131\) 0.283798 + 0.589312i 0.0247955 + 0.0514884i 0.912999 0.407962i \(-0.133761\pi\)
−0.888203 + 0.459451i \(0.848046\pi\)
\(132\) −1.23986 0.282990i −0.107916 0.0246311i
\(133\) 18.6303 1.61545
\(134\) 16.9659 + 3.87235i 1.46563 + 0.334520i
\(135\) 0 0
\(136\) −3.78457 16.5813i −0.324524 1.42183i
\(137\) 0.580302 + 2.54247i 0.0495785 + 0.217218i 0.993649 0.112527i \(-0.0358945\pi\)
−0.944070 + 0.329745i \(0.893037\pi\)
\(138\) 4.53367 + 3.61548i 0.385932 + 0.307770i
\(139\) 5.28787 2.54651i 0.448512 0.215992i −0.195973 0.980609i \(-0.562786\pi\)
0.644484 + 0.764618i \(0.277072\pi\)
\(140\) 0 0
\(141\) 0.172189 + 0.215919i 0.0145010 + 0.0181836i
\(142\) −6.26891 + 7.86096i −0.526075 + 0.659677i
\(143\) −14.5877 7.02505i −1.21988 0.587464i
\(144\) 5.20073 0.433394
\(145\) 0 0
\(146\) 4.73704 0.392040
\(147\) −8.85268 4.26323i −0.730157 0.351625i
\(148\) 0.344893 0.432483i 0.0283501 0.0355498i
\(149\) 6.48457 + 8.13139i 0.531237 + 0.666150i 0.972952 0.231005i \(-0.0742015\pi\)
−0.441716 + 0.897155i \(0.645630\pi\)
\(150\) 0 0
\(151\) −3.13545 + 1.50995i −0.255160 + 0.122878i −0.557091 0.830451i \(-0.688083\pi\)
0.301932 + 0.953329i \(0.402368\pi\)
\(152\) 11.1342 + 8.87919i 0.903099 + 0.720197i
\(153\) −1.87672 8.22246i −0.151724 0.664747i
\(154\) 5.80274 + 25.4235i 0.467598 + 2.04868i
\(155\) 0 0
\(156\) 0.791641 + 0.180687i 0.0633820 + 0.0144665i
\(157\) −9.31575 −0.743478 −0.371739 0.928337i \(-0.621238\pi\)
−0.371739 + 0.928337i \(0.621238\pi\)
\(158\) −5.81566 1.32739i −0.462669 0.105601i
\(159\) −3.59614 7.46747i −0.285193 0.592209i
\(160\) 0 0
\(161\) −3.00231 + 13.1540i −0.236615 + 1.03668i
\(162\) −3.29807 −0.259121
\(163\) −0.0927873 + 0.406528i −0.00726767 + 0.0318417i −0.978432 0.206570i \(-0.933770\pi\)
0.971164 + 0.238412i \(0.0766269\pi\)
\(164\) 1.99553 1.59138i 0.155825 0.124266i
\(165\) 0 0
\(166\) 11.0153 2.51417i 0.854953 0.195137i
\(167\) −9.26143 7.38574i −0.716671 0.571526i 0.195812 0.980641i \(-0.437266\pi\)
−0.912483 + 0.409116i \(0.865837\pi\)
\(168\) −6.13556 12.7406i −0.473369 0.982961i
\(169\) −2.39848 1.15505i −0.184498 0.0888498i
\(170\) 0 0
\(171\) 5.52129 + 4.40308i 0.422224 + 0.336712i
\(172\) 1.58774 + 0.764614i 0.121064 + 0.0583013i
\(173\) 5.01268i 0.381107i 0.981677 + 0.190553i \(0.0610282\pi\)
−0.981677 + 0.190553i \(0.938972\pi\)
\(174\) −7.55082 4.79170i −0.572426 0.363258i
\(175\) 0 0
\(176\) −7.75824 + 16.1102i −0.584799 + 1.21435i
\(177\) −3.57787 + 4.48651i −0.268929 + 0.337226i
\(178\) 10.1522 8.09609i 0.760938 0.606828i
\(179\) 4.12590 + 1.98693i 0.308384 + 0.148510i 0.581675 0.813422i \(-0.302398\pi\)
−0.273290 + 0.961932i \(0.588112\pi\)
\(180\) 0 0
\(181\) 0.861425 1.08019i 0.0640292 0.0802901i −0.748786 0.662812i \(-0.769363\pi\)
0.812815 + 0.582522i \(0.197934\pi\)
\(182\) −3.70501 16.2327i −0.274633 1.20325i
\(183\) 11.4281 2.60838i 0.844788 0.192817i
\(184\) −8.06347 + 6.43040i −0.594447 + 0.474055i
\(185\) 0 0
\(186\) 5.15730i 0.378151i
\(187\) 28.2701 + 6.45247i 2.06732 + 0.471852i
\(188\) −0.0409279 + 0.0197098i −0.00298497 + 0.00143749i
\(189\) −9.27452 19.2587i −0.674622 1.40087i
\(190\) 0 0
\(191\) 25.0514i 1.81265i −0.422577 0.906327i \(-0.638874\pi\)
0.422577 0.906327i \(-0.361126\pi\)
\(192\) 2.38243 10.4381i 0.171937 0.753305i
\(193\) 7.21168 + 9.04317i 0.519108 + 0.650941i 0.970419 0.241425i \(-0.0776149\pi\)
−0.451311 + 0.892367i \(0.649043\pi\)
\(194\) −4.67688 20.4908i −0.335781 1.47115i
\(195\) 0 0
\(196\) 1.00769 1.26360i 0.0719779 0.0902574i
\(197\) −9.62495 19.9864i −0.685750 1.42397i −0.894980 0.446107i \(-0.852810\pi\)
0.209230 0.977866i \(-0.432904\pi\)
\(198\) −4.28887 + 8.90594i −0.304797 + 0.632917i
\(199\) −12.8258 16.0831i −0.909198 1.14010i −0.989673 0.143342i \(-0.954215\pi\)
0.0804754 0.996757i \(-0.474356\pi\)
\(200\) 0 0
\(201\) 6.98079 14.4958i 0.492387 1.02245i
\(202\) 5.67096i 0.399008i
\(203\) 2.42212 20.6663i 0.170000 1.45049i
\(204\) −1.45424 −0.101817
\(205\) 0 0
\(206\) −2.03005 1.61891i −0.141440 0.112795i
\(207\) −3.99858 + 3.18876i −0.277920 + 0.221634i
\(208\) 4.95358 10.2862i 0.343469 0.713221i
\(209\) −21.8758 + 10.5348i −1.51318 + 0.728708i
\(210\) 0 0
\(211\) −4.26387 + 0.973201i −0.293537 + 0.0669979i −0.366753 0.930318i \(-0.619531\pi\)
0.0732165 + 0.997316i \(0.476674\pi\)
\(212\) 1.32913 0.303366i 0.0912853 0.0208353i
\(213\) 5.79589 + 7.26781i 0.397128 + 0.497982i
\(214\) −6.98766 1.59489i −0.477667 0.109024i
\(215\) 0 0
\(216\) 3.63591 15.9299i 0.247392 1.08390i
\(217\) −10.8113 + 5.20647i −0.733922 + 0.353438i
\(218\) 4.40940 2.12346i 0.298642 0.143819i
\(219\) 0.974554 4.26980i 0.0658543 0.288526i
\(220\) 0 0
\(221\) −18.0503 4.11986i −1.21419 0.277131i
\(222\) 2.81014 + 3.52380i 0.188604 + 0.236502i
\(223\) −0.492588 + 0.112430i −0.0329861 + 0.00752886i −0.238982 0.971024i \(-0.576814\pi\)
0.205996 + 0.978553i \(0.433957\pi\)
\(224\) 4.32568 0.987309i 0.289022 0.0659673i
\(225\) 0 0
\(226\) −11.0687 + 5.33038i −0.736276 + 0.354572i
\(227\) 1.06106 2.20331i 0.0704249 0.146239i −0.862784 0.505572i \(-0.831282\pi\)
0.933209 + 0.359333i \(0.116996\pi\)
\(228\) 0.952020 0.759211i 0.0630491 0.0502800i
\(229\) 8.61682 + 6.87169i 0.569416 + 0.454094i 0.865388 0.501103i \(-0.167072\pi\)
−0.295972 + 0.955197i \(0.595644\pi\)
\(230\) 0 0
\(231\) 24.1096 1.58630
\(232\) 11.2971 11.1966i 0.741691 0.735091i
\(233\) 11.0552i 0.724252i 0.932129 + 0.362126i \(0.117949\pi\)
−0.932129 + 0.362126i \(0.882051\pi\)
\(234\) 2.73841 5.68638i 0.179016 0.371730i
\(235\) 0 0
\(236\) −0.588514 0.737974i −0.0383090 0.0480380i
\(237\) −2.39292 + 4.96895i −0.155437 + 0.322768i
\(238\) 12.9381 + 26.8663i 0.838653 + 1.74148i
\(239\) −7.88050 + 9.88184i −0.509747 + 0.639203i −0.968397 0.249414i \(-0.919762\pi\)
0.458650 + 0.888617i \(0.348333\pi\)
\(240\) 0 0
\(241\) 4.57172 + 20.0300i 0.294490 + 1.29025i 0.878204 + 0.478286i \(0.158742\pi\)
−0.583714 + 0.811959i \(0.698401\pi\)
\(242\) −11.9980 15.0450i −0.771259 0.967128i
\(243\) 3.01452 13.2075i 0.193382 0.847260i
\(244\) 1.92812i 0.123435i
\(245\) 0 0
\(246\) 9.02321 + 18.7369i 0.575299 + 1.19462i
\(247\) 13.9675 6.72640i 0.888731 0.427990i
\(248\) −8.94265 2.04110i −0.567859 0.129610i
\(249\) 10.4460i 0.661991i
\(250\) 0 0
\(251\) −5.43666 + 4.33559i −0.343159 + 0.273660i −0.779870 0.625942i \(-0.784715\pi\)
0.436711 + 0.899602i \(0.356143\pi\)
\(252\) 1.12453 0.256666i 0.0708385 0.0161684i
\(253\) −3.91281 17.1431i −0.245996 1.07778i
\(254\) −5.21283 + 6.53669i −0.327082 + 0.410148i
\(255\) 0 0
\(256\) 4.35982 + 2.09958i 0.272489 + 0.131224i
\(257\) −16.1208 + 12.8559i −1.00559 + 0.801931i −0.980253 0.197748i \(-0.936637\pi\)
−0.0253371 + 0.999679i \(0.508066\pi\)
\(258\) −8.95244 + 11.2260i −0.557354 + 0.698900i
\(259\) −4.55008 + 9.44835i −0.282729 + 0.587092i
\(260\) 0 0
\(261\) 5.60210 5.55224i 0.346761 0.343675i
\(262\) 0.876619i 0.0541577i
\(263\) 19.3853 + 9.33549i 1.19535 + 0.575651i 0.922347 0.386362i \(-0.126268\pi\)
0.273004 + 0.962013i \(0.411983\pi\)
\(264\) 14.4088 + 11.4906i 0.886800 + 0.707199i
\(265\) 0 0
\(266\) −22.4960 10.8335i −1.37932 0.664245i
\(267\) −5.20892 10.8164i −0.318781 0.661955i
\(268\) 2.06908 + 1.65004i 0.126389 + 0.100792i
\(269\) 21.1832 4.83494i 1.29156 0.294791i 0.479079 0.877772i \(-0.340971\pi\)
0.812486 + 0.582981i \(0.198114\pi\)
\(270\) 0 0
\(271\) −2.89671 + 2.31005i −0.175962 + 0.140325i −0.707511 0.706703i \(-0.750182\pi\)
0.531548 + 0.847028i \(0.321610\pi\)
\(272\) −4.54984 + 19.9341i −0.275874 + 1.20868i
\(273\) −15.3938 −0.931676
\(274\) 0.777731 3.40746i 0.0469844 0.205852i
\(275\) 0 0
\(276\) 0.382623 + 0.794525i 0.0230312 + 0.0478248i
\(277\) 2.59813 + 0.593007i 0.156107 + 0.0356303i 0.299860 0.953983i \(-0.403060\pi\)
−0.143753 + 0.989614i \(0.545917\pi\)
\(278\) −7.86587 −0.471764
\(279\) −4.43455 1.01216i −0.265490 0.0605963i
\(280\) 0 0
\(281\) −0.0589884 0.258445i −0.00351895 0.0154175i 0.973138 0.230223i \(-0.0739455\pi\)
−0.976657 + 0.214805i \(0.931088\pi\)
\(282\) −0.0823613 0.360848i −0.00490454 0.0214882i
\(283\) −5.98619 4.77383i −0.355842 0.283775i 0.429209 0.903205i \(-0.358792\pi\)
−0.785052 + 0.619430i \(0.787364\pi\)
\(284\) −1.37763 + 0.663432i −0.0817474 + 0.0393675i
\(285\) 0 0
\(286\) 13.5295 + 16.9654i 0.800015 + 1.00319i
\(287\) −30.1693 + 37.8311i −1.78083 + 2.23310i
\(288\) 1.51530 + 0.729731i 0.0892900 + 0.0429998i
\(289\) 16.1582 0.950480
\(290\) 0 0
\(291\) −19.4318 −1.13911
\(292\) 0.649049 + 0.312566i 0.0379827 + 0.0182915i
\(293\) 3.38364 4.24295i 0.197674 0.247876i −0.673108 0.739544i \(-0.735041\pi\)
0.870783 + 0.491668i \(0.163613\pi\)
\(294\) 8.21051 + 10.2957i 0.478847 + 0.600455i
\(295\) 0 0
\(296\) −7.22237 + 3.47811i −0.419792 + 0.202161i
\(297\) 21.7803 + 17.3692i 1.26382 + 1.00786i
\(298\) −3.10169 13.5894i −0.179676 0.787212i
\(299\) 2.49830 + 10.9458i 0.144480 + 0.633010i
\(300\) 0 0
\(301\) −32.5711 7.43414i −1.87737 0.428497i
\(302\) 4.66408 0.268388
\(303\) −5.11161 1.16669i −0.293654 0.0670246i
\(304\) −7.42842 15.4253i −0.426049 0.884700i
\(305\) 0 0
\(306\) −2.51522 + 11.0199i −0.143786 + 0.629966i
\(307\) 23.3143 1.33062 0.665309 0.746568i \(-0.268300\pi\)
0.665309 + 0.746568i \(0.268300\pi\)
\(308\) −0.882458 + 3.86630i −0.0502827 + 0.220303i
\(309\) −1.87687 + 1.49675i −0.106771 + 0.0851473i
\(310\) 0 0
\(311\) 29.0583 6.63237i 1.64775 0.376087i 0.704898 0.709309i \(-0.250993\pi\)
0.942848 + 0.333222i \(0.108136\pi\)
\(312\) −9.19990 7.33668i −0.520842 0.415358i
\(313\) 8.07225 + 16.7622i 0.456271 + 0.947456i 0.994508 + 0.104662i \(0.0333762\pi\)
−0.538237 + 0.842793i \(0.680910\pi\)
\(314\) 11.2487 + 5.41710i 0.634802 + 0.305705i
\(315\) 0 0
\(316\) −0.709252 0.565609i −0.0398985 0.0318180i
\(317\) 3.07158 + 1.47919i 0.172517 + 0.0830797i 0.518149 0.855290i \(-0.326621\pi\)
−0.345632 + 0.938370i \(0.612336\pi\)
\(318\) 11.1081i 0.622910i
\(319\) 8.84205 + 25.6361i 0.495060 + 1.43535i
\(320\) 0 0
\(321\) −2.87515 + 5.97031i −0.160475 + 0.333230i
\(322\) 11.2743 14.1375i 0.628292 0.787854i
\(323\) −21.7071 + 17.3108i −1.20781 + 0.963200i
\(324\) −0.451887 0.217617i −0.0251048 0.0120898i
\(325\) 0 0
\(326\) 0.348436 0.436925i 0.0192981 0.0241990i
\(327\) −1.00686 4.41134i −0.0556794 0.243948i
\(328\) −36.0605 + 8.23057i −1.99111 + 0.454457i
\(329\) 0.673307 0.536945i 0.0371206 0.0296027i
\(330\) 0 0
\(331\) 17.8368i 0.980399i −0.871610 0.490200i \(-0.836924\pi\)
0.871610 0.490200i \(-0.163076\pi\)
\(332\) 1.67516 + 0.382345i 0.0919365 + 0.0209839i
\(333\) −3.58149 + 1.72475i −0.196264 + 0.0945159i
\(334\) 6.88833 + 14.3038i 0.376912 + 0.782667i
\(335\) 0 0
\(336\) 17.0004i 0.927450i
\(337\) 2.15836 9.45638i 0.117573 0.515122i −0.881504 0.472176i \(-0.843469\pi\)
0.999077 0.0429458i \(-0.0136743\pi\)
\(338\) 2.22449 + 2.78943i 0.120996 + 0.151725i
\(339\) 2.52746 + 11.0735i 0.137273 + 0.601431i
\(340\) 0 0
\(341\) 9.75063 12.2269i 0.528026 0.662124i
\(342\) −4.10654 8.52733i −0.222056 0.461105i
\(343\) −1.55878 + 3.23684i −0.0841662 + 0.174773i
\(344\) −15.9226 19.9663i −0.858487 1.07651i
\(345\) 0 0
\(346\) 2.91487 6.05278i 0.156704 0.325399i
\(347\) 27.8087i 1.49285i 0.665469 + 0.746425i \(0.268231\pi\)
−0.665469 + 0.746425i \(0.731769\pi\)
\(348\) −0.718409 1.15477i −0.0385108 0.0619020i
\(349\) 31.0380 1.66142 0.830712 0.556703i \(-0.187934\pi\)
0.830712 + 0.556703i \(0.187934\pi\)
\(350\) 0 0
\(351\) −13.9066 11.0901i −0.742278 0.591947i
\(352\) −4.52094 + 3.60533i −0.240967 + 0.192165i
\(353\) −2.58841 + 5.37488i −0.137767 + 0.286076i −0.958425 0.285343i \(-0.907893\pi\)
0.820659 + 0.571419i \(0.193607\pi\)
\(354\) 6.92916 3.33691i 0.368281 0.177355i
\(355\) 0 0
\(356\) 1.92522 0.439418i 0.102036 0.0232891i
\(357\) 26.8781 6.13474i 1.42254 0.324685i
\(358\) −3.82661 4.79841i −0.202243 0.253604i
\(359\) 13.5567 + 3.09422i 0.715494 + 0.163307i 0.564745 0.825265i \(-0.308975\pi\)
0.150748 + 0.988572i \(0.451832\pi\)
\(360\) 0 0
\(361\) 0.945280 4.14154i 0.0497516 0.217976i
\(362\) −1.66830 + 0.803410i −0.0876838 + 0.0422263i
\(363\) −16.0294 + 7.71934i −0.841324 + 0.405160i
\(364\) 0.563443 2.46860i 0.0295324 0.129390i
\(365\) 0 0
\(366\) −15.3161 3.49580i −0.800586 0.182729i
\(367\) 10.8925 + 13.6588i 0.568586 + 0.712985i 0.980119 0.198410i \(-0.0635778\pi\)
−0.411533 + 0.911395i \(0.635006\pi\)
\(368\) 12.0882 2.75904i 0.630139 0.143825i
\(369\) −17.8820 + 4.08144i −0.930898 + 0.212471i
\(370\) 0 0
\(371\) −23.2861 + 11.2140i −1.20895 + 0.582202i
\(372\) −0.340295 + 0.706631i −0.0176435 + 0.0366371i
\(373\) −1.13223 + 0.902920i −0.0586244 + 0.0467514i −0.652364 0.757906i \(-0.726223\pi\)
0.593739 + 0.804658i \(0.297651\pi\)
\(374\) −30.3839 24.2304i −1.57112 1.25292i
\(375\) 0 0
\(376\) 0.658300 0.0339492
\(377\) −5.64558 16.3685i −0.290762 0.843018i
\(378\) 28.6479i 1.47349i
\(379\) −1.77584 + 3.68757i −0.0912189 + 0.189418i −0.941587 0.336771i \(-0.890665\pi\)
0.850368 + 0.526189i \(0.176379\pi\)
\(380\) 0 0
\(381\) 4.81950 + 6.04346i 0.246910 + 0.309616i
\(382\) −14.5673 + 30.2494i −0.745330 + 1.54769i
\(383\) 0.130413 + 0.270806i 0.00666380 + 0.0138375i 0.904274 0.426952i \(-0.140413\pi\)
−0.897610 + 0.440790i \(0.854698\pi\)
\(384\) −7.17225 + 8.99372i −0.366007 + 0.458959i
\(385\) 0 0
\(386\) −3.44948 15.1132i −0.175574 0.769240i
\(387\) −7.89581 9.90103i −0.401366 0.503297i
\(388\) 0.711242 3.11615i 0.0361078 0.158199i
\(389\) 17.2457i 0.874393i −0.899366 0.437197i \(-0.855971\pi\)
0.899366 0.437197i \(-0.144029\pi\)
\(390\) 0 0
\(391\) −8.72422 18.1160i −0.441203 0.916167i
\(392\) −21.1019 + 10.1622i −1.06581 + 0.513266i
\(393\) −0.790153 0.180347i −0.0398580 0.00909732i
\(394\) 29.7304i 1.49780i
\(395\) 0 0
\(396\) −1.17529 + 0.937259i −0.0590604 + 0.0470991i
\(397\) 26.6130 6.07424i 1.33567 0.304857i 0.505719 0.862698i \(-0.331227\pi\)
0.829948 + 0.557841i \(0.188370\pi\)
\(398\) 6.13482 + 26.8784i 0.307511 + 1.34729i
\(399\) −14.3931 + 18.0483i −0.720554 + 0.903546i
\(400\) 0 0
\(401\) 8.08532 + 3.89369i 0.403762 + 0.194441i 0.624732 0.780839i \(-0.285208\pi\)
−0.220970 + 0.975281i \(0.570922\pi\)
\(402\) −16.8585 + 13.4442i −0.840828 + 0.670538i
\(403\) −6.22570 + 7.80679i −0.310124 + 0.388884i
\(404\) 0.374189 0.777011i 0.0186166 0.0386577i
\(405\) 0 0
\(406\) −14.9421 + 23.5460i −0.741566 + 1.16857i
\(407\) 13.6672i 0.677458i
\(408\) 18.9871 + 9.14372i 0.940003 + 0.452681i
\(409\) −12.3651 9.86086i −0.611416 0.487588i 0.268142 0.963379i \(-0.413590\pi\)
−0.879558 + 0.475791i \(0.842162\pi\)
\(410\) 0 0
\(411\) −2.91136 1.40204i −0.143607 0.0691574i
\(412\) −0.171327 0.355765i −0.00844070 0.0175273i
\(413\) 13.9904 + 11.1570i 0.688425 + 0.549001i
\(414\) 6.68252 1.52524i 0.328428 0.0749615i
\(415\) 0 0
\(416\) 2.88658 2.30197i 0.141526 0.112864i
\(417\) −1.61825 + 7.09002i −0.0792461 + 0.347200i
\(418\) 32.5409 1.59163
\(419\) 8.72261 38.2163i 0.426127 1.86699i −0.0681390 0.997676i \(-0.521706\pi\)
0.494266 0.869310i \(-0.335437\pi\)
\(420\) 0 0
\(421\) 17.1631 + 35.6395i 0.836477 + 1.73696i 0.658000 + 0.753018i \(0.271403\pi\)
0.178477 + 0.983944i \(0.442883\pi\)
\(422\) 5.71452 + 1.30430i 0.278178 + 0.0634924i
\(423\) 0.326443 0.0158722
\(424\) −19.2612 4.39624i −0.935406 0.213500i
\(425\) 0 0
\(426\) −2.77228 12.1462i −0.134317 0.588483i
\(427\) −8.13383 35.6366i −0.393623 1.72458i
\(428\) −0.852184 0.679594i −0.0411919 0.0328494i
\(429\) 18.0755 8.70468i 0.872691 0.420266i
\(430\) 0 0
\(431\) −1.94340 2.43695i −0.0936103 0.117384i 0.732820 0.680422i \(-0.238204\pi\)
−0.826431 + 0.563039i \(0.809632\pi\)
\(432\) −12.2476 + 15.3580i −0.589262 + 0.738911i
\(433\) 1.88837 + 0.909391i 0.0907493 + 0.0437026i 0.478708 0.877974i \(-0.341105\pi\)
−0.387959 + 0.921677i \(0.626820\pi\)
\(434\) 16.0822 0.771970
\(435\) 0 0
\(436\) 0.744270 0.0356441
\(437\) 15.1691 + 7.30507i 0.725638 + 0.349449i
\(438\) −3.65965 + 4.58906i −0.174865 + 0.219274i
\(439\) 1.93738 + 2.42939i 0.0924660 + 0.115949i 0.825912 0.563799i \(-0.190661\pi\)
−0.733446 + 0.679748i \(0.762089\pi\)
\(440\) 0 0
\(441\) −10.4642 + 5.03929i −0.498295 + 0.239966i
\(442\) 19.3999 + 15.4709i 0.922760 + 0.735876i
\(443\) −2.51820 11.0329i −0.119643 0.524191i −0.998859 0.0477664i \(-0.984790\pi\)
0.879215 0.476425i \(-0.158067\pi\)
\(444\) 0.152521 + 0.668238i 0.00723833 + 0.0317132i
\(445\) 0 0
\(446\) 0.660175 + 0.150681i 0.0312602 + 0.00713493i
\(447\) −12.8871 −0.609539
\(448\) −32.5495 7.42922i −1.53782 0.350998i
\(449\) 15.2346 + 31.6351i 0.718968 + 1.49295i 0.863982 + 0.503522i \(0.167963\pi\)
−0.145015 + 0.989429i \(0.546323\pi\)
\(450\) 0 0
\(451\) 14.0326 61.4810i 0.660771 2.89503i
\(452\) −1.86830 −0.0878772
\(453\) 0.959544 4.20404i 0.0450833 0.197523i
\(454\) −2.56244 + 2.04348i −0.120261 + 0.0959053i
\(455\) 0 0
\(456\) −17.2036 + 3.92662i −0.805634 + 0.183881i
\(457\) 26.0316 + 20.7595i 1.21771 + 0.971090i 0.999988 0.00492096i \(-0.00156640\pi\)
0.217721 + 0.976011i \(0.430138\pi\)
\(458\) −6.40889 13.3082i −0.299468 0.621851i
\(459\) 28.7009 + 13.8216i 1.33964 + 0.645139i
\(460\) 0 0
\(461\) 25.0026 + 19.9389i 1.16449 + 0.928649i 0.998348 0.0574532i \(-0.0182980\pi\)
0.166141 + 0.986102i \(0.446869\pi\)
\(462\) −29.1122 14.0197i −1.35442 0.652256i
\(463\) 21.7185i 1.00934i 0.863311 + 0.504672i \(0.168387\pi\)
−0.863311 + 0.504672i \(0.831613\pi\)
\(464\) −18.0768 + 6.23480i −0.839194 + 0.289443i
\(465\) 0 0
\(466\) 6.42860 13.3491i 0.297799 0.618387i
\(467\) −10.7006 + 13.4181i −0.495162 + 0.620914i −0.965130 0.261769i \(-0.915694\pi\)
0.469968 + 0.882683i \(0.344265\pi\)
\(468\) 0.750411 0.598433i 0.0346878 0.0276626i
\(469\) −45.2027 21.7685i −2.08727 1.00518i
\(470\) 0 0
\(471\) 7.19699 9.02474i 0.331620 0.415838i
\(472\) 3.04378 + 13.3357i 0.140101 + 0.613824i
\(473\) 42.4488 9.68866i 1.95180 0.445485i
\(474\) 5.77887 4.60850i 0.265432 0.211675i
\(475\) 0 0
\(476\) 4.53480i 0.207852i
\(477\) −9.55140 2.18004i −0.437328 0.0998173i
\(478\) 15.2619 7.34976i 0.698065 0.336170i
\(479\) 11.3447 + 23.5575i 0.518351 + 1.07637i 0.981743 + 0.190214i \(0.0609181\pi\)
−0.463391 + 0.886154i \(0.653368\pi\)
\(480\) 0 0
\(481\) 8.72640i 0.397890i
\(482\) 6.12710 26.8446i 0.279082 1.22274i
\(483\) −10.4236 13.0708i −0.474290 0.594741i
\(484\) −0.651194 2.85307i −0.0295997 0.129685i
\(485\) 0 0
\(486\) −11.3201 + 14.1950i −0.513492 + 0.643899i
\(487\) −10.0045 20.7745i −0.453347 0.941384i −0.994914 0.100727i \(-0.967883\pi\)
0.541568 0.840657i \(-0.317831\pi\)
\(488\) 12.1233 25.1743i 0.548796 1.13959i
\(489\) −0.322145 0.403956i −0.0145679 0.0182675i
\(490\) 0 0
\(491\) 0.926899 1.92472i 0.0418303 0.0868616i −0.879006 0.476810i \(-0.841793\pi\)
0.920837 + 0.389949i \(0.127507\pi\)
\(492\) 3.16263i 0.142582i
\(493\) 16.3805 + 26.3299i 0.737741 + 1.18584i
\(494\) −20.7771 −0.934806
\(495\) 0 0
\(496\) 8.62157 + 6.87547i 0.387120 + 0.308718i
\(497\) 22.6635 18.0735i 1.01660 0.810709i
\(498\) −6.07436 + 12.6135i −0.272199 + 0.565226i
\(499\) −8.68887 + 4.18434i −0.388967 + 0.187317i −0.618138 0.786069i \(-0.712113\pi\)
0.229171 + 0.973386i \(0.426398\pi\)
\(500\) 0 0
\(501\) 14.3100 3.26617i 0.639325 0.145922i
\(502\) 9.08588 2.07379i 0.405523 0.0925579i
\(503\) −21.0456 26.3903i −0.938375 1.17669i −0.984079 0.177730i \(-0.943125\pi\)
0.0457040 0.998955i \(-0.485447\pi\)
\(504\) −16.2961 3.71948i −0.725887 0.165679i
\(505\) 0 0
\(506\) −5.24402 + 22.9756i −0.233125 + 1.02139i
\(507\) 2.97194 1.43121i 0.131988 0.0635622i
\(508\) −1.14555 + 0.551669i −0.0508257 + 0.0244763i
\(509\) 5.07511 22.2355i 0.224950 0.985572i −0.728742 0.684788i \(-0.759895\pi\)
0.953692 0.300784i \(-0.0972482\pi\)
\(510\) 0 0
\(511\) −13.3147 3.03899i −0.589007 0.134437i
\(512\) −15.6202 19.5871i −0.690321 0.865635i
\(513\) −26.0050 + 5.93547i −1.14815 + 0.262057i
\(514\) 26.9415 6.14923i 1.18834 0.271231i
\(515\) 0 0
\(516\) −1.96735 + 0.947427i −0.0866079 + 0.0417082i
\(517\) −0.486975 + 1.01121i −0.0214171 + 0.0444731i
\(518\) 10.9884 8.76296i 0.482803 0.385023i
\(519\) −4.85608 3.87260i −0.213158 0.169988i
\(520\) 0 0
\(521\) 34.9903 1.53295 0.766476 0.642272i \(-0.222008\pi\)
0.766476 + 0.642272i \(0.222008\pi\)
\(522\) −9.99313 + 3.44669i −0.437387 + 0.150858i
\(523\) 21.9987i 0.961936i −0.876738 0.480968i \(-0.840285\pi\)
0.876738 0.480968i \(-0.159715\pi\)
\(524\) 0.0578422 0.120111i 0.00252685 0.00524705i
\(525\) 0 0
\(526\) −17.9791 22.5451i −0.783927 0.983013i
\(527\) 7.75911 16.1120i 0.337992 0.701848i
\(528\) −9.61317 19.9620i −0.418360 0.868733i
\(529\) 6.73796 8.44914i 0.292955 0.367354i
\(530\) 0 0
\(531\) 1.50937 + 6.61300i 0.0655012 + 0.286980i
\(532\) −2.36748 2.96872i −0.102643 0.128710i
\(533\) −8.95974 + 39.2552i −0.388089 + 1.70033i
\(534\) 16.0898i 0.696272i
\(535\) 0 0
\(536\) −16.6399 34.5532i −0.718736 1.49247i
\(537\) −5.11237 + 2.46199i −0.220615 + 0.106243i
\(538\) −28.3902 6.47987i −1.22399 0.279367i
\(539\) 39.9321i 1.72000i
\(540\) 0 0
\(541\) −29.7630 + 23.7352i −1.27961 + 1.02046i −0.281468 + 0.959571i \(0.590821\pi\)
−0.998145 + 0.0608863i \(0.980607\pi\)
\(542\) 4.84105 1.10494i 0.207941 0.0474612i
\(543\) 0.380945 + 1.66903i 0.0163479 + 0.0716249i
\(544\) −4.12268 + 5.16968i −0.176759 + 0.221648i
\(545\) 0 0
\(546\) 18.5880 + 8.95149i 0.795491 + 0.383088i
\(547\) −28.7854 + 22.9556i −1.23077 + 0.981510i −0.230811 + 0.972999i \(0.574138\pi\)
−0.999964 + 0.00851144i \(0.997291\pi\)
\(548\) 0.331397 0.415559i 0.0141566 0.0177518i
\(549\) 6.01180 12.4836i 0.256578 0.532789i
\(550\) 0 0
\(551\) −24.4696 8.68522i −1.04244 0.370003i
\(552\) 12.7794i 0.543929i
\(553\) 15.4949 + 7.46193i 0.658908 + 0.317314i
\(554\) −2.79240 2.22686i −0.118638 0.0946104i
\(555\) 0 0
\(556\) −1.07775 0.519016i −0.0457067 0.0220112i
\(557\) −6.98964 14.5141i −0.296161 0.614984i 0.698793 0.715324i \(-0.253721\pi\)
−0.994953 + 0.100341i \(0.968007\pi\)
\(558\) 4.76613 + 3.80086i 0.201766 + 0.160903i
\(559\) −27.1032 + 6.18614i −1.14635 + 0.261646i
\(560\) 0 0
\(561\) −28.0913 + 22.4021i −1.18602 + 0.945816i
\(562\) −0.0790573 + 0.346373i −0.00333483 + 0.0146109i
\(563\) 2.46470 0.103875 0.0519374 0.998650i \(-0.483460\pi\)
0.0519374 + 0.998650i \(0.483460\pi\)
\(564\) 0.0125252 0.0548764i 0.000527405 0.00231071i
\(565\) 0 0
\(566\) 4.45232 + 9.24534i 0.187145 + 0.388611i
\(567\) 9.27007 + 2.11583i 0.389306 + 0.0888567i
\(568\) 22.1584 0.929745
\(569\) 24.4808 + 5.58758i 1.02629 + 0.234243i 0.702348 0.711834i \(-0.252135\pi\)
0.323940 + 0.946078i \(0.394992\pi\)
\(570\) 0 0
\(571\) 8.21338 + 35.9852i 0.343719 + 1.50593i 0.791155 + 0.611616i \(0.209480\pi\)
−0.447436 + 0.894316i \(0.647663\pi\)
\(572\) 0.734316 + 3.21725i 0.0307033 + 0.134520i
\(573\) 24.2688 + 19.3537i 1.01384 + 0.808513i
\(574\) 58.4279 28.1374i 2.43874 1.17443i
\(575\) 0 0
\(576\) −7.89058 9.89448i −0.328774 0.412270i
\(577\) −12.7696 + 16.0126i −0.531606 + 0.666613i −0.973028 0.230687i \(-0.925903\pi\)
0.441422 + 0.897300i \(0.354474\pi\)
\(578\) −19.5109 9.39595i −0.811546 0.390820i
\(579\) −14.3321 −0.595623
\(580\) 0 0
\(581\) −32.5743 −1.35141
\(582\) 23.4638 + 11.2996i 0.972607 + 0.468383i
\(583\) 21.0015 26.3350i 0.869792 1.09068i
\(584\) −6.50896 8.16198i −0.269343 0.337745i
\(585\) 0 0
\(586\) −6.55300 + 3.15576i −0.270702 + 0.130363i
\(587\) −1.02486 0.817302i −0.0423007 0.0337337i 0.602111 0.798412i \(-0.294326\pi\)
−0.644412 + 0.764679i \(0.722898\pi\)
\(588\) 0.445628 + 1.95242i 0.0183774 + 0.0805165i
\(589\) 3.33202 + 14.5985i 0.137293 + 0.601522i
\(590\) 0 0
\(591\) 26.7979 + 6.11645i 1.10232 + 0.251597i
\(592\) 9.63716 0.396085
\(593\) 7.01853 + 1.60193i 0.288217 + 0.0657836i 0.364185 0.931327i \(-0.381348\pi\)
−0.0759683 + 0.997110i \(0.524205\pi\)
\(594\) −16.1994 33.6385i −0.664671 1.38020i
\(595\) 0 0
\(596\) 0.471692 2.06662i 0.0193213 0.0846520i
\(597\) 25.4894 1.04321
\(598\) 3.34827 14.6697i 0.136921 0.599890i
\(599\) −31.3897 + 25.0325i −1.28255 + 1.02280i −0.284610 + 0.958643i \(0.591864\pi\)
−0.997940 + 0.0641559i \(0.979565\pi\)
\(600\) 0 0
\(601\) −25.1547 + 5.74139i −1.02608 + 0.234196i −0.702259 0.711922i \(-0.747825\pi\)
−0.323822 + 0.946118i \(0.604968\pi\)
\(602\) 35.0065 + 27.9167i 1.42676 + 1.13780i
\(603\) −8.25155 17.1345i −0.336029 0.697772i
\(604\) 0.639052 + 0.307751i 0.0260027 + 0.0125222i
\(605\) 0 0
\(606\) 5.49381 + 4.38117i 0.223171 + 0.177973i
\(607\) −20.9327 10.0807i −0.849634 0.409162i −0.0421920 0.999110i \(-0.513434\pi\)
−0.807442 + 0.589948i \(0.799148\pi\)
\(608\) 5.53667i 0.224542i
\(609\) 18.1495 + 18.3125i 0.735455 + 0.742058i
\(610\) 0 0
\(611\) 0.310930 0.645653i 0.0125789 0.0261203i
\(612\) −1.07175 + 1.34394i −0.0433231 + 0.0543254i
\(613\) 33.9398 27.0661i 1.37081 1.09319i 0.385449 0.922729i \(-0.374046\pi\)
0.985365 0.170459i \(-0.0545250\pi\)
\(614\) −28.1519 13.5572i −1.13612 0.547126i
\(615\) 0 0
\(616\) 35.8317 44.9315i 1.44370 1.81034i
\(617\) −0.649973 2.84772i −0.0261669 0.114645i 0.960158 0.279458i \(-0.0901549\pi\)
−0.986325 + 0.164814i \(0.947298\pi\)
\(618\) 3.13667 0.715925i 0.126175 0.0287987i
\(619\) −5.30577 + 4.23121i −0.213257 + 0.170067i −0.724293 0.689493i \(-0.757833\pi\)
0.511036 + 0.859560i \(0.329262\pi\)
\(620\) 0 0
\(621\) 19.3174i 0.775181i
\(622\) −38.9445 8.88882i −1.56153 0.356409i
\(623\) −33.7293 + 16.2432i −1.35134 + 0.650769i
\(624\) 6.13794 + 12.7456i 0.245714 + 0.510231i
\(625\) 0 0
\(626\) 24.9343i 0.996574i
\(627\) 6.69465 29.3312i 0.267358 1.17137i
\(628\) 1.18381 + 1.48446i 0.0472393 + 0.0592362i
\(629\) −3.47765 15.2366i −0.138663 0.607522i
\(630\) 0 0
\(631\) 8.15797 10.2298i 0.324764 0.407241i −0.592469 0.805594i \(-0.701847\pi\)
0.917232 + 0.398353i \(0.130418\pi\)
\(632\) 5.70394 + 11.8444i 0.226891 + 0.471143i
\(633\) 2.35130 4.88253i 0.0934559 0.194063i
\(634\) −2.84876 3.57224i −0.113139 0.141872i
\(635\) 0 0
\(636\) −0.732948 + 1.52198i −0.0290633 + 0.0603505i
\(637\) 25.4963i 1.01020i
\(638\) 4.23063 36.0971i 0.167492 1.42910i
\(639\) 10.9881 0.434681
\(640\) 0 0
\(641\) −11.9956 9.56620i −0.473799 0.377842i 0.357279 0.933998i \(-0.383705\pi\)
−0.831078 + 0.556155i \(0.812276\pi\)
\(642\) 6.94346 5.53723i 0.274037 0.218537i
\(643\) 6.37331 13.2343i 0.251339 0.521911i −0.736680 0.676241i \(-0.763608\pi\)
0.988019 + 0.154331i \(0.0493221\pi\)
\(644\) 2.47760 1.19315i 0.0976310 0.0470166i
\(645\) 0 0
\(646\) 36.2774 8.28009i 1.42732 0.325776i
\(647\) 6.99109 1.59567i 0.274848 0.0627323i −0.0828751 0.996560i \(-0.526410\pi\)
0.357723 + 0.933828i \(0.383553\pi\)
\(648\) 4.53173 + 5.68261i 0.178023 + 0.223234i
\(649\) −22.7365 5.18947i −0.892487 0.203704i
\(650\) 0 0
\(651\) 3.30860 14.4959i 0.129674 0.568140i
\(652\) 0.0765709 0.0368746i 0.00299875 0.00144412i
\(653\) −7.23483 + 3.48411i −0.283121 + 0.136344i −0.570055 0.821607i \(-0.693078\pi\)
0.286934 + 0.957950i \(0.407364\pi\)
\(654\) −1.34941 + 5.91216i −0.0527661 + 0.231184i
\(655\) 0 0
\(656\) 43.3522 + 9.89485i 1.69262 + 0.386329i
\(657\) −3.22772 4.04743i −0.125925 0.157905i
\(658\) −1.12525 + 0.256830i −0.0438667 + 0.0100123i
\(659\) 36.5138 8.33404i 1.42238 0.324648i 0.558983 0.829179i \(-0.311192\pi\)
0.863393 + 0.504531i \(0.168335\pi\)
\(660\) 0 0
\(661\) 21.4073 10.3092i 0.832649 0.400983i 0.0315411 0.999502i \(-0.489958\pi\)
0.801108 + 0.598520i \(0.204244\pi\)
\(662\) −10.3721 + 21.5378i −0.403122 + 0.837092i
\(663\) 17.9361 14.3036i 0.696580 0.555504i
\(664\) −19.4676 15.5249i −0.755489 0.602482i
\(665\) 0 0
\(666\) 5.32757 0.206439
\(667\) 10.0755 15.8772i 0.390127 0.614767i
\(668\) 2.41435i 0.0934142i
\(669\) 0.271636 0.564059i 0.0105021 0.0218078i
\(670\) 0 0
\(671\) 29.7021 + 37.2452i 1.14664 + 1.43784i
\(672\) −2.38539 + 4.95331i −0.0920183 + 0.191078i
\(673\) −11.6134 24.1155i −0.447663 0.929582i −0.995657 0.0930999i \(-0.970322\pi\)
0.547993 0.836483i \(-0.315392\pi\)
\(674\) −8.10508 + 10.1635i −0.312196 + 0.391482i
\(675\) 0 0
\(676\) 0.120735 + 0.528975i 0.00464365 + 0.0203452i
\(677\) 4.84564 + 6.07624i 0.186233 + 0.233529i 0.866180 0.499733i \(-0.166568\pi\)
−0.679946 + 0.733262i \(0.737997\pi\)
\(678\) 3.38734 14.8409i 0.130090 0.569962i
\(679\) 60.5950i 2.32542i
\(680\) 0 0
\(681\) 1.31475 + 2.73010i 0.0503813 + 0.104618i
\(682\) −18.8838 + 9.09394i −0.723097 + 0.348225i
\(683\) 11.0484 + 2.52173i 0.422755 + 0.0964911i 0.428605 0.903492i \(-0.359005\pi\)
−0.00585019 + 0.999983i \(0.501862\pi\)
\(684\) 1.43934i 0.0550346i
\(685\) 0 0
\(686\) 3.76444 3.00204i 0.143727 0.114618i
\(687\) −13.3140 + 3.03884i −0.507963 + 0.115939i
\(688\) 6.83177 + 29.9320i 0.260459 + 1.14115i
\(689\) −13.4093 + 16.8147i −0.510853 + 0.640589i
\(690\) 0 0
\(691\) −17.8906 8.61567i −0.680591 0.327756i 0.0614495 0.998110i \(-0.480428\pi\)
−0.742041 + 0.670355i \(0.766142\pi\)
\(692\) 0.798765 0.636994i 0.0303645 0.0242149i
\(693\) 17.7685 22.2810i 0.674969 0.846385i
\(694\) 16.1707 33.5789i 0.613833 1.27464i
\(695\) 0 0
\(696\) 2.11910 + 19.5942i 0.0803242 + 0.742717i
\(697\) 72.1114i 2.73141i
\(698\) −37.4782 18.0485i −1.41857 0.683147i
\(699\) −10.7099 8.54084i −0.405085 0.323044i
\(700\) 0 0
\(701\) 28.4759 + 13.7133i 1.07552 + 0.517944i 0.885882 0.463910i \(-0.153554\pi\)
0.189639 + 0.981854i \(0.439268\pi\)
\(702\) 10.3432 + 21.4779i 0.390380 + 0.810632i
\(703\) 10.2312 + 8.15909i 0.385876 + 0.307726i
\(704\) 42.4207 9.68225i 1.59879 0.364914i
\(705\) 0 0
\(706\) 6.25097 4.98498i 0.235258 0.187612i
\(707\) −3.63814 + 15.9397i −0.136826 + 0.599475i
\(708\) 1.16958 0.0439556
\(709\) −8.72768 + 38.2384i −0.327775 + 1.43608i 0.495587 + 0.868558i \(0.334953\pi\)
−0.823362 + 0.567517i \(0.807904\pi\)
\(710\) 0 0
\(711\) 2.82852 + 5.87347i 0.106078 + 0.220272i
\(712\) −27.8993 6.36784i −1.04557 0.238645i
\(713\) −10.8443 −0.406122
\(714\) −36.0225 8.22190i −1.34811 0.307697i
\(715\) 0 0
\(716\) −0.207690 0.909950i −0.00776175 0.0340064i
\(717\) −3.48497 15.2686i −0.130149 0.570218i
\(718\) −14.5703 11.6194i −0.543760 0.433634i
\(719\) −1.50781 + 0.726122i −0.0562317 + 0.0270798i −0.461788 0.886990i \(-0.652792\pi\)
0.405557 + 0.914070i \(0.367078\pi\)
\(720\) 0 0
\(721\) 4.66738 + 5.85272i 0.173822 + 0.217967i
\(722\) −3.54972 + 4.45121i −0.132107 + 0.165657i
\(723\) −22.9362 11.0455i −0.853007 0.410786i
\(724\) −0.281595 −0.0104654
\(725\) 0 0
\(726\) 23.8442 0.884940
\(727\) −34.6894 16.7055i −1.28656 0.619574i −0.339491 0.940609i \(-0.610255\pi\)
−0.947067 + 0.321035i \(0.895969\pi\)
\(728\) −22.8782 + 28.6884i −0.847924 + 1.06326i
\(729\) 15.0689 + 18.8958i 0.558108 + 0.699845i
\(730\) 0 0
\(731\) 44.8578 21.6024i 1.65913 0.798993i
\(732\) −1.86788 1.48959i −0.0690390 0.0550568i
\(733\) −2.49071 10.9125i −0.0919966 0.403064i 0.907872 0.419247i \(-0.137706\pi\)
−0.999869 + 0.0161830i \(0.994849\pi\)
\(734\) −5.21011 22.8270i −0.192309 0.842559i
\(735\) 0 0
\(736\) 3.90918 + 0.892245i 0.144094 + 0.0328886i
\(737\) 65.3865 2.40854
\(738\) 23.9657 + 5.47002i 0.882191 + 0.201354i
\(739\) −19.6187 40.7386i −0.721685 1.49859i −0.861141 0.508366i \(-0.830250\pi\)
0.139456 0.990228i \(-0.455465\pi\)
\(740\) 0 0
\(741\) −4.27448 + 18.7277i −0.157027 + 0.687980i
\(742\) 34.6388 1.27163
\(743\) −5.32485 + 23.3297i −0.195350 + 0.855884i 0.778310 + 0.627880i \(0.216077\pi\)
−0.973660 + 0.228004i \(0.926780\pi\)
\(744\) 8.88609 7.08642i 0.325780 0.259801i
\(745\) 0 0
\(746\) 1.89220 0.431883i 0.0692785 0.0158124i
\(747\) −9.65374 7.69860i −0.353212 0.281677i
\(748\) −2.56428 5.32477i −0.0937592 0.194693i
\(749\) 18.6175 + 8.96570i 0.680267 + 0.327599i
\(750\) 0 0
\(751\) 34.3700 + 27.4091i 1.25418 + 1.00017i 0.999450 + 0.0331610i \(0.0105574\pi\)
0.254728 + 0.967013i \(0.418014\pi\)
\(752\) −0.713038 0.343381i −0.0260018 0.0125218i
\(753\) 8.61633i 0.313997i
\(754\) −2.70122 + 23.0477i −0.0983728 + 0.839349i
\(755\) 0 0
\(756\) −1.89029 + 3.92522i −0.0687490 + 0.142759i
\(757\) 26.3065 32.9873i 0.956125 1.19894i −0.0238279 0.999716i \(-0.507585\pi\)
0.979953 0.199227i \(-0.0638432\pi\)
\(758\) 4.28864 3.42008i 0.155770 0.124223i
\(759\) 19.6305 + 9.45355i 0.712542 + 0.343142i
\(760\) 0 0
\(761\) 9.04819 11.3461i 0.327997 0.411295i −0.590302 0.807182i \(-0.700992\pi\)
0.918299 + 0.395887i \(0.129563\pi\)
\(762\) −2.30525 10.1000i −0.0835105 0.365884i
\(763\) −13.7560 + 3.13973i −0.498002 + 0.113666i
\(764\) −3.99191 + 3.18344i −0.144422 + 0.115173i
\(765\) 0 0
\(766\) 0.402831i 0.0145549i
\(767\) 14.5171 + 3.31343i 0.524182 + 0.119641i
\(768\) −5.40222 + 2.60157i −0.194936 + 0.0938761i
\(769\) 5.19669 + 10.7910i 0.187397 + 0.389135i 0.973408 0.229078i \(-0.0735712\pi\)
−0.786011 + 0.618213i \(0.787857\pi\)
\(770\) 0 0
\(771\) 25.5492i 0.920133i
\(772\) 0.524583 2.29835i 0.0188802 0.0827194i
\(773\) −12.7880 16.0357i −0.459954 0.576764i 0.496725 0.867908i \(-0.334536\pi\)
−0.956679 + 0.291144i \(0.905964\pi\)
\(774\) 3.77671 + 16.5468i 0.135751 + 0.594764i
\(775\) 0 0
\(776\) −28.8795 + 36.2138i −1.03671 + 1.30000i
\(777\) −5.63797 11.7074i −0.202261 0.420000i
\(778\) −10.0284 + 20.8241i −0.359535 + 0.746581i
\(779\) 37.6471 + 47.2079i 1.34885 + 1.69140i
\(780\) 0 0
\(781\) −16.3916 + 34.0374i −0.586537 + 1.21796i
\(782\) 26.9481i 0.963663i
\(783\) 3.20323 + 29.6186i 0.114474 + 1.05848i
\(784\) 28.1573 1.00562
\(785\) 0 0
\(786\) 0.849234 + 0.677242i 0.0302912 + 0.0241564i
\(787\) 8.87316 7.07611i 0.316294 0.252236i −0.452454 0.891788i \(-0.649451\pi\)
0.768748 + 0.639552i \(0.220880\pi\)
\(788\) −1.96171 + 4.07353i −0.0698830 + 0.145114i
\(789\) −24.0202 + 11.5675i −0.855142 + 0.411815i
\(790\) 0 0
\(791\) 34.5310 7.88147i 1.22778 0.280233i
\(792\) 21.2382 4.84748i 0.754666 0.172248i
\(793\) −18.9645 23.7808i −0.673451 0.844481i
\(794\) −35.6672 8.14080i −1.26578 0.288906i
\(795\) 0 0
\(796\) −0.932959 + 4.08756i −0.0330679 + 0.144880i
\(797\) −4.01159 + 1.93188i −0.142098 + 0.0684308i −0.503582 0.863948i \(-0.667985\pi\)
0.361484 + 0.932378i \(0.382270\pi\)
\(798\) 27.8746 13.4237i 0.986751 0.475194i
\(799\) −0.285588 + 1.25124i −0.0101034 + 0.0442657i
\(800\) 0 0
\(801\) −13.8349 3.15774i −0.488834 0.111573i
\(802\) −7.49881 9.40321i −0.264792 0.332039i
\(803\) 17.3526 3.96061i 0.612359 0.139767i
\(804\) −3.19698 + 0.729690i −0.112749 + 0.0257342i
\(805\) 0 0
\(806\) 12.0571 5.80641i 0.424695 0.204522i
\(807\) −11.6815 + 24.2568i −0.411207 + 0.853879i
\(808\) −9.77114 + 7.79222i −0.343747 + 0.274129i
\(809\) −2.30156 1.83543i −0.0809184 0.0645303i 0.582195 0.813049i \(-0.302194\pi\)
−0.663114 + 0.748519i \(0.730765\pi\)
\(810\) 0 0
\(811\) −52.6587 −1.84910 −0.924548 0.381066i \(-0.875557\pi\)
−0.924548 + 0.381066i \(0.875557\pi\)
\(812\) −3.60095 + 2.24024i −0.126369 + 0.0786171i
\(813\) 4.59087i 0.161009i
\(814\) −7.94746 + 16.5031i −0.278558 + 0.578432i
\(815\) 0 0
\(816\) −15.7964 19.8080i −0.552984 0.693420i
\(817\) −18.0884 + 37.5609i −0.632832 + 1.31409i
\(818\) 9.19675 + 19.0972i 0.321557 + 0.667719i
\(819\) −11.3450 + 14.2262i −0.396428 + 0.497105i
\(820\) 0 0
\(821\) −0.360547 1.57966i −0.0125832 0.0551306i 0.968247 0.249997i \(-0.0804297\pi\)
−0.980830 + 0.194867i \(0.937573\pi\)
\(822\) 2.70017 + 3.38591i 0.0941793 + 0.118097i
\(823\) −8.35401 + 36.6013i −0.291202 + 1.27584i 0.591652 + 0.806194i \(0.298476\pi\)
−0.882854 + 0.469647i \(0.844381\pi\)
\(824\) 5.72227i 0.199345i
\(825\) 0 0
\(826\) −10.4056 21.6075i −0.362057 0.751820i
\(827\) 7.84779 3.77930i 0.272894 0.131419i −0.292432 0.956286i \(-0.594464\pi\)
0.565326 + 0.824867i \(0.308750\pi\)
\(828\) 1.01625 + 0.231953i 0.0353172 + 0.00806091i
\(829\) 1.94099i 0.0674135i −0.999432 0.0337067i \(-0.989269\pi\)
0.999432 0.0337067i \(-0.0107312\pi\)
\(830\) 0 0
\(831\) −2.58170 + 2.05884i −0.0895581 + 0.0714202i
\(832\) −27.0853 + 6.18205i −0.939014 + 0.214324i
\(833\) −10.1608 44.5174i −0.352051 1.54243i
\(834\) 6.07687 7.62015i 0.210425 0.263864i
\(835\) 0 0
\(836\) 4.45861 + 2.14715i 0.154204 + 0.0742608i
\(837\) 13.4322 10.7118i 0.464285 0.370255i
\(838\) −32.7552 + 41.0737i −1.13151 + 1.41887i
\(839\) 15.7021 32.6058i 0.542098 1.12568i −0.432482 0.901642i \(-0.642362\pi\)
0.974581 0.224036i \(-0.0719234\pi\)
\(840\) 0 0
\(841\) −12.8157 + 26.0146i −0.441920 + 0.897055i
\(842\) 53.0148i 1.82701i
\(843\) 0.295944 + 0.142519i 0.0101928 + 0.00490861i
\(844\) 0.696917 + 0.555772i 0.0239889 + 0.0191305i
\(845\) 0 0
\(846\) −0.394178 0.189826i −0.0135521 0.00652636i
\(847\) 24.0715 + 49.9850i 0.827107 + 1.71751i
\(848\) 18.5696 + 14.8088i 0.637683 + 0.508536i
\(849\) 9.24940 2.11111i 0.317439 0.0724533i
\(850\) 0 0
\(851\) −7.40953 + 5.90890i −0.253995 + 0.202554i
\(852\) 0.421597 1.84714i 0.0144437 0.0632819i
\(853\) 0.842759 0.0288555 0.0144278 0.999896i \(-0.495407\pi\)
0.0144278 + 0.999896i \(0.495407\pi\)
\(854\) −10.9011 + 47.7609i −0.373028 + 1.63434i
\(855\) 0 0
\(856\) 6.85343 + 14.2313i 0.234245 + 0.486416i
\(857\) −18.3036 4.17767i −0.625237 0.142706i −0.101848 0.994800i \(-0.532476\pi\)
−0.523389 + 0.852094i \(0.675333\pi\)
\(858\) −26.8878 −0.917934
\(859\) 31.4029 + 7.16751i 1.07145 + 0.244552i 0.721641 0.692267i \(-0.243388\pi\)
0.349813 + 0.936820i \(0.386245\pi\)
\(860\) 0 0
\(861\) −13.3417 58.4536i −0.454682 1.99209i
\(862\) 0.929564 + 4.07269i 0.0316611 + 0.138716i
\(863\) −36.8294 29.3705i −1.25369 0.999782i −0.999467 0.0326357i \(-0.989610\pi\)
−0.254220 0.967146i \(-0.581819\pi\)
\(864\) −5.72343 + 2.75626i −0.194715 + 0.0937698i
\(865\) 0 0
\(866\) −1.75139 2.19617i −0.0595146 0.0746289i
\(867\) −12.4832 + 15.6534i −0.423951 + 0.531617i
\(868\) 2.20351 + 1.06116i 0.0747922 + 0.0360180i
\(869\) −22.4136 −0.760328
\(870\) 0 0
\(871\) −41.7488 −1.41460
\(872\) −9.71751 4.67970i −0.329076 0.158475i
\(873\) −14.3210 + 17.9580i −0.484693 + 0.607786i
\(874\) −14.0688 17.6417i −0.475883 0.596739i
\(875\) 0 0
\(876\) −0.804231 + 0.387297i −0.0271725 + 0.0130856i
\(877\) 24.8892 + 19.8485i 0.840450 + 0.670236i 0.945996 0.324178i \(-0.105088\pi\)
−0.105546 + 0.994414i \(0.533659\pi\)
\(878\) −0.926683 4.06006i −0.0312740 0.137021i
\(879\) 1.49634 + 6.55588i 0.0504702 + 0.221124i
\(880\) 0 0
\(881\) −31.7553 7.24794i −1.06986 0.244189i −0.348898 0.937161i \(-0.613444\pi\)
−0.720965 + 0.692971i \(0.756301\pi\)
\(882\) 15.5658 0.524128
\(883\) 53.5623 + 12.2253i 1.80252 + 0.411412i 0.986114 0.166072i \(-0.0531083\pi\)
0.816402 + 0.577484i \(0.195965\pi\)
\(884\) 1.63727 + 3.39983i 0.0550674 + 0.114349i
\(885\) 0 0
\(886\) −3.37493 + 14.7866i −0.113383 + 0.496764i
\(887\) 29.8115 1.00097 0.500486 0.865745i \(-0.333155\pi\)
0.500486 + 0.865745i \(0.333155\pi\)
\(888\) 2.21026 9.68380i 0.0741716 0.324967i
\(889\) 18.8456 15.0288i 0.632060 0.504051i
\(890\) 0 0
\(891\) −12.0814 + 2.75750i −0.404741 + 0.0923796i
\(892\) 0.0805119 + 0.0642061i 0.00269574 + 0.00214978i
\(893\) −0.466273 0.968225i −0.0156032 0.0324004i
\(894\) 15.5611 + 7.49384i 0.520441 + 0.250631i
\(895\) 0 0
\(896\) 28.0455 + 22.3655i 0.936933 + 0.747179i
\(897\) −12.5339 6.03602i −0.418496 0.201537i
\(898\) 47.0581i 1.57035i
\(899\) 16.6271 1.79821i 0.554546 0.0599736i
\(900\) 0 0
\(901\) 16.7120 34.7028i 0.556758 1.15612i
\(902\) −52.6955 + 66.0780i −1.75457 + 2.20016i
\(903\) 32.3651 25.8103i 1.07704 0.858912i
\(904\) 24.3933 + 11.7472i 0.811308 + 0.390705i
\(905\) 0 0
\(906\) −3.60329 + 4.51838i −0.119711 + 0.150113i
\(907\) −6.96687 30.5239i −0.231331 1.01353i −0.948537 0.316666i \(-0.897436\pi\)
0.717206 0.696861i \(-0.245421\pi\)
\(908\) −0.485931 + 0.110911i −0.0161262 + 0.00368069i
\(909\) −4.84539 + 3.86407i −0.160711 + 0.128163i
\(910\) 0 0
\(911\) 30.4463i 1.00873i 0.863490 + 0.504365i \(0.168273\pi\)
−0.863490 + 0.504365i \(0.831727\pi\)
\(912\) 20.6823 + 4.72060i 0.684860 + 0.156315i
\(913\) 38.2488 18.4197i 1.26585 0.609602i
\(914\) −19.3614 40.2044i −0.640419 1.32984i
\(915\) 0 0
\(916\) 2.24631i 0.0742203i
\(917\) −0.562384 + 2.46397i −0.0185716 + 0.0813673i
\(918\) −26.6190 33.3791i −0.878557 1.10168i
\(919\) −8.50473 37.2616i −0.280545 1.22915i −0.897097 0.441834i \(-0.854328\pi\)
0.616552 0.787314i \(-0.288529\pi\)
\(920\) 0 0
\(921\) −18.0117 + 22.5860i −0.593507 + 0.744234i
\(922\) −18.5961 38.6152i −0.612429 1.27172i
\(923\) 10.4659 21.7327i 0.344489 0.715339i
\(924\) −3.06377 3.84184i −0.100791 0.126387i
\(925\) 0 0
\(926\) 12.6293 26.2250i 0.415024 0.861806i
\(927\) 2.83760i 0.0931991i
\(928\) −6.14175 0.719821i −0.201613 0.0236293i
\(929\) −7.40994 −0.243112 −0.121556 0.992585i \(-0.538788\pi\)
−0.121556 + 0.992585i \(0.538788\pi\)
\(930\) 0 0
\(931\) 29.8929 + 23.8388i 0.979700 + 0.781285i
\(932\) 1.76164 1.40486i 0.0577044 0.0460177i
\(933\) −16.0241 + 33.2745i −0.524607 + 1.08936i
\(934\) 20.7235 9.97989i 0.678092 0.326552i
\(935\) 0 0
\(936\) −13.5604 + 3.09508i −0.443236 + 0.101166i
\(937\) −36.6242 + 8.35924i −1.19646 + 0.273085i −0.773934 0.633266i \(-0.781714\pi\)
−0.422527 + 0.906350i \(0.638857\pi\)
\(938\) 41.9237 + 52.5707i 1.36886 + 1.71649i
\(939\) −22.4749 5.12974i −0.733440 0.167403i
\(940\) 0 0
\(941\) 9.63473 42.2125i 0.314083 1.37609i −0.533668 0.845694i \(-0.679187\pi\)
0.847751 0.530394i \(-0.177956\pi\)
\(942\) −13.9382 + 6.71228i −0.454131 + 0.218698i
\(943\) −39.3982 + 18.9732i −1.28298 + 0.617851i
\(944\) 3.65925 16.0322i 0.119099 0.521805i
\(945\) 0 0
\(946\) −56.8907 12.9849i −1.84967 0.422176i
\(947\) 9.07894 + 11.3846i 0.295026 + 0.369951i 0.907147 0.420813i \(-0.138255\pi\)
−0.612121 + 0.790764i \(0.709684\pi\)
\(948\) 1.09588 0.250128i 0.0355925 0.00812376i
\(949\) −11.0795 + 2.52882i −0.359656 + 0.0820891i
\(950\) 0 0
\(951\) −3.80596 + 1.83286i −0.123417 + 0.0594344i
\(952\) 28.5132 59.2083i 0.924118 1.91895i
\(953\) 6.39582 5.10050i 0.207181 0.165221i −0.514402 0.857549i \(-0.671986\pi\)
0.721583 + 0.692328i \(0.243415\pi\)
\(954\) 10.2656 + 8.18652i 0.332360 + 0.265048i
\(955\) 0 0
\(956\) 2.57609 0.0833166
\(957\) −31.6663 11.2396i −1.02362 0.363325i
\(958\) 35.0424i 1.13217i
\(959\) −4.37203 + 9.07861i −0.141180 + 0.293164i
\(960\) 0 0
\(961\) 13.3148 + 16.6963i 0.429511 + 0.538590i
\(962\) 5.07439 10.5371i 0.163605 0.339729i
\(963\) 3.39853 + 7.05713i 0.109516 + 0.227413i
\(964\) 2.61080 3.27384i 0.0840882 0.105443i
\(965\) 0 0
\(966\) 4.98580 + 21.8442i 0.160415 + 0.702826i
\(967\) 13.5770 + 17.0250i 0.436606 + 0.547487i 0.950645 0.310280i \(-0.100423\pi\)
−0.514039 + 0.857767i \(0.671851\pi\)
\(968\) −9.43680 + 41.3453i −0.303310 + 1.32889i
\(969\) 34.4027i 1.10517i
\(970\) 0 0
\(971\) 10.8622 + 22.5556i 0.348584 + 0.723842i 0.999373 0.0354167i \(-0.0112759\pi\)
−0.650789 + 0.759259i \(0.725562\pi\)
\(972\) −2.48767 + 1.19800i −0.0797921 + 0.0384259i
\(973\) 22.1091 + 5.04625i 0.708785 + 0.161775i
\(974\) 30.9027i 0.990187i
\(975\) 0 0
\(976\) −26.2627 + 20.9438i −0.840650 + 0.670396i
\(977\) −24.7038 + 5.63849i −0.790345 + 0.180391i −0.598594 0.801052i \(-0.704274\pi\)
−0.191751 + 0.981444i \(0.561417\pi\)
\(978\) 0.154088 + 0.675102i 0.00492718 + 0.0215874i
\(979\) 30.4201 38.1456i 0.972229 1.21914i
\(980\) 0 0
\(981\) −4.81879 2.32061i −0.153852 0.0740913i
\(982\) −2.23845 + 1.78510i −0.0714318 + 0.0569650i
\(983\) 0.439068 0.550574i 0.0140041 0.0175606i −0.774780 0.632231i \(-0.782139\pi\)
0.788784 + 0.614670i \(0.210711\pi\)
\(984\) 19.8855 41.2926i 0.633926 1.31636i
\(985\) 0 0
\(986\) −4.46856 41.3185i −0.142308 1.31585i
\(987\) 1.06710i 0.0339660i
\(988\) −2.84679 1.37094i −0.0905684 0.0436154i
\(989\) −23.6050 18.8244i −0.750595 0.598580i
\(990\) 0 0
\(991\) −24.4697 11.7840i −0.777307 0.374331i 0.00278497 0.999996i \(-0.499114\pi\)
−0.780092 + 0.625665i \(0.784828\pi\)
\(992\) 1.54729 + 3.21298i 0.0491265 + 0.102012i
\(993\) 17.2796 + 13.7800i 0.548351 + 0.437296i
\(994\) −37.8758 + 8.64491i −1.20135 + 0.274200i
\(995\) 0 0
\(996\) −1.66457 + 1.32745i −0.0527438 + 0.0420618i
\(997\) 1.20743 5.29010i 0.0382398 0.167539i −0.952202 0.305468i \(-0.901187\pi\)
0.990442 + 0.137928i \(0.0440444\pi\)
\(998\) 12.9250 0.409132
\(999\) 3.34104 14.6380i 0.105706 0.463127i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.p.b.274.2 48
5.2 odd 4 145.2.m.a.71.3 24
5.3 odd 4 725.2.q.b.651.2 24
5.4 even 2 inner 725.2.p.b.274.7 48
29.9 even 14 inner 725.2.p.b.299.7 48
145.9 even 14 inner 725.2.p.b.299.2 48
145.32 even 28 4205.2.a.y.1.19 24
145.38 odd 28 725.2.q.b.676.2 24
145.67 odd 28 145.2.m.a.96.3 yes 24
145.142 even 28 4205.2.a.y.1.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.m.a.71.3 24 5.2 odd 4
145.2.m.a.96.3 yes 24 145.67 odd 28
725.2.p.b.274.2 48 1.1 even 1 trivial
725.2.p.b.274.7 48 5.4 even 2 inner
725.2.p.b.299.2 48 145.9 even 14 inner
725.2.p.b.299.7 48 29.9 even 14 inner
725.2.q.b.651.2 24 5.3 odd 4
725.2.q.b.676.2 24 145.38 odd 28
4205.2.a.y.1.6 24 145.142 even 28
4205.2.a.y.1.19 24 145.32 even 28