Properties

Label 4205.2.a.y
Level $4205$
Weight $2$
Character orbit 4205.a
Self dual yes
Analytic conductor $33.577$
Analytic rank $1$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4205,2,Mod(1,4205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4205.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4205 = 5 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.5770940499\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 14 q^{4} + 24 q^{5} - 18 q^{6} - 38 q^{7} + 18 q^{9} - 34 q^{13} - 10 q^{16} + 14 q^{20} - 10 q^{22} - 44 q^{23} - 4 q^{24} + 24 q^{25} - 44 q^{28} - 18 q^{30} - 58 q^{33} + 8 q^{34} - 38 q^{35}+ \cdots + 22 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.52311 −0.367113 4.36608 1.00000 0.926266 −5.12713 −5.96987 −2.86523 −2.52311
1.2 −2.46493 1.17334 4.07587 1.00000 −2.89220 −0.528087 −5.11687 −1.62327 −2.46493
1.3 −2.07250 3.28868 2.29525 1.00000 −6.81579 −4.26791 −0.611896 7.81544 −2.07250
1.4 −1.95283 0.620899 1.81353 1.00000 −1.21251 0.126430 0.364137 −2.61448 −1.95283
1.5 −1.86976 −0.995019 1.49598 1.00000 1.86044 0.907041 0.942385 −2.00994 −1.86976
1.6 −1.34022 −1.23909 −0.203815 1.00000 1.66065 −3.86391 2.95359 −1.46465 −1.34022
1.7 −1.29519 −3.05287 −0.322483 1.00000 3.95404 −3.30555 3.00806 6.31999 −1.29519
1.8 −1.26889 2.62094 −0.389926 1.00000 −3.32568 −0.00237662 3.03255 3.86933 −1.26889
1.9 −0.976160 2.48787 −1.04711 1.00000 −2.42856 2.05638 2.97447 3.18951 −0.976160
1.10 −0.946293 1.03726 −1.10453 1.00000 −0.981552 1.25250 2.93779 −1.92409 −0.946293
1.11 −0.110687 −2.50070 −1.98775 1.00000 0.276795 −2.79886 0.441392 3.25348 −0.110687
1.12 −0.0943500 0.232166 −1.99110 1.00000 −0.0219049 −3.44853 0.376560 −2.94610 −0.0943500
1.13 0.0943500 −0.232166 −1.99110 1.00000 −0.0219049 −3.44853 −0.376560 −2.94610 0.0943500
1.14 0.110687 2.50070 −1.98775 1.00000 0.276795 −2.79886 −0.441392 3.25348 0.110687
1.15 0.946293 −1.03726 −1.10453 1.00000 −0.981552 1.25250 −2.93779 −1.92409 0.946293
1.16 0.976160 −2.48787 −1.04711 1.00000 −2.42856 2.05638 −2.97447 3.18951 0.976160
1.17 1.26889 −2.62094 −0.389926 1.00000 −3.32568 −0.00237662 −3.03255 3.86933 1.26889
1.18 1.29519 3.05287 −0.322483 1.00000 3.95404 −3.30555 −3.00806 6.31999 1.29519
1.19 1.34022 1.23909 −0.203815 1.00000 1.66065 −3.86391 −2.95359 −1.46465 1.34022
1.20 1.86976 0.995019 1.49598 1.00000 1.86044 0.907041 −0.942385 −2.00994 1.86976
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.24
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(29\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4205.2.a.y 24
29.b even 2 1 inner 4205.2.a.y 24
29.f odd 28 2 145.2.m.a 24
145.o even 28 2 725.2.p.b 48
145.s odd 28 2 725.2.q.b 24
145.t even 28 2 725.2.p.b 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.2.m.a 24 29.f odd 28 2
725.2.p.b 48 145.o even 28 2
725.2.p.b 48 145.t even 28 2
725.2.q.b 24 145.s odd 28 2
4205.2.a.y 24 1.a even 1 1 trivial
4205.2.a.y 24 29.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4205))\):

\( T_{2}^{24} - 31 T_{2}^{22} + 414 T_{2}^{20} - 3129 T_{2}^{18} + 14790 T_{2}^{16} - 45609 T_{2}^{14} + \cdots + 1 \) Copy content Toggle raw display
\( T_{3}^{24} - 45 T_{3}^{22} + 845 T_{3}^{20} - 8613 T_{3}^{18} + 52013 T_{3}^{16} - 191573 T_{3}^{14} + \cdots + 169 \) Copy content Toggle raw display