Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4205,2,Mod(1,4205)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4205, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4205.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4205 = 5 \cdot 29^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4205.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(33.5770940499\) |
Analytic rank: | \(1\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 145) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.52311 | −0.367113 | 4.36608 | 1.00000 | 0.926266 | −5.12713 | −5.96987 | −2.86523 | −2.52311 | ||||||||||||||||||
1.2 | −2.46493 | 1.17334 | 4.07587 | 1.00000 | −2.89220 | −0.528087 | −5.11687 | −1.62327 | −2.46493 | ||||||||||||||||||
1.3 | −2.07250 | 3.28868 | 2.29525 | 1.00000 | −6.81579 | −4.26791 | −0.611896 | 7.81544 | −2.07250 | ||||||||||||||||||
1.4 | −1.95283 | 0.620899 | 1.81353 | 1.00000 | −1.21251 | 0.126430 | 0.364137 | −2.61448 | −1.95283 | ||||||||||||||||||
1.5 | −1.86976 | −0.995019 | 1.49598 | 1.00000 | 1.86044 | 0.907041 | 0.942385 | −2.00994 | −1.86976 | ||||||||||||||||||
1.6 | −1.34022 | −1.23909 | −0.203815 | 1.00000 | 1.66065 | −3.86391 | 2.95359 | −1.46465 | −1.34022 | ||||||||||||||||||
1.7 | −1.29519 | −3.05287 | −0.322483 | 1.00000 | 3.95404 | −3.30555 | 3.00806 | 6.31999 | −1.29519 | ||||||||||||||||||
1.8 | −1.26889 | 2.62094 | −0.389926 | 1.00000 | −3.32568 | −0.00237662 | 3.03255 | 3.86933 | −1.26889 | ||||||||||||||||||
1.9 | −0.976160 | 2.48787 | −1.04711 | 1.00000 | −2.42856 | 2.05638 | 2.97447 | 3.18951 | −0.976160 | ||||||||||||||||||
1.10 | −0.946293 | 1.03726 | −1.10453 | 1.00000 | −0.981552 | 1.25250 | 2.93779 | −1.92409 | −0.946293 | ||||||||||||||||||
1.11 | −0.110687 | −2.50070 | −1.98775 | 1.00000 | 0.276795 | −2.79886 | 0.441392 | 3.25348 | −0.110687 | ||||||||||||||||||
1.12 | −0.0943500 | 0.232166 | −1.99110 | 1.00000 | −0.0219049 | −3.44853 | 0.376560 | −2.94610 | −0.0943500 | ||||||||||||||||||
1.13 | 0.0943500 | −0.232166 | −1.99110 | 1.00000 | −0.0219049 | −3.44853 | −0.376560 | −2.94610 | 0.0943500 | ||||||||||||||||||
1.14 | 0.110687 | 2.50070 | −1.98775 | 1.00000 | 0.276795 | −2.79886 | −0.441392 | 3.25348 | 0.110687 | ||||||||||||||||||
1.15 | 0.946293 | −1.03726 | −1.10453 | 1.00000 | −0.981552 | 1.25250 | −2.93779 | −1.92409 | 0.946293 | ||||||||||||||||||
1.16 | 0.976160 | −2.48787 | −1.04711 | 1.00000 | −2.42856 | 2.05638 | −2.97447 | 3.18951 | 0.976160 | ||||||||||||||||||
1.17 | 1.26889 | −2.62094 | −0.389926 | 1.00000 | −3.32568 | −0.00237662 | −3.03255 | 3.86933 | 1.26889 | ||||||||||||||||||
1.18 | 1.29519 | 3.05287 | −0.322483 | 1.00000 | 3.95404 | −3.30555 | −3.00806 | 6.31999 | 1.29519 | ||||||||||||||||||
1.19 | 1.34022 | 1.23909 | −0.203815 | 1.00000 | 1.66065 | −3.86391 | −2.95359 | −1.46465 | 1.34022 | ||||||||||||||||||
1.20 | 1.86976 | 0.995019 | 1.49598 | 1.00000 | 1.86044 | 0.907041 | −0.942385 | −2.00994 | 1.86976 | ||||||||||||||||||
See all 24 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \( -1 \) |
\(29\) | \( -1 \) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
29.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4205.2.a.y | 24 | |
29.b | even | 2 | 1 | inner | 4205.2.a.y | 24 | |
29.f | odd | 28 | 2 | 145.2.m.a | ✓ | 24 | |
145.o | even | 28 | 2 | 725.2.p.b | 48 | ||
145.s | odd | 28 | 2 | 725.2.q.b | 24 | ||
145.t | even | 28 | 2 | 725.2.p.b | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
145.2.m.a | ✓ | 24 | 29.f | odd | 28 | 2 | |
725.2.p.b | 48 | 145.o | even | 28 | 2 | ||
725.2.p.b | 48 | 145.t | even | 28 | 2 | ||
725.2.q.b | 24 | 145.s | odd | 28 | 2 | ||
4205.2.a.y | 24 | 1.a | even | 1 | 1 | trivial | |
4205.2.a.y | 24 | 29.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4205))\):
\( T_{2}^{24} - 31 T_{2}^{22} + 414 T_{2}^{20} - 3129 T_{2}^{18} + 14790 T_{2}^{16} - 45609 T_{2}^{14} + \cdots + 1 \) |
\( T_{3}^{24} - 45 T_{3}^{22} + 845 T_{3}^{20} - 8613 T_{3}^{18} + 52013 T_{3}^{16} - 191573 T_{3}^{14} + \cdots + 169 \) |