Properties

Label 2-65e2-1.1-c1-0-65
Degree $2$
Conductor $4225$
Sign $1$
Analytic cond. $33.7367$
Root an. cond. $5.80833$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.21·2-s + 1.31·3-s − 0.525·4-s + 1.59·6-s − 2.90·7-s − 3.06·8-s − 1.28·9-s − 0.214·11-s − 0.688·12-s − 3.52·14-s − 2.67·16-s + 6.42·17-s − 1.55·18-s − 2.21·19-s − 3.80·21-s − 0.260·22-s + 4.68·23-s − 4.02·24-s − 5.61·27-s + 1.52·28-s + 8.70·29-s + 5.59·31-s + 2.88·32-s − 0.280·33-s + 7.80·34-s + 0.673·36-s − 2.28·37-s + ⋯
L(s)  = 1  + 0.858·2-s + 0.756·3-s − 0.262·4-s + 0.649·6-s − 1.09·7-s − 1.08·8-s − 0.426·9-s − 0.0646·11-s − 0.198·12-s − 0.942·14-s − 0.668·16-s + 1.55·17-s − 0.366·18-s − 0.507·19-s − 0.830·21-s − 0.0554·22-s + 0.977·23-s − 0.820·24-s − 1.08·27-s + 0.288·28-s + 1.61·29-s + 1.00·31-s + 0.510·32-s − 0.0489·33-s + 1.33·34-s + 0.112·36-s − 0.374·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4225\)    =    \(5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(33.7367\)
Root analytic conductor: \(5.80833\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.538041088\)
\(L(\frac12)\) \(\approx\) \(2.538041088\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 \)
good2 \( 1 - 1.21T + 2T^{2} \)
3 \( 1 - 1.31T + 3T^{2} \)
7 \( 1 + 2.90T + 7T^{2} \)
11 \( 1 + 0.214T + 11T^{2} \)
17 \( 1 - 6.42T + 17T^{2} \)
19 \( 1 + 2.21T + 19T^{2} \)
23 \( 1 - 4.68T + 23T^{2} \)
29 \( 1 - 8.70T + 29T^{2} \)
31 \( 1 - 5.59T + 31T^{2} \)
37 \( 1 + 2.28T + 37T^{2} \)
41 \( 1 + 3.05T + 41T^{2} \)
43 \( 1 - 6.36T + 43T^{2} \)
47 \( 1 + 1.09T + 47T^{2} \)
53 \( 1 + 6.23T + 53T^{2} \)
59 \( 1 - 9.26T + 59T^{2} \)
61 \( 1 + 0.280T + 61T^{2} \)
67 \( 1 - 7.76T + 67T^{2} \)
71 \( 1 - 6.08T + 71T^{2} \)
73 \( 1 - 10.2T + 73T^{2} \)
79 \( 1 + 14.2T + 79T^{2} \)
83 \( 1 + 9.52T + 83T^{2} \)
89 \( 1 - 5.61T + 89T^{2} \)
97 \( 1 - 18.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.515788666886452674183668495883, −7.76700154372687429834130477561, −6.71487164063781241868307298241, −6.12996314920509896819912545903, −5.36784393426314463318916251015, −4.60441166909348913119623895609, −3.56281971992993236525387143163, −3.17615478558072498665926290285, −2.50103964926629481594348090728, −0.74836573588688376833158998024, 0.74836573588688376833158998024, 2.50103964926629481594348090728, 3.17615478558072498665926290285, 3.56281971992993236525387143163, 4.60441166909348913119623895609, 5.36784393426314463318916251015, 6.12996314920509896819912545903, 6.71487164063781241868307298241, 7.76700154372687429834130477561, 8.515788666886452674183668495883

Graph of the $Z$-function along the critical line